ON A PROBLEM OF R. HALIN CONCERNING INFINITE GRAPHS II

Thomas ANDREAE
Freie Universität Berlin, Institut für Mathematik II, 1 Berlin 33, Königin-Luise-Strasse 24/26, Federal Republic of Germany

Received 4 June 1979

For every countable, connected graph \(A \) containing no one-way infinite path the following is shown: Let \(G \) be an arbitrary graph which contains for every positive integer \(n \) a system of \(n \) disjoint graphs each isomorphic to a subdivision of \(A \). Then \(G \) also contains infinitely many disjoint subgraphs each isomorphic to a subdivision of \(A \). In addition, corrections of errors are given that occur unfortunately in the forerunner of the present paper.

1. Introduction

In [7] Halin posed the following problem:

(1) Let \(A \) be an arbitrary graph and assume that a graph \(G \) contains for every positive integer \(n \) a system of \(n \) disjoint graphs each isomorphic to \(A \). Does then \(G \) necessarily contain infinitely many disjoint copies of \(A \)?

In [3] this question has been answered affirmatively if \(A \) is a graph that arises from \(n \) disjoint one-way infinite paths by identifying their initial vertices (where \(n \) is an arbitrary cardinal \(\neq 0 \)). Furthermore it was shown in [3] that the answer to (1) is affirmative if \(A \) is a countable tree with finite diameter. In [1], [8] and [9] it was independently shown by counterexamples that the answer to (1) is negative in the general case of an arbitrary graph \(A \).

The present paper deals with the following analogue to (1):

(2) Let \(A \) be an arbitrary graph and assume that a graph \(G \) contains for every positive integer \(n \) a system of \(n \) disjoint graphs each isomorphic to a subdivision of \(A \). Does then \(G \) necessarily contain infinitely many disjoint subgraphs each isomorphic to a subdivision of \(A \)?

In [7] this question was answered affirmatively if \(A \) is a graph such that a subdivision of \(A \) is isomorphic to a subgraph of \(S \), where \(S \) is the graph in Fig. 1 of [3]. This class of graphs includes every tree in which each vertex has degree not greater than 3. This result was sharpened in [2] by showing that the above result holds for all locally finite trees. Furthermore in [1] an example was given showing that the answer to (2) is negative in the general case of an arbitrary graph \(A \). In addition it is easy to see that the answer to (1) and (2) is affirmative if \(A \) is a finite graph (see [7]).
The purpose of the present paper is to prove the following theorem concerning problem (2):

For every countable, connected graph A containing no one-way infinite path the answer to (2) is positive.

Furthermore we give three examples showing that this statement becomes false if we drop one of the conditions on A. In addition, we correct some errors that occur unfortunately in the forerunner of the present paper [3].

2. Definitions and notations

In this paper we consider only undirected graphs containing no loops or multiple edges. By $V(G)$ and $E(G)$ we denote the set of vertices and edges of the graph G, respectively. A path is a graph having exactly $n+1$ different vertices v_0, \ldots, v_n and n edges $e_i = (v_i, v_{i+1})$ ($i = 0, \ldots, n-1$). Let A, B be graphs; if $P = (v_0, \ldots, v_n)$ is a path such that $P \cap A = v_0$ and $P \cap B = v_n$, then P is called a (A, B)-path. We also write $P = P(a, b)$ for a path beginning in a and ending in b. All vertices of $P(a, b)$ different from a and b are called inner vertices of $P(a, b)$. A one-way infinite path (briefly: 1-path) is a graph that consists of a sequence v_0, v_1, \ldots of different vertices and the edges $e_i = (v_i, v_{i+1})$ ($i = 0, 1, \ldots$).

By $|S|$ we denote the cardinality of a set S. Let G be a graph. G is called countable if $|V(G)| = |V(G)|$ is countable. G is called connected if for every $a, b \in V(G)$ there is a path $P(a, b)$ in G. A maximal connected subgraph of G is called a component of G. By $\mathcal{G}(G)$ we denote the set of components of G. By $G \subseteq V$ (for $V \subseteq V(G)$) we denote the graph that arises from G by dropping every vertex $v \in V$ and every edge incident to v. (If H is a subgraph of G, then we also write $G \supseteq H$ instead of $G \supseteq V(H)$.) If G' is isomorphic to G, then we call G' a copy of G. If G' is a subgraph of G, then we write $G' \subseteq G$. For a cardinal n we write K_n for the complete graph with n vertices. Let $E \subseteq E(G)$. Subdivide every $e \in E$ by inserting a finite number of new vertices of degree two on e. Then the arising graph G' is called a subdivision of G and the vertices of G are called main vertices of G'. We write $H \subseteq G$ if there is a subgraph of G isomorphic to a subdivision of H. By $\bigcup_{i \in I} G_i$ we denote the disjoint union of a family $(G_i)_{i \in I}$ of graphs. For a graph A and a cardinal n we write nA for the graph $\bigcup_{i \in I} A_i$ if A_i is isomorphic to A for every $i \in I$ and $|I| = n$. We shall call a graph A regular, if $nA \subseteq G$ for every $n \in \mathbb{N}$ always implies $\mathcal{X}_n A \subseteq G$. (By \mathbb{N} we denote the set of positive integers.)

3. Proof of the regularity of every countable, connected graph containing no 1-path

Definition. For $n = 1, 2, \ldots$ let $\mathcal{A}_n = \{ A^{(n,m)} : m = 1, \ldots, n \}$ be a set of n different graphs. Let $\mathcal{A} = \bigcup_{n \in \mathbb{N}} \mathcal{A}_n$. We call $\mathcal{A'} \subseteq \mathcal{A}$ a complete subsystem of \mathcal{A} if for every
$k \in \mathbb{N}$ there is a $n_k \in \mathbb{N}$ such that $|\mathcal{W} \cap \mathcal{W}_{n_k}| \geq k$. Otherwise \mathcal{W} is called incomplete subsystem of \mathcal{W}.

First we shall prove some lemmas.

Lemma 1. For every $n \in \mathbb{N}$, let $\mathcal{W}_n = \{A^{(n,m)} : m = 1, \ldots, n\}$ be a system of n disjoint graphs such that there are not infinitely many disjoint graphs in $\mathcal{W} = \bigcup_{n=1}^{\infty} \mathcal{W}_n$. Then there exists a complete subsystem \mathcal{W}' of \mathcal{W} such that $\mathcal{W}(A') = \{A'' \in \mathcal{W} : A'' \cap A' = \emptyset\}$ is an incomplete subsystem of \mathcal{W} for every $A' \in \mathcal{W}$.

Proof. Let us assume that Lemma 1 does not hold. Then for every complete subsystem \mathcal{W}' of \mathcal{W} there is an $A' \in \mathcal{W}'$ such that $\mathcal{W}'' = \{A'' \in \mathcal{W} : A'' \cap A'' = \emptyset\}$ is a complete subsystem of \mathcal{W}. By applying this successively we get a sequence of disjoint members of \mathcal{W}. This contradicts our assumption on \mathcal{W}, and thus Lemma 1 is proved.

Lemma 2. For every $n \in \mathbb{N}$, let $\mathcal{W}_n = \{A^{(n,m)} : m = 1, \ldots, n\}$ be a system of n disjoint subgraphs of a graph G having the following properties: $A^{(n,m)}$ is infinite, connected and has no 1-path. Furthermore let us assume that there are not infinitely many disjoint graphs in $\mathcal{W} = \bigcup_{n=1}^{\infty} \mathcal{W}_n$. Then there is a complete subsystem \mathcal{W}' of \mathcal{W} having the following property: For every $A^{(n,m)} \in \mathcal{W}$ there is a finite, connected subgraph $T^{(n,m)}$ of $A^{(n,m)}$ and a sequence of different $C^{(n,m)}_i \in \mathcal{E}(A^{(n,m)} - T^{(n,m)})$ ($i = 1, 2, \ldots$) such that:

1. $\mathcal{W}^{(n,m)} = \{A^{(q,p)} \in \mathcal{W} : A^{(q,p)} \cap \bigcup_{i=1}^{\infty} C^{(n,m)}_i = \emptyset\}$ is an incomplete subsystem of \mathcal{W}.
2. $\mathcal{W}^{(n,m)} = \{A^{(q,p)} \in \mathcal{W} : A^{(q,p)} \cap C^{(n,m)}_i \neq \emptyset\}$ is an incomplete subsystem of \mathcal{W} ($i = 1, 2, \ldots$).

Proof. (I) Find a complete subsystem \mathcal{W}' of \mathcal{W} according to Lemma 1. Then for every $k \in \mathbb{N}$ there is a $n_k \in \mathbb{N}$ and a $\mathcal{W}'_k \subseteq \mathcal{W}' \cap \mathcal{W}_{n_k}$ with $|\mathcal{W}'_k| = k$. Obviously it suffices to prove Lemma 2 for \mathcal{W}'_k ($k \in \mathbb{N}$). Thus we can assume without loss of generality:

3. $\{A^{(q,p)} \in \mathcal{W} : A^{(q,p)} \cap A^{(n,m)} = \emptyset\}$ is an incomplete subsystem of \mathcal{W} for every $A^{(n,m)} \in \mathcal{W}$.

(II) We are going to show the following:

4. For every $A' \in \mathcal{W}$ and every complete subsystem \mathcal{W}' of \mathcal{W}, there is a finite, connected subgraph T' of A', a sequence of different $C'_i \in \mathcal{E}(A' - T')$ ($i = 1, 2, \ldots$) and a complete subsystem \mathcal{W}'' of \mathcal{W}, $\mathcal{W}'' \subseteq \mathcal{W}'$, such that:

4.1. $A \cap \bigcup_{i=1}^{\infty} C'_i \neq \emptyset$ for every $A \in \mathcal{W}''$.

4.2. $\mathcal{W}'' = \{A \in \mathcal{W}'' : A \cap C'_i \neq \emptyset\}$ is an incomplete subsystem of \mathcal{W} ($i = 1, 2, \ldots$).

Proof of (4). Let us assume that (4) does not hold for a certain pair A', \mathcal{W}'. We
lead this assumption to a contradiction by constructing a 1-path in A':

1. Let $D_1 = A'$; then by (3) $\mathcal{W}(1) = \{A \in \mathcal{W} : A \cap D_1 \neq \emptyset\}$ is a complete subsystem of \mathcal{W}.

2. Let us assume that for a certain $n \in \mathbb{N}$ the subgraphs D_i ($i = 1, \ldots, n$) and T_i ($i = 1, \ldots, n - 1$) of A' have already been defined such that:

 (a) $T_i \subseteq D_i$ ($i = 1, \ldots, n - 1$)

 (b) $D_i \in \mathcal{C}(D_{i-1} \setminus T_{i-1})$ ($i = 2, \ldots, n$)

 (c) T_i is finite and connected.

 (d) There is an edge $e_i = (a_i, b_i) \in E(A')$: $a_i \in T_i$, $b_i \in T_{i+1}$ ($i = 1, \ldots, n-2$).

 (e) There is a complete subsystem $\mathcal{W}(n)$ of \mathcal{W}, $\mathcal{W}(n) \subseteq \mathcal{W}'$,

 such that $A \cap D_n \neq \emptyset$ for every $A \in \mathcal{W}(n)$.

 Because of (e), D_n is infinite. Furthermore, as a subgraph of A', D_n has no 1-path. Hence by the characterisation of the graphs containing no 1-path given by Halin in [5, Satz 1], there is a finite subgraph T_n of D_n such that $\mathcal{C}(D_n \setminus T_n)$ is infinite. Further D_i is connected ($i = 1, \ldots, n$). (For $i = 1$ this holds by assumption on the members of \mathcal{W} and for $i > 1$ by (b).) Hence we can assume that T_n is connected and that there is an edge $e_n = (a_{n-1}, b_{n-1}) \in E(A')$ with $a_{n-1} \in T_{n-1}$ and $b_{n-1} \in T_n$.

 It remains to prove the following assertion:

 (\text{*}) There is a $D_{n+1} \in \mathcal{C}(D_n \setminus T_n)$ such that

 $\mathcal{W}(n+1) = \{A \in \mathcal{W}(n) : A \cap D_{n+1} \neq \emptyset\}$

 is a complete subsystem of \mathcal{W}.

 Proof of (\text{*}). Assume that $\{A \in \mathcal{W}(n) : A \cap D \neq \emptyset\}$ is an incomplete subsystem of \mathcal{W} for every $D \in \mathcal{C}(D_n \setminus T_n)$. Let $T' = \bigcup_{i=1}^{n} T_i$ and $\mathcal{W}' = \{A \in \mathcal{W}(n) : A \cap (D_n \setminus T_n) \neq \emptyset\}$. Then, because of $|T_n| < \infty$ and (e), \mathcal{W}' is a complete subsystem of \mathcal{W}, $\mathcal{W}' \subseteq \mathcal{W}'$.

 Furthermore notice that $\mathcal{C}(D_n \setminus T_n) \subseteq \mathcal{C}(A' \setminus T')$. Hence $T', \mathcal{C}(D_n \setminus T_n), \mathcal{W}'$ form a triplet having all properties described in (4). This is a contradiction to our assumption that (4) does not hold for A' and \mathcal{W}'. Thus (\text{*}) is proved.

3. By 1 and 2 a sequence T_n ($n \in \mathbb{N}$) of disjoint connected subgraphs of A' is defined such that every T_n is connected to T_{n+1} by an edge of A'. Hence A' contains a 1-path. Thus (4) is proved.

(III) For $A' \in \mathcal{W}$ and a complete subsystem \mathcal{W}' of \mathcal{W}, we shall write $\Phi(A', \mathcal{W}') = (T', (C_i))_{i \in \mathbb{N}}$, \mathcal{W}' for a triplet according to (4). Lemma 2 can now be easily proved by successive application of (4):

1. Let $\Phi(A'^{(1,1)}, \mathcal{W}) = (T'^{(1,1)}, (C_i^{(1,1)})_{i \in \mathbb{N}}$, $\mathcal{W}^{(1,1)})$ and $\mathcal{W}_1 := \{A^{(1,1)}\}$.

2. Let $\mathcal{W}_n = \{A^{(q,v_{n-1},i)} : i = 1, \ldots, n\}$, $T^{(q,v_{n-1},i)}$, $(C_i^{(q,v_{n-1},i)})_{i \in \mathbb{N}}$ be already defined such that $|\mathcal{W}_n| = n$ and $\mathcal{W}^{(n,n)}$ be a complete subsystem of \mathcal{W}. Choose

 $\mathcal{W}_{n+1} = \{A^{(q,v_{n-1},i)} : i = 1, \ldots, n+1\} \subseteq \mathcal{W}^{(n,n)}$

 with $|\mathcal{W}_{n+1}| = n + 1$. Furthermore define $T^{(q,v_{n-1},i+1)}$, $(C_i^{(q,v_{n-1},i+1)})_{i \in \mathbb{N}}$ ($i = 1, \ldots, n+1$) and $\mathcal{W}^{(n+1,n+1)}$ by

 $\Phi(A'^{(q,v_{n-1},i+1)}, \mathcal{W}^{(1,1)}) = (T^{(q,v_{n-1},i+1)}, (C_i^{(q,v_{n-1},i+1)})_{i \in \mathbb{N}}$, $\mathcal{W}^{(n+1,1)}))$
and
\[\Phi(A_{\mathbb{R}_{n+1}}(n+1,i), \mathcal{G}_{n+1,i-1}) = \]
\[= (T_{n+1,i}^{\mathbb{R}_{n+1}}(n+1,i), (C_{j}^{T_{n+1,i}^{\mathbb{R}_{n+1}}}(n+1,i))_{j \in \mathbb{N}} \mathcal{G}_{n+1,i}) \quad (i = 2, \ldots, n+1). \]

By 1 and 2, \(\mathcal{A}_n \) is defined for every \(n \in \mathbb{N} \) such that \(\mathcal{A} = \bigcup_{n=1}^{\infty} \mathcal{A}_n \) is a complete subsystem of \(\mathcal{A} \) which has the required property. This completes the proof of Lemma 2.

Lemma 3. Let \(G_j \ (j \in \mathbb{N}) \) be a sequence of disjoint, finite, connected graphs. For every \(i, j \in \mathbb{N} \) \((i \neq j)\) let \(v^{(j,i)} \) be a vertex of \(G_i \). Let \(H \) be the graph defined by \(V(H) = \bigcup_{j=1}^{\infty} V(G_j) \) and \(E(H) = \bigcup_{j=1}^{\infty} E(G_j) \cup \{ (v^{(j,i)}, v^{(i,j)}); i, j \in \mathbb{N}, i \neq j \} \). Then \(H \supseteq K_{\mathbb{N}_0} \).

Proof. In 1 and 2 we shall define for every \(n \in \mathbb{N} \) a subdivision \(K_n^* \) of \(K_n \) such that \(K_n^* \subseteq K_{n+1}^* \subseteq H \). Then obviously \(\bigcup_{n=1}^{\infty} K_n^* \) is a subdivision of \(K_{\mathbb{N}_0} \) in \(H \).

1. Let \(K_1^* = a_1 \) for \(a_1 \in V(G_1) \) such that \(a_1 = v^{(1,1)} \) for infinitely many \(j \in \mathbb{N} \).

2. Let \(K_n^* \) be already defined such that for the main vertices \(a_1, \ldots, a_n \) of \(K_n^* \) the following holds: There is an infinite \(J \subseteq \mathbb{N} \) such that \(a_m = v^{(s_m,j)} \) for every \(j \in J \) and certain \(s_m \in \mathbb{N} \) \((m = 1, \ldots, n)\). Choose a \(G_j \) with \(K_n^* \cap G_j = \emptyset \). Further, pick \(a_{n+1} \in V(G_j) \) and an infinite \(J' \subseteq J \) such that \(a_{n+1} = v^{(l,j)} \) for every \(j \in J' \). Now find \(n \) different \(G_{j(k)} \) with \(j(k) \in J' \) and \(G_{j(k)} \cap K_n^* = \emptyset \) \((k = 1, \ldots, n)\). Because \(G_{j(k)} \) is connected we have: There is a path \(W(a_{k}, a_{n+1}) \) in \(W_k \) such that the inner vertices of \(W_k \) belong to \(G_{j(k)} \). Hence \(K_{n+1}^* = K_n^* \cup \bigcup_{k=1}^{n} W_k \) is a subdivision of \(K_{n+1} \). This completes the proof of Lemma 3.

Theorem. Every countable, connected graph \(A \) containing no 1-path is regular.

Proof. (I) Since every finite graph is regular, suppose \(A \) is infinite. Let \(G \) be a graph that contains for every \(n \in \mathbb{N} \) a system \(\mathcal{A}_n = \{ A^{(n,m)}: m = 1, \ldots, n \} \) of \(n \) disjoint subdivisions of \(A \). Let \(\mathcal{A} = \bigcup_{n=1}^{\infty} \mathcal{A}_n \). We have to show that \(G \supseteq \mathbb{N}_0 A \). Thus by Lemma 2 we can assume without loss of generality that for every \(A^{(n,m)} \in \mathcal{A} \), there is a finite connected subgraph \(T^{(n,m)} \) of \(A^{(n,m)} \) and a sequence of different \(C^{(n,m)}_i \subseteq \mathcal{G}(A^{(n,m)} - T^{(n,m)}) \) \((i \in \mathbb{N})\) such that:

1. \(\mathcal{A}^{(n,m)} = \{ A^{(q,p)}(i) \in \mathcal{A} : A^{(q,p)}(i) \cap \bigcup_{j=1}^{n} C^{(n,m)}_j = \emptyset \} \) is an incomplete subsystem of \(\mathcal{A} \).

2. \(\mathcal{A}^{(n,m)} = \{ A^{(q,p)}(i) \in \mathcal{A} : A^{(q,p)}(i) \cap C^{(n,m)}_i \neq \emptyset \} \) is an incomplete subsystem of \(\mathcal{A}(i = 1, 2, \ldots) \).

(II) In 1 and 2 we shall define a subgraph \(G' \) of \(G \) which is isomorphic to a subdivision of a graph \(H \) having the structure described in Lemma 3. Then by Lemma 3 and since \(A \) is countable: \(\mathbb{N}_0 A \subseteq K_{\mathbb{N}_0} \subseteq H \subseteq G \). Thus the theorem is proved.

1. \(G_1 = T^{(1,1)} \).
2. Assume that we have already defined disjoint graphs $G_j = T^{(q_j, p_j)} (j = 1, \ldots, n)$. Assume furthermore that there is an $I \subseteq \{(i, j) : 1 \leq i < j \leq n\}$ such that for every $(i, j) \in I$ we have defined a (G_i, G_j)-path $W(i, j)$ for which the following holds:

\((*)\) No inner vertex of $W(i, j)$ belongs to $\bigcup_{k=1}^{n} G_k$ or to a path $W(k, m)$ different from $W(i, j)$.

Since $F = \bigcup_{i=1}^{n} G_i \cup \bigcup_{(i, j) \in I} W(i, j)$ is finite, $C = \bigcup_{j=1}^{n} \{ C^{(q_j, p_j)}_i : F \cap C^{(q_j, p_j)}_i \neq \emptyset \}$ is finite. Hence by (2)

$$\mathcal{D}_1 = \{ A^{(q, p)} \in \mathcal{A} : A^{(q, p)} \cap C \neq \emptyset \text{ for a } C \in \mathcal{C} \}$$

is an incomplete subsystem of \mathcal{A}. Furthermore,

$$\mathcal{D}_2 = \{ A^{(q, p)} \in \mathcal{A} : A^{(q, p)} \cap F \neq \emptyset \}$$

is an incomplete subsystem of \mathcal{A}. By (1),

$$\mathcal{D}_3 = \bigcup_{j=1}^{n} \mathcal{A}^{(q_j, p_j)}_j$$

is an incomplete subsystem of \mathcal{A}.

Case 1. $I = \{(i, j) : 1 \leq i < j \leq n\}$. Then choose $A^{(q_{n+1}, p_{n+1})} \in \mathcal{A} \setminus \mathcal{D}_2$ and let $G_{n+1} = T^{(q_{n+1}, p_{n+1})}$. Then $G_{n+1} \cap F = \emptyset$.

Case 2. $I \subset \{(i, j) : 1 \leq i < j \leq n\}$. Then choose $A' \in \mathcal{A} \setminus \bigcup_{k=1}^{n} \mathcal{D}_k$. Pick a certain pair $(i, j) \notin I(1 \leq i < j \leq n)$. From $A' \notin \mathcal{D}_3$ it follows: There is a $C^{(q, p)}_i$ and a $C^{(q, p)}_j$ with $A' \cap C^{(q, p)}_i \neq \emptyset$ and $A' \cap C^{(q, p)}_j \neq \emptyset$. Since A' is connected, it follows that there is a (G_i, G_j)-path $W(i, j)$ such that all inner vertices of $W(i, j)$ are contained in $C^{(q, p)}_i \cup A' \cup C^{(q, p)}_j$. Since $A' \notin \mathcal{D}_2$, $A' \cap F = \emptyset$ holds. Since $A' \notin \mathcal{D}_1$, $C^{(q, p)}_i \cap F \neq C^{(q, p)}_j \cap F = \emptyset$ holds. Thus $W(i, j)$ satisfies ($*$).

3. By 1 and 2 a sequence $G_n(n \in \mathbb{N})$ and corresponding (G_i, G_j)-paths $W(i, j)$ are defined such that $G' = \bigcup_{n=1}^{n} G_n \cup \bigcup_{i<j} W(i, j)$ is a subdivision of a graph H as in Lemma 3. This completes the proof of our theorem.

4. Some examples

Considering the theorem of the present paper one may ask, if the statement remains true if one drops one of the three conditions on A. The following three examples show that the answer is negative: The theorem becomes false if only one of the three conditions is dropped.

Example 1. The graph in Fig. 1 is an example for a countable, connected graph containing a 1-path and being not regular. (For the proof see [1].)
Example 2. We give an example for a countable, disconnected, nonregular graph A containing no 1-path.

Construction of A (see Figs. 2 and 3). Let $C_n (n \in \mathbb{N})$ be a sequence of disjoint graphs defined as follows:

$$V(C_n) = \{a^n_0, \ldots, a^n_m, b^n_1, \ldots, b^n_n, c^n_1, \ldots, c^n_4, d^n_1, \ldots, d^n_4\}$$

and

$$E(C_n) = \{(a^n_i, a^n_{i+1}) : i = 0, \ldots, n-1\} \cup \{(a^n_i, b^n_i) : i = 1, \ldots, n\} \cup \{(a^n_i, c^n_i), (a^n_i, d^n_i) : i = 1, \ldots, 4\}.$$

Let C_0 be a graph that arises from $(C_n)_{n \in \mathbb{N}}$ as follows: Let $C_n = C_0 \cup \{c^n_i \cup \{d^n_i : i = 1, \ldots, 4\}\}$, identify the vertices $a^n_i (n \in \mathbb{N})$ and let $C_n = \bigcup_{i=0}^{n} C_n$. Let $A = \bigcup_{n=0}^{\infty} C_n$.

Construction of G. Now we construct a graph G such that $nA \subseteq G$ for every $n \in \mathbb{N}$ but not $\aleph_0 A \subseteq G$. Let $C_{n,j} (j = 1, 2, \ldots)$ be a sequence of disjoint copies of C_n such that $C_{n,j} \cap C_0 = \emptyset$. The vertices of $C_{n,j}$ will be called $a^{n,j}_i, b^{n,j}_i$ etc. Let D_n be the graph that arises from C_0 and $(C_{n,j})_{j \in \mathbb{N}}$ by identifying $c^{n,j}_i \in C_{n,j}$ with $c_i \in C_0 (j = 1, 2, \ldots)$. Let

$$G = \bigcup_{n=1}^{\infty} (D_n \cup nC_n).$$

The proof that A and G have the asserted properties will be left to the reader.

Example 3. Let A' be the graph in Fig. 2 of [3]. In the following we shall use the notations given in Fig. 2 of [3]. Let A^\ast be the graph that arises from A' by adding \aleph_2 new vertices to A' and joining them to $a \in V(A')$ by edges. Let A be the graph that arises from A^\ast by replacing every edge of A^\ast by "an edge of thickness $\aleph_1"$

Fig. 2.

Fig. 3.
i.e.: Let $e = (x, y) \in E(A^*)$; then drop e and join x and y by \aleph_1 disjoint paths of length 2. Then A is a connected, uncountable, nonregular graph without 1-path. For the proof one has to construct G analogously to the construction of G in Example 3.9 in [3]. Again we leave all further details to the reader.

5. Corrigendum

We would like to correct the errors that occur in the forerunner of the present paper ([3]).

<table>
<thead>
<tr>
<th>page, line</th>
<th>instead of</th>
<th>read</th>
</tr>
</thead>
<tbody>
<tr>
<td>p. 6, 2</td>
<td>\mathcal{B}_{i_0}</td>
<td>\mathcal{B}_{i_0}'</td>
</tr>
<tr>
<td>5</td>
<td>i</td>
<td>i_0</td>
</tr>
<tr>
<td>8</td>
<td>$V_k \cap W_1$</td>
<td>$V_k^* \cap W_1^*$</td>
</tr>
<tr>
<td>10</td>
<td>$\mathcal{B}_0 := \mathcal{B}_i$</td>
<td>$\mathcal{B}_0 := \mathcal{B}_i^*$</td>
</tr>
<tr>
<td>12</td>
<td>$\mathcal{B}m \subseteq \mathcal{B}{i_0}$</td>
<td>$\mathcal{B}m \subseteq \mathcal{B}{i_0}$</td>
</tr>
<tr>
<td>19, 41</td>
<td>\mathcal{B}</td>
<td>\mathcal{B}</td>
</tr>
<tr>
<td>p. 7, 7, 10,</td>
<td>$\mathcal{B}_1, \mathcal{B}1, \mathcal{B}{n+1}$</td>
<td>$\mathcal{B}_1, \mathcal{B}1, \mathcal{B}{n+1}$</td>
</tr>
<tr>
<td>30, 31</td>
<td>$\mathcal{B}_{n-1}, \mathcal{B}_1^{(1)}$</td>
<td>$\mathcal{B}_{n-1}, \mathcal{B}_1^{(1)}$</td>
</tr>
<tr>
<td>21</td>
<td>\mathcal{B}_{n+1}</td>
<td>\mathcal{B}_{n+1}</td>
</tr>
<tr>
<td>p. 7, 29</td>
<td>$\mathcal{B}_1^{(k)}$</td>
<td>$\mathcal{B}_1^{(k)}$</td>
</tr>
<tr>
<td>30</td>
<td>$\mathcal{B}_1^{(k)}$</td>
<td>$\mathcal{B}_1^{(k)}$</td>
</tr>
<tr>
<td>p. 8, 5</td>
<td>\mathcal{B}_j</td>
<td>\mathcal{B}_j</td>
</tr>
<tr>
<td>17</td>
<td>\mathcal{B}_j^{*}</td>
<td>\mathcal{B}_j^{*}</td>
</tr>
<tr>
<td>26</td>
<td>s</td>
<td>s_0</td>
</tr>
<tr>
<td>p. 9, 16</td>
<td>$\mathcal{B}_m := \mathcal{B}_m \setminus \mathcal{S}_m$</td>
<td>$\mathcal{S}_m := \mathcal{B}_m \setminus \mathcal{S}_m$</td>
</tr>
<tr>
<td>17</td>
<td>$\bar{D}^{(n,m)} := \bigcup_{v \in \mathcal{S}_m} V$</td>
<td>$\bar{D}^{(n,m)} := \bigcup_{v \in \mathcal{S}_m} V$</td>
</tr>
<tr>
<td>23, 24, 30</td>
<td>\bar{D}</td>
<td>$\bar{D}^{(n,m)} := \bigcup_{v \in \mathcal{S}_m} V$</td>
</tr>
</tbody>
</table>

References

On a problem of R. Halin, II

