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Abstract-In this paper, we consider the semidiscrete problem obtained when the Schrijdinger 
equation is discretized in space with finite differences and a third-order absorbing boundary condition 
specific for this discretization, which has been developed recently in the literature, is used. The well 
posedness of this problem is analyzed, deducing that it is weakly il l posed similarly as when absorbing 
boundary conditions for the continuous equation are considered. Nevertheless, we show numerically 
that with the semidiscrete absorbing boundary condition bigger spatial step sizes can be used, which 
is essential due to the weak ill posedness of the problems. @ 2004 Elsevier Ltd. All rights reserved. 
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1. INTRODUCTION 

Let us consider the Schrijdinger-type equation given by 

afu = -t (a& + vu) ) x E R, t > 0, 

with c > 0, V E R, whose importance is well known. In order to obtain a numerical solution 
of (l), it is essential to consider a finite spatial subdomain [XL, z,] and use artificial boundary 
conditions, which should be adequate so that spurious reflections of the numerical solution at 
the boundary are as small as possible. One common technique is to use local absorbing bound- 
ary conditions (ABC), obtained by approximating the transparent, or reflection free, boundary 
conditions (TBC). 

In [l], ABC for the continuous Schrodinger equation are developed, some of which had already 
been used in the literature [2]. They are obtained by approximating the TBC for the continuous 
equation (1) with interpolatory techniques and are denoted by ABC(ji, js) when ji + 3’s + 1 
interpolatory nodes are used. Moreover, ji +j2 + 1 is called order of absorption. Although ABC 

The author has obtained financial support from JCYL VAO25/01 and MCYT BFM 2001-2013. 

0893-9659/04/$ - see front matter @ 2004 Elsevier Ltd. All rights reserved. 
doi: lO.l016/SOS93-9659(03)00237-4 

Typeset by AMS-T$X 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82525266?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


182 N. REGUERA 

for the wave equation had been obtained with similar techniques, giving rise to stable problems, 
with the Schrijdinger equation the situation is quite different. In fact, in [l] it is proved that 
ABC(l,O) gives rise to a weak ill-posed semidiscrete problem when the spatial step size h goes 
to zero. Moreover, in a recent paper [3], a general result on the eigenvalues of a class of matrices 
allows us to prove that the problem for ABC(l, 1) is also weakly ill posed. Although, in practice, 
this bad behaviour of the Schrodinger problem when h + 0 can b.e compensated with a good 
discretization in time as it is showed in [I], it is important that a good absorption can be obtained 
for moderate values of h. 

As an alternative, semidiscrete ABC are developed in [4] f or a spatial discretization by finite 
differences of (l), with a similar spirit to that of [5] for the wave equation. This ABC is denoted 
by SABC(jr, jz) and depends on jr + j, + 1 interpolatory nodes. Moreover, an adaptive imple- 
mentation of these SABC is developed in [6] so that the absorption is optimal. In this paper, we 
prove that the semidiscrete problem for the third-order SABC(l, 1) is weakly ill posed in a similar 
way to that for ABC(l, 1). N evertheless, since SABC(l, 1) is specific of the spatial discretization, 
in order to obtain a certain absorption, it is possible to consider bigger values of the spatial step 
size than with ABC(1, l), as it is shown in Section 2. This is essential, not only because of the 
saving of computational work, but also because of the weak instability of both problems. 

The paper is organized as follows. In Section 2, we introduce SABC(1, 1) and it is shown 
numerically that, with this ABC, it is possible to obtain a good absorption with bigger spatial 
step sizes than those needed for ABC(l,l). The well posedness of the semidiscrete problem 
obtained for SABC(1, 1) is studied in Section 3. For this, the stability of the matrix of the 
semidiscrete system with SABC(1,l) is p roved and a bound for the possible growth of the norm 
of the solution is obtained. The c-pseudospectrum of the matrix is also analyzed in Section 3. 

2. SEMIDISCRETE ABSORBING BOUNDARY CONDITIONS 

In order to discretize (1) in space, let us consider a uniform mesh {zj}jez, where zj = 21 +jh, 
and h = (q. - zl)/N and let us denote by uj (t) an approximation to u(z~, t). We consider the 
following finite differences discretization of (1)) 

2 d(t) = *l(h) &l(t) + Ciz(h)uj(t) + %(h)u’+l(t)> j E z, 

with ml(h) = -i/ch2, r?&(h) = i(2 - Vh2)/ch2. For this semidiscrete equation, a general class 
of ABC are obtained in [4]. In particular, the third-order ones, SABC(1, l), are given by 

d d 
z 

u” =c5u”+pu1+yu2, pN =&UN + juN--l + yuN--a, 

where, 6, p, and ;U depend on h and on the interpolatory nodes sr, ~2, ss E (0, 4/h2). If sr = 
s2 = se = b (which is the right choice when the solution travels with a specific velocity), we have 

-7/x 
ia (3 - 4a2) + gc-2 (1 - 4a2) 

ch2 1 

(4) 

(5) 

(6) 

with a = 1 - h2b/2, and where the value of b can be chosen optimal to absorb a specific velocity. 
Therefore, when we consider the spatial discretization of (1) in the interior domain [XL, ~~1 given 
by (2) for j = 1,. . . , N - 1 along with (3), we obtain a first-order system 

u;(t) = M(hh(t), (7) 
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where ?&(t) = (~j(t))$?!c and 

-a: j y 0 ‘.. o- 
ml 62 ml 0 ... 0 

M(h) = i . . . ... ... ; E JqN+l)x(N+l). 

0 . . . 0 ?%I iiz2 ?%I 

-0 . 0 y p &- 

(8) 

Finally, in order to obtain the numerical solution of the problem, system (7) must be solved by 
a time integrator method. 

Let us see now the reason why, in practical situations, it is better to use SABC(l, 1) than 
ABC(1, l), the third-order ABC for the continuous problem (see [3]). Let us consider the Fresnel 
equation, 

with n = 1, no = cos(21.E?‘), and kc = 2n/0.832, which is a particular case of the Schriidinger-type 
equation (1). We are going to take the initial condition UO(X) = exp(-(%/10)2) exp(-i cos(P)ke 
tan(lP)Z), IC E [0, L], with z = x-L/2 and L = 200, which gives rise to a solution traveling with 
a velocity tan(l5’). In Figure 1, we observe the results in terms of reflection (L2 norm of the 
solution remaining inside the computational window) for SABC(l, 1) and ABC(l, 1). In all cases, 
the implicit midpoint rule is used for the integration in time with step size k = 0.2 and different 
values of h for the discretization in space are considered. We see that, while for SABC(l, 1) the 
result is the same for different values of h, for ABC(i, 1) the reflection is smaller when h decreases. 
This is due to the fact that SABC(l, 1) is specific for the spatial discretization used, while this is 
not the case for ABC(l, 1). This way, in order to obtain with ABC(l, 1) approximately the same 
absorption as for SABC(l, 1) with h = 2.0d - 2, it is necessary to consider a much smaller step 
size h = l.Od - 4. 

0 100 200 300 400 500 600 700 

Figure 1. Reflection as a function of time. ABC&l): - -* h = 2.0d - 2, - -o 
h = 2.0d - 3, - -+ h = l.Od - 4; SABC(l, 1): -* h = 2.0d - 2, -o h = 2.0d - 3, 
-+ h = l.Od - 4. 
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In view of the advantages of SABC(1, l), let us study the well posedness of (7). It is well known 
that llwdt)l12 5 exp(2~2(~(~))~)/l~~(0)l12, where 1-12 denotes the logarithmic norm. Nevertheless, 
as it happens for ABC(l,l) (see [3]), pz(M(h)) is positive and O(l/h2), so this bound would 
allow a catastrophic behaviour for Iluh(t)Il. H owever, we are going to show that this bound 
overestimates the growth of Iluh(t)ll and, that in fact, the problem for SARC(l,l) is weakly ill 
posed in a similar way to that for ABC(l, 1). 

3. WELL POSEDNESS OF THE PROBLEM FOR SABC(1,l) 

The first objective of this section is to study the stability of matrix (8). For this, let MN+i(h) E 
M(N+~)~(N+~) be a matrix with the structure of (8) and coefficients a(h), P(h), y(h)-+ i(2-S(h)) 
(instead of 6, fi, 7, tir, ti2, respectively), and let us consider the polynomials 

s:(x) = (-I+ 72 - rr”) x2 -i- 2 (-6 - ^li - pi-/i + p+.> x 

+ cw: + p: - p,” - E2 - 2syi - 7,” - 2a,y, + r,“, 

s;(x) = (-7: + 7:) x3 + (2ya + wiyi - 2&yr) x2 

+ (-2pi - P,” + P,” + 2qi + 27; + 2&y, - 273 x 

- 2%PT - Wif - f43iYi + WTYT7 
(9) 

Sf(4 = -%%X2 + (-a, + PFYi + "/T + Pi%-) x - PiPT - %E - %-yi + q, + w-yr, 

s;(x) = w/7-x3 + (-b-/i - 7% - Pi-h) x2 

+ (Pr + PiPT + WYi - q?- - %Yh) x - %f4 + h-E + A-ri + Pirn 

with o, = s(o), ai = %(a), ,f$. = %(/3), /J = S(p), “ir = g(y), yi = S(y), and E = 2 - b - ai, 
where the dependence on h has been omitted in the notation, 

In [3], the following theorem for the stability of the general matrix MN+,(h) is proved. 

THEOREM 3.1. Let us suppose that 

a(h) = -4 + alh + iazh2 f a3h3 -t h4cx4(h), with err < 0, (10) 
P(h) = 2i - 2alh + ip2h2 f p3h3 + h4p4(h), (11) 

y(h) = 4 + alh + iy2h2 + 73h3 + h4y*(h), (12) 
S(h) = h2d1 + h3& + h4b3(h) E R, (13) 

A = P2 + 272 > 0, B = a3 + P3 + 73 - 62 > 0, alA + B # 0, (14) 

O=Q2fPz+Y2+&, al(N - 2)A - 2W(p3 + 2y3) + NB < 0, (15) 

o > 4 
( 

9 (a4(0) + @4(O) + i&3(0) + 74(O)) g(y2) -- 
B 

+ 2(N - l)wA + B 
a1 > 4 

(16) 

LetXj,j=l,..., 5, be the roots of the equation 

q(x)s;(x) - s:(x)s;(x) = 0, (17) 

where 5$(x), S:(x), k = 1,2, are given by (9) an assume that for 0 < h < ho, Xj $!I (-2,2), cl 
j=l , . . . ,5. Let us assume that for each j E (1, . . . ,5}, one of the following properties is satisfied 
for 0 < h < ho: 

sq (Xj) = 0 and s;cu # 07 (18) 

s;(4) # 0 and 
,’ 

si Cxj) # O and 

(19) 

(‘33) 

for 1 = I- or 1 = i. Then, for every h E (0, ho), all the eigenvalues of kfN+l(h) have negative real 
part. 

With the help of Theorem 1, we are going to prove the following result. 
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THEOREM 3.2. Let us consider the matrix M(h) associated to SABC(l,l), given by (8) 
with (4)-(6). Th en, for every h E (0,2/l/i;), all th e el ‘g envalues of M(h) have a negative real 
part. 

To prove this result, we are going to see that the coefficients of ch2M(h) (recall that c > 0) 
satisfy the hypotheses of Theorem 1 with ho = 2/&. The matrix ch2M(h) is MN+l(h) with Q = 
ch’&, p = ch2p, y = ch2;j,, 6 = Vh2, where G’, p, y are given by (4)-(6). In this way, the 
hypotheses (lo)-( 13) hold with q = -32/i;, 02 = 3b/2 - V, CQ = (3/8)b312, & = -6b, /33 = 
(-15/4)b3i2, y2 = 9b/2, “13 = (35/8)b 3/2, 61 = V, S2 = 0, and ad(O) = 0, @d(O) = 3b2i/2, 
~~(0) = -3ib2, 53 G 0. Th ere ore, f (14) is fulfilled since A = 3b > 0, B = b312 > 0, and cqA+B = 
-8b312 # 0. Moreover, we have that 

~z+P2+Y2+61 =o, 

al(N - 2)A - 2iR(p3 + 273) + NB = -8b3/2(N - 1) < 0, 

4 3(04(o) + p4(0) + i63(0) + ‘~4(0)) s(y2) -- 
B 

+ 2(N - l)(a~A + B) = -16&(N - 1) < o 
Ql > 4 9 

On the other hand, we have that 

a,=-3 l-u d-7 a~=-a+2(1-a) pT = 6a&7 

pi = 2 (-2 + 3a2) , 

b = Vh2, 

T?. = v5-3 (1 - 4a2) , “li = a (3 - 4a2) ) 

E = 2 - 6 - ai = 3a, 

where a = 1 - h2b/2 E (-1,l) (recall that h E (0,2/d)). Let us suppose first that a # 0, 
H/2, ful with al = a/2. In this case, the roots of Sr(z)S.j(z) - Sf(z)S;(z) are 

x1 = q-2 + u) 
-1+2u ’ 

x 
2 

= -2G +a) 
1+2u ’ 

x3 = 2 (a + 243 (1 - a”)) 
3 -4s ’ 

x, = 2 (a - w3 (1 - a”)) 
3-4u2 ’ 

x5=-2. 
U 

It can be proved with a direct calculus that 

Xl > 2, VUE -1,; ) 
( > 

x1 < -2, VUE $1 1 
( > 

x2 > 2, VUE 
( ) 

-1,-i , x2 < -2, VUE -;:1 , 
( ) 

x3 > 2, vu E (-1, -al> u (-~l,~l), x3 < -2, vu E (Ul,l), 

x4 > 2, vu E (-1, -q), x4 < -2, v’a E (--a17 al) u (al, 1)) 

x5 > 2, vu E (-l,O), x5 < -2, vu E (0,l). 

On the other hand, we have that 

si (Xl) = 0, si(xl) = 3w + 2a) (1 - u2)7’2 # o 
2 (-1+2u)2 ’ 

and then, (18) with 1 = i holds for X1. Similarly, 

sj (X2) = 0, s; (X2) = -32(-l $2~) (1 - u2)7’2 f o 
(1 + 2a)2 ’ 
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and Xs satisfies (18) with 1 = i. For the root Xs, we have that 

s; (X3) = 128~ (1 - a2)5’2 (a + aI)2 z 0 
3 - 4a2 

Let us see that (19) or (20) is satisfied. For a E (-l,-al) U (-ar,ar), Xs > 2 and @(X3) = 

(l+a)gl(a)lda) with 

gl(a) = 9 - 64 - 36a + 18ha + 36a2 - 24&a2 - 16a3 + 8&a3, 

g2(a) = -9 - 12&a + 16&a3 + 16a4. 

It can be checked that gr(a) > 0 and gs(a) > 0 for a E (-l,-al) and that gr(a) < 0 and 
92(a) < 0 for a E (-al, al). Therefore, 7ji(Xs) > 0 for a E (-1, -al) U (-a~, al) and (20) holds. 
If a E (al, l), X3 < -2, and cpi(Xs) = -(l - u)gs(a)/gz(a) with 

g3(a) = 9 + 6&+ 36a + 18&a + 36a2 + 24&ia2 + 16a3 + 8&ia3 > 0, 

for all a E (al, 1). M oreover, since gs(a) > 0 for a E (al, l), we have that @(X3) < 0 and (19) is 
satisfied with 1 = i. 

Similarly, we have that 

si (x4) = 12’a (1 - a2)j” (a - ~1)~ f o 
1 3 - 4a2 

If a E (-1, -al), X4 > 2, and it can be seen that 

gi (x 
4 

) = (1 + a) (9 + 6fi - 36a - 18&a + 36a2 + 24&a2 - 16a3 - 8fia3) > o 

-9 + 12~5~ - 16&a3 + 16a4 1 

so (20) is fulfilled with 1 = i. If a E (-ar,ar) U (al, l), X4 < -2, and 

‘pi (X4) = 
-(l - a) (9 - 6fi+ 36a - 18&!a + 36a2 - 24&a2 + 16a3 - 8fia3) < o 

-9 + 12&a - 16&a3 + 16a4 1 

and then (19) holds with 1 = i. Finally, 

q (X5) = 16 (1 -  a2)5’2 (a” -  4) # o 

a 

If a E (-l,O), (20) with 1 = i is satisfied since X5 > 2 and qi(X5) = -1 - l/a > 0. If a E (O,l), 
X5 < -2, and @(X5) = 1 - l/a < 0 so (19) holds with 1 = i. 

It only remains to check that in the particular cases a = 0, H/2,far, the roots of (17) 
satisfy (18), (19), or (20). Let us suppose a = 0 (for a = &l/2, &al the proof is similar). Then, 
the roots of (17) are X, = -4 < -2,Xb = 4 > 2,X, = -4/a < -2,X, = 4/&i > 2. Since 
$(Xa) = St(&) = 0 and S;(Xa) = S;(Xb) = 32 # 0, X,, and Xb satisfy (18) with 1 = i. On the 
other hand, ST(X,) = ST(Xd) = 64/3 # 0 and cp’(X,) = l-2/& < 0, qV(Xd) = -1+2/a > 0, 
so X,,Xd satisfy (19) and (20) with 1 = T, respectively. I 
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REMARK. Notice that the hypothesis h E (0,2/d) is not a restriction since the interpolatory 
nodes are chosen equal to a value b E (0,4/h2) (see [4] for details). 

By Theorem 2, we can assure that the solution of (7) goes to zero as t -+ co. Nevertheless, 
some caution should be taken, since if the character of nonnormality of M(h) were very high, its 
spectrum would not describe properly the behaviour of ]]~(t)]]. The study of the nonnormality 
of M(h) can be done by analysing its e-pseudospectrum [7], defined by h,(M(h)) = {pE E C : pL, 
is an eigenvalue of M(h)+E for some E with lIEI/ 5 E}, f or E > 0. This sets are e-balls centered at 
the eigenvalues if the matrix is normal. Moreover, for a nonnormal matrix, the difference between 
its c-pseudospectra and the c-balls around its eigenvalues, indicates the degree of nonnormality 
of the matrix. We have carried out an analysis of the e-pseudospectra of the matrix associated to 
SABC(1, l), checking that its degree of nonnormality is weak. For instance, in Figure 2a, we see 
for an example, the boundaries of the e-pseudospectra associated to the eigenvalue with biggest 
real part, which do not differ much of the e-balls about the eigenvalue (dashed line). 

However, a more precise analysis can be done in order to obtain a more realistic estimate 
for ]]uh(t)]] than the bound involving the logarithmic norm. In fact, for the generic case when 
M(h) is diagonalizable (M(h) = LDL-1 with D diagonal), we have ]]~h(t)]] 5 ~hj]~h(O)]( 
where oh is the condition number of L. A numerical study of oh shows (see Figure 2b) that oh M 
O(/Z-~/~), leading to a bound for ]]uh(t)]] similar to that obtained in [3] for ABC(l,l). There- 
fore, we can conclude that, as the weak ill posedness of ABC(l, 1) and SABC(l,l) is of the same 
degree, but with SABC(l, 1) higher values for h can be used, SABC(l, 1) should be preferred to 
ABC& 1). 
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(b) Condition number KEY as a function of h for an example of matrix M(h). 

Figure 2. (cont.) 
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