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a b s t r a c t

The equations governing the harmonic oscillations of a plate with transverse shear
deformation are considered in an annular domain. It is shown that under nonstandard
boundary conditions where both the displacements and tractions are zero on the internal
boundary curve, the corresponding analytic solution is zero in the entire domain. This
property is then used to prove that a boundary value problem with Dirichlet or Neumann
conditions on the external boundary and Robin conditions on the internal boundary has at
most one analytic solution.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The interior and exterior Dirichlet and Neumann problems for high frequency harmonic oscillations in thin elastic plates
were considered in [1] by means of a classical indirect boundary integral equation formulation. It was found that the
exterior Dirichlet (Neumann) problem does not have unique solutions at values of the oscillation frequency for which the
homogeneous interior Neumann (Dirichlet) problem admits nonzero solutions, although the exterior problems themselves
have at most one solution under certain far-field conditions. In [2] a direct method was used to derive a uniquely solvable
pair of integral equations for each exterior problem. The case of Robin boundary conditions was investigated in [3,4], with
similar conclusions. Belowwe lay the foundations of a theory ofmodified integral equations inwhich solutions of the exterior
problems may be constructed from a single uniquely solvable integral equation.

In what follows, a superscript T denotes matrix transposition and x = (x1, x2)T. Let h0 be the thickness of the plate, λ
and µ the elastic constants of the material, ρ the density, and ω the oscillation frequency. The stationary oscillations of the
plate when transverse shear effects are taken into account are governed by the system [5]

Aω(∂x)u(x) = H(x), (1)

where u = (u1, u2, u3)
T is a vector characterizing the displacements, H is related to the averaged body forces andmoments,

and the matrix operator Aω(∂x) = Aω(∂/∂x1, ∂/∂x2) is defined by

Aω(ξ1, ξ2) =

h2µ(∆ + k23) + h2(λ + µ)ξ 2
1 h2(λ + µ)ξ1ξ2 −µξ1

h2(λ + µ)ξ1ξ2 h2µ(1 + k23) + h2(λ + µ)ξ 2
2 −µξ2

µξ1 µξ2 µ(1 + k2)

 ;
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here,

h2
= h2

0/12, 1 = ξ 2
1 + ξ 2

2 , k2 = ρω2/µ, k23 = k2 − 1/h2.

Without loss of generality we consider the corresponding homogeneous system

Aω(∂x)u(x) = 0, (2)

since a particular solution of (1) may be constructed in terms of a Newtonian potential [6].
The boundary moment–stress operator T (∂x) = T (∂/∂x1, ∂/∂x2) is defined by [7]

T (ξ1, ξ2) =

h2((λ + 2µ)ν1ξ1 + µν2ξ2) h2(µν2ξ1 + λν1ξ2) 0
h2(λν2ξ1 + µν1ξ2) h2(µν1ξ1 + (λ + 2µ)ν2ξ2) 0

µν1 µν2 µ(ν1ξ1 + ν2ξ2)

 , (3)

where ν = (ν1, ν2)
T is the unit outward normal to some smooth boundary.

We assume that [7]

λ + µ > 0, µ > 0. (4)

2. Analytic solutions

Let D be an annular region bounded externally and internally by simple closed C2-curves ∂S1 and ∂S2, respectively. In
classical boundary value problems it is shown that if, say, u = 0 or Tu = 0 on ∂S1 ∪ ∂S2, or if one of these conditions is
satisfied on ∂S1 and the other on ∂S2, then u = 0 in D . The next assertion shows that the same result can be obtained from
a nonstandard set of conditions that involves only the internal boundary curve.

Lemma. If u is an analytic solution of (2) in D ∪ ∂S2 and

u = Tu = 0 on ∂S2,

then u = 0 in D .

Proof. Since u is analytic in D , it can be represented as a power series with a nonzero radius of convergence, whose
coefficients are expressed in terms of the derivatives of the components of u. We claim that all these derivatives, of any
order, vanish on ∂S2.

We verify our claim for the first-order derivatives. By (3) and our assumption, on ∂S2 we have

(λ + 2µ)ν1
∂u1

∂x1
+ µν2

∂u1

∂x2
+ µν2

∂u2

∂x1
+ λν1

∂u2

∂x2
= 0, (5)

λν2
∂u1

∂x1
+ µν1

∂u1

∂x2
+ µν1

∂u2

∂x1
+ (λ + 2µ)ν2

∂u2

∂x2
= 0, (6)

ν1u1 + ν2u2 + ν1
∂u3

∂x1
+ ν2

∂u3

∂x2
= 0, (7)

where ν = (ν1, ν2)
T is the unit normal to ∂S2 pointing into D . Let s = (s1, s2)T = (−ν2, ν1)

T be the unit tangent to ∂S2.
Since u = 0 on ∂S2, it follows that on this boundary curve

∂u1

∂s
= −ν2

∂u1

∂x1
+ ν1

∂u1

∂x2
= 0, (8)

∂u2

∂s
= −ν2

∂u2

∂x1
+ ν1

∂u2

∂x2
= 0, (9)

∂u3

∂s
= −ν2

∂u3

∂x1
+ ν1

∂u3

∂x2
= 0, (10)

so, by (5), (6), (8) and (9),

L(1)α(1)
= 0 on ∂S2, (11)

where

L(1)
=

(λ + 2µ)ν1 µν2 µν2 λν1
λν2 µν1 µν1 (λ + 2µ)ν2
−ν2 ν1 0 0
0 0 −ν2 ν1

 , α(1)
=


∂u1

∂x1
,
∂u1

∂x2
,
∂u2

∂x1
,
∂u2

∂x2

T

.
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Now

det L(1)
= (λ + 2µ)ν1[−µν1ν

2
1 + (λ + 2µ)ν2ν1(−ν2)] − µν2[−µν1(−ν2)ν1 + (λ + 2µ)ν2(−ν2)

2
]

+ µν2[λν2ν
2
1 − µν1(−ν2)ν1] − λν1[λν2ν1(−ν2) − µν1(−ν2)

2
] = −µ(λ + 2µ),

which, in view of (4), is nonzero. Hence, from (11) we see that α(1)
= 0 on ∂S2; that is,

∂u1

∂x1
=

∂u1

∂x2
=

∂u2

∂x1
=

∂u2

∂x2
= 0 on ∂S2.

Similarly, by (7) and (10),

L(1)
3 α

(1)
3 = 0 on ∂S2, (12)

where

L(1)
3 =


ν1 ν2

−ν2 ν1


, α

(1)
3 =


∂u3

∂x1
,
∂u3

∂x2

T

.

Since det L(1)
3 = ν2

1 + ν2
2 = 1, from (12) we deduce that α

(1)
3 = 0 on ∂S2; consequently,

∂u3

∂x1
=

∂u3

∂x2
= 0 on ∂S2.

Suppose now that the derivatives of all orders up to and including n = 2l − 1 of u1, u2, and u3 are zero on ∂S2, and let
n = 2l. Applying 1l−1 to the first two equations in (2) and using the analyticity of u, we find that on ∂S2,

µ


l
0


∂2lu1

∂x2l1
+


l
1


∂2lu1

∂x2l−2
1 ∂x22

+ · · · +


l

l − 1


∂2lu1

∂x21∂x
2l−2
2

+


l
l


∂2lu1

∂x2l2



+ (λ + µ)


l − 1
0


∂2lu1

∂x2l1
+


l − 1
1


∂2lu1

∂x2l−2
1 ∂x22

+ · · · +


l − 1
l − 1


∂2lu1

∂x21∂x
2l−2
2



+ (λ + µ)


l − 1
0


∂2lu2

∂x2l−1
1 ∂x2

+


l − 1
1


∂2lu2

∂x2l−3
1 ∂x32

+ · · · +


l − 1
l − 1


∂2lu2

∂x1∂x
2l−1
2


= 0,

(λ + µ)


l − 1
0


∂2lu1

∂x2l−1
1 ∂x2

+


l − 1
1


∂2lu1

∂x2l−3
1 ∂x32

+ · · · +


l − 1
l − 1


∂2lu1

∂x1∂x
2l−1
2



+ µ


l
0


∂2lu2

∂x2l1
+


l
1


∂2lu2

∂x2l−2
1 ∂x22

+ · · · +


l

l − 1


∂2lu2

∂x21∂x
2l−2
2

+


l
l


∂2lu2

∂x2l2



+ (λ + µ)


l − 1
0


∂2lu2

∂x2l−2
1 ∂x22

+


l − 1
1


∂2lu2

∂x2l−4
1 ∂x42

+ · · · +


l − 1
l − 1


∂2lu2

∂x2l2


= 0.

By the inductive assumption, on ∂S2 we also have

∂

∂s


∂2l−1u1

∂x2l−1
1


= −ν2

∂2lu1

∂x2l1
+ ν1

∂2lu1

∂x2l−1
1 ∂x2

= 0, . . . ,
∂

∂s


∂2l−1u1

∂x2l−1
2


= −ν2

∂2lu1

∂x1∂x
2l−1
2

+ ν1
∂2lu1

∂x2l2
= 0,

∂

∂s


∂2l−1u2

∂x2l−1
1


= −ν2

∂2lu2

∂x2l1
+ ν1

∂2lu2

∂x2l−1
1 ∂x2

= 0, . . . ,
∂

∂s


∂2l−1u2

∂x2l−1
2


= −ν2

∂2lu2

∂x1∂x
2l−1
2

+ ν1
∂2lu2

∂x2l2
= 0.

The above equalities yield a linear algebraic system of 4l + 2 equations in 4l + 2 unknowns, which can be written in the
form

L(2l)α(2l)
= 0 on ∂S2, (13)
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where

L(2l)
=



b0(l) 0 b1(l)
· · · 0 bl(l) 0 c0(l)

· · · 0 cl−1
(l) 0

0 c0(l) 0 · · · cl−1
(l) 0 d0(l) 0 · · · dl−1

(l) 0 dl(l)

−ν2 ν1 0 · · · 0 0 0 0 · · · 0 0 0
0 −ν2 ν1 · · · 0 0 0 0 · · · 0 0 0
...

...
. . .

. . .
...

...
...

...
...

...
...

...

0 0 0
. . . ν1 0 0 0 · · · 0 0 0

0 0 0 · · · −ν2 ν1 0 0 · · · 0 0 0
0 0 0 · · · 0 0 −ν2 ν1 · · · 0 0 0

0 0 0 · · · 0 0 0 −ν2
. . . 0 0 0

...
...

...
...

...
...

...
...

. . .
. . .

...
...

0 0 0 · · · 0 0 0 0 · · · −ν2 ν1 0
0 0 0 · · · 0 0 0 0 · · · 0 −ν2 ν1



,

α(2l)
=


∂2lu1

∂x2l1
,

∂2lu1

∂x2l−1
1 ∂x2

, . . . ,
∂2lu1

∂x2l2
,
∂2lu2

∂x2l1
,

∂2lu2

∂x2l−1
1 ∂x2

, . . . ,
∂2lu2

∂x2l2

T

,

bn(l)
=


µ


l
n


+ (λ + µ)


l − 1
n


, 0 ≤ n ≤ l − 1,

µ


l
l


, n = l,

dn(l)
=


µ


l
0


, n = 0,

µ


l
n


+ (λ + µ)


l − 1
n − 1


, 1 ≤ n ≤ l,

cn(l)
= (λ + µ)


l − 1
n


, 0 ≤ n ≤ l − 1.

After a lengthy calculation (see [8] for full details), we find that the binomial coefficients satisfy the equalities

r
s=0


l − 1

l − 1 − s


l

l − (r − s)


+

r−1
s=0


l

l − s


l − 1

l − (r − s)


=

r
s=0


l

l − s


l

l − (r − s)


,

l−1
s=0


l − 1
s


l

l − s


+


l
s


l − 1

l − 1 − s


=

l
s=0


l
s


l

l − s


,

which, in turn, help us show that

det L(2l)
= µ(λ + 2µ).

As already remarked, this is nonzero, so from (13) it follows that

∂2lu1

∂x2l1
=

∂2lu1

∂x2l−1
1 ∂x2

= · · · =
∂2lu2

∂x1∂x
2l−1
2

=
∂2lu2

∂x2l2
= 0 on ∂S2.

In the case of u3, for n = 2l we similarly find that

1lu3 = 0 on ∂S2,

which means that
l
0


∂2lu3

∂x2l1
+


l
1


∂2lu3

∂x2l−2
1 ∂x22

+ · · · +


l

l − 1


∂2lu3

∂x21∂x
2l−2
2

+


l
l


∂2lu3

∂x2l2
= 0 on ∂S2.

As above, on ∂S2 we also have

∂

∂s


∂2l−1u3

∂x2l−1
1


= −ν2

∂2lu3

∂x2l1
+ ν1

∂2lu3

∂x2l−1
1 ∂x2

= 0, . . . ,
∂

∂s


∂2l−1u3

∂x2l−1
2


= −ν2

∂2lu3

∂x1∂x
2l−1
2

+ ν1
∂2lu3

∂x2l2
= 0.

This leads to a linear algebraic system of 2l + 1 equations in 2l + 1 unknowns, of the form

L(2l)
3 α

(2l)
3 = 0 on ∂S2, (14)
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where

L(2l)
3 =




l
0


0


l
1


0 · · · 0


l

l − 1


0


l
l


−ν2 ν1 0 0 · · · 0 0 0 0
0 −ν2 ν1 0 · · · 0 0 0 0
0 0 −ν2 ν1 · · · 0 0 0 0
...

...
...

. . .
. . .

...
...

...

0 0 0 0
. . . ν1 0 0 0

0 0 0 0 · · · −ν2 ν1 0 0
0 0 0 0 · · · 0 −ν2 ν1 0
0 0 0 0 · · · 0 0 −ν2 ν1


,

α
(2l)
3 =


∂2lu3

∂x2l1
,

∂2lu3

∂x2l−1
1 ∂x2

, . . . ,
∂2lu3

∂x1∂x
2l−1
2

,
∂2lu3

∂x2l2

T

.

It is easily seen that

det L(2l)
3 =


l
0


ν1ν

2l−1
1 +


l
1


(−ν2)(−ν2)ν

2l−2
1 + · · · +


l

l − 1


(−ν2)(−ν2)

2l−3ν2
1 +


l
l


(−ν2)(−ν2)

2l−1
= 1.

Hence, (14) implies that

∂2lu3

∂x2l1
=

∂2lu3

∂x2l−1
1 ∂x2

= · · · =
∂2lu3

∂x1∂x
2l−1
2

=
∂2lu3

∂x2l2
= 0 on ∂S2.

The derivatives of order n = 2l + 1 of the three components of u are shown to be zero on ∂S2 by the same procedure,
with the obvious modifications. Mathematical induction now implies that the derivatives of any order of these functions
vanish on ∂S2. Using power series expansions, we deduce that u is zero in the neighborhood of any point of this part of
the boundary and, since u is an analytic solution of (2) in D , we apply the argument of continuity to conclude that u = 0
in D . �

3. Uniqueness theorem

We use the above lemma to derive a result that is instrumental in eliminating nonzero solutions of problems with a
certain type of homogeneous boundary conditions.

Let K be a (3 × 3)-matrix whose elements are such that

Kij = K̄ji for i ≠ j (15)

and either

Im(K11), Im(K22), Im(K33) > 0 (16)

or

Im(K11), Im(K22), Im(K33) < 0. (17)

Theorem. If u is an analytic solution of (2) in D ∪ ∂S2 such that

u = 0 or Tu = 0 on ∂S1 (18)

and

Tu + Ku = 0 on ∂S2, (19)

where K satisfies (15) and either (16) or (17), then u = 0 in D .

Proof. Applying the reciprocity relation (see [9]) to u and ū in D and taking (18), (19) and (15) into account, we arrive at

0 =


∂S1

{uTT ū − ūTTu} ds −


∂S2

{uTT ū − ūTTu} ds =


∂S2

{uTK̄ ū − ūTKu} ds

=


∂S2

{uiK̄ijūj − ūjKjiui} ds = −2i


∂S2
{Im(K11)|u1|

2
+ Im(K22)|u2|

2
+ Im(K33)|u3|

2
} ds.

From this and (16) or (17) it follows that u = 0 on ∂S2, and (19) yields Tu = 0 on ∂S2. Therefore, by the Lemma, u = 0 in D ,
which proves the assertion. �
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Remark. This result is essential in establishing the unique solvability, via the Fredholm Alternative, of modified integral
equations arising in the exterior problems for high frequency harmonic oscillations. Such a proof requires to show that a
function satisfying a homogeneous dissipative (Robin-type) condition on a curve interior to a scatterer is zero in the interior
region of the scatterer bounded by that curve. Work is now in progress to construct analytic solutions of (2) that satisfy
condition (19) on some suitable curve.
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