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The mitochondrial inner membrane contains two non-bilayer‐forming
phospholipids, phosphatidylethanolamine (PE) and cardiolipin (CL). Lack
of CL leads to destabilization of respiratory chain supercomplexes, a
reduced activity of cytochrome c oxidase, and a reduced inner membrane
potential Δψ. Although PE is more abundant than CL in the mitochondrial
inner membrane, its role in biogenesis and assembly of inner membrane
complexes is unknown. We report that similar to the lack of CL, PE
depletion resulted in a decrease of Δψ and thus in an impaired import of
preproteins into and across the inner membrane. The respiratory capacity
and in particular the activity of cytochrome c oxidase were impaired in PE-
depleted mitochondria, leading to the decrease of Δψ. In contrast to
depletion of CL, depletion of PE did not destabilize respiratory chain
supercomplexes but favored the formation of larger supercomplexes
(megacomplexes) between the cytochrome bc1 complex and the cytochrome
c oxidase. We conclude that both PE and CL are required for a full activity of
the mitochondrial respiratory chain and the efficient generation of the inner
membrane potential. The mechanisms, however, are different since these
non-bilayer‐forming phospholipids exert opposite effects on the stability of
respiratory chain supercomplexes.
© 2012 Elsevier Ltd. Open access under CC BY-NC-ND license.
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Mitochondria are crucial for the synthesis of the
major non-bilayer‐forming phospholipids, phospha-
tidylethanolamine (PE) and cardiolipin (CL).1–3

Non-bilayer lipids have a comparably small head
group and a bulky fatty acid moiety, which results
in a conical shape of the phospholipid. These
phospholipids have the tendency to form hexa-
gonal‐phase structures and thus to increase the
tension within a bilayer, which is important for the
function of membrane proteins.2 PE is an abundant
phospholipid present in all cellular membranes
se.
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678 PE and Mitochondrial Respiratory Chain
and essential for cell survival,2,4–8 whereas CL is
specific for mitochondria.2,4,8,9 The synthesis of CL
takes place in the inner mitochondrial membrane,
where the CL synthase (Crd1) catalyzes the forma-
tion of CL from phosphatidylglycerol and CDP-
diacylglycerol.2,3,10–12 In yeast, the majority of PE is
generated by decarboxylation of phosphatidylserine
catalyzed by phosphatidylserine decarboxylases
(Psd). Two Psd enzymes have been described. Psd1
plays the major role in PE synthesis and is located in
the mitochondrial inner membrane/intermembrane
space.13–16 Smaller amounts of PE are generated by
the Psd2 activity of the Golgi apparatus/vacuole
membrane, as well as by the CDP-ethanolamine
pathway and the acyltransferases Tgl3 and
Ale1.1,4,13,17–26 Little is known of how PE synthe-
sized in mitochondria is transported to other cellular
membranes. The efficient transfer of phospholipids
between the mitochondrial membranes and the
endoplasmic reticulum might occur at contact sites
between the membranes.2

CL and PE are of particular importance for
mitochondrial functions. Lack of either Crd1 or
Psd1 impairs growth of cells on non-fermentable
carbon sources and leads to an alteredmitochondrial
morphology.6,27–29 CL and PE are required for
mitochondrial fusion,30,31 and Crd1 as well as Psd1
show genetic interactions with prohibitins, which
have been proposed to function as scaffolds that
enrich CL and PE in membrane domains.2,15,32

Deletion of both genes, CRD1 and PSD1, is synthet-
ically lethal for yeast cells. 27 Based on these
observations, it was proposed that CL and PE
perform overlapping functions, which might be
partially attributed to their non-bilayer‐forming
character.33

The role of CL in the mitochondrial inner
membrane has been analyzed on a molecular level.
CL is required for function and stability of several
protein complexes. It binds to the ADP/ATP carrier
(AAC) and is crucial for the formation of AAC
oligomers.34–41 CL also plays a central role for the
activity and organization of the mitochondrial
respiratory chain. It binds to the cytochrome bc1
complex (complex III) and cytochrome c oxidase
(complex IV)40,42,43 that form high‐molecular‐
weight supercomplexes.44–46 In the absence of CL,
the III–IV supercomplexes are destabilized, the
activity of the respiratory chain, particularly of
cytochrome c oxidase, is decreased, and thus the
inner membrane potential Δψ is reduced.38,47–49 CL-
deficient mitochondria are impaired in the import
and assembly of inner membrane proteins.35,39

Precursor proteins are transported to the inner
membrane by two routes.50–56 In the presequence
pathway, preproteins with a cleavable presequence
are transported by the general translocase of the
outer membrane and the presequence translocase of
the inner membrane (TIM23 complex). Precursors of
carrier proteins contain internal targeting signals
and are integrated into the inner membrane by the
carrier translocase (TIM22 complex). Since both
import routes into the inner membrane depend on
a Δψ, the decrease of Δψ in CL-deficient mitochon-
dria is a main reason for disturbed protein
import.35,39,57 In addition, the stability and function
of protein translocases such as the TIM23 complex
are affected when CL is absent, and also the
assembly of AAC into oligomers depends on the
presence of CL.39,57–61

PE is the most abundant non-bilayer‐forming phos-
pholipid in the mitochondrial inner membrane.4,62,63

PE binds to respiratory chain complexes43,64 and in
vivo data indicate an important role of PE for
mitochondrial functions.6,29,31 Studies with lactose
permease revealed a role of PE in folding and activity
of membrane proteins in Escherichia coli.65–68 The effect
of PE depletion on mitochondrial processes, however,
has not been studied on a molecular level.
Here, we report that protein transport into and

across the innermembrane is impaired inPE-depleted
mitochondria. The protein translocases and inner
membrane complexes are not dissociated upon lack of
PE, but the activity of the respiratory chain, in
particular of cytochrome c oxidase, is impaired,
leading to a reduction of Δψ. Thus, the reduced Δψ
leads to an impairment of protein import into the
inner membrane. In contrast to the lack of CL, lack of
PE stabilizes supercomplexes of the respiratory chain
and does not block the formation of AAC oligomers.
Though both PE and CL are required for respiratory
activity and efficient generation of aΔψ bymitochon-
dria, they play opposing roles in the stabilization of
protein complexes.

PE-depleted mitochondria are impaired in
preprotein transport to the inner membrane

To study the role of PE in mitochondrial protein
biogenesis, we used a Saccharomyces cerevisiae strain
lacking Psd1 and a double deletion strain lacking
Psd1 and Psd2.69 Both yeast strains exhibited a poor
growth on non-fermentable carbon sources and
were sensitive to growth at high and low temper-
atures (Fig. S1a). For further analysis, we grew the
cells at an intermediate temperature (30 °C, early
logarithmic growth phase) on non-fermentable
carbon sources and analyzed the phospholipid
profiles of cell extracts from psd1Δ and psd1Δ
psd2Δ strains.6 The level of PE (29mol% of total
phospholipids in wild-type cells) was considerably
decreased in psd1Δ cells (7%) and strongly reduced
in the double deletion mutant (1%) (Fig. S1b).6 We
also determined the content of total phospholipids
in purified inner membrane vesicles from these
mutants and observed a moderate reduction of the
phospholipid‐to‐protein ratio compared to wild
type (Fig. S1c). Moreover, we determined the
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Fig. 1. PE is selectively depleted in inner membrane vesicles from psd1Δ and psd1Δ psd2Δ mitochondria. The S.
cerevisiae strains crd1Δ, psd1Δ, and psd1Δ psd2Δ in the BY4741 background69 were grown in YPLac medium39 at 30°C to
early logarithmic growth phase. Mitochondria were isolated by differential centrifugation, the protein concentrations
were adjusted, and inner membrane vesicles were isolated by sucrose gradient centrifugation as previously described.4,70

Phospholipids were extracted, separated by thin-layer chromatography, and analyzed as reported previously.69,71,72 The
amounts of individual phospholipid classes were determined using a phosphate solution with 1mg/ml phosphor as
standard.73 Shown are the mean values of two determinations with range. DMPE, dimethylphosphatidylethanolamine;
LP, lysophospholipids; PA, phosphatidic acid; PC, phosphatidylcholine; PG, phosphatidylglycerol; PI, phosphatidyli-
nositol; PS, phosphatidylserine.

679PE and Mitochondrial Respiratory Chain
absolute amounts of individual phospholipid clas-
ses in inner membrane vesicles from wild-type,
psd1Δ, and psd1Δ psd2Δ mitochondria. Figure 1
shows that only the PE content was strongly
reduced in the mutants, whereas the amounts of
other phospholipids remained largely unaffected. In
comparison, the levels of PE in total cell extracts and
mitochondrial inner membrane vesicles from crd1Δ
mutants were similar to the wild-type levels,
whereas the levels of phosphatidylglycerol were
strongly increased (Fig. 1 and Fig. S1b).35,48,49

For protein import experiments, mitochondrial
precursor proteins were synthesized in reticulocyte
lysates and labeled with [35S]methionine. We used
three presequence-containing preproteins and incu-
bated them with mitochondria isolated from psd1Δ
and psd1Δ psd2Δ strains: cytochrome c1 is inserted
into the inner membrane, whereas subunit β of the
F1Fo-ATP synthase (F1β) and the model preprotein
Su9-DHFR are translocated across the inner mem-
brane into the matrix.61,74–77 Each of these prepro-
teins was imported in a Δψ-dependent manner and
the presequences were proteolytically removed
(Fig. 2a). Import of the three preproteins was
reduced in psd1Δ mitochondria and strongly re-
duced in psd1Δ psd2Δ mitochondria (Fig. 2a, lanes
5–7 and 9–11). The import of AAC via the carrier
pathway was analyzed by monitoring assembly of
AAC in the inner membrane.80,81 We imported AAC
into isolated mitochondria, lysed the mitochondria
with the non-ionic detergent digitonin, and studied
AAC assembly by blue native electrophoresis
(Fig. 2b). The biogenesis of AAC was moderately
reduced in psd1Δ and psd1Δ psd2Δ mitochondria
(Fig. 2b, lanes 5–7 and 9–11).
It has been reported that in CL-deficient mito-

chondria, the stability of the TIM23 translocase is
partially affected.39,58–60 We thus tested whether
depletion of PE also affected the stability of the
TIM23 or TIM22 complexes. The protein levels of
subunits of the TIM23 complex (Tim17, Tim23) and
the TIM22 complex (Tim22, Tim54) were compara-
ble in psd mutant and wild-type mitochondria (Fig.
S2). The stability of the translocases was analyzed by
blue native electrophoresis of digitonin-lysed mito-
chondria (Fig. 2c). The TIM23 translocase forms
several blue native-stable complexes,39,58,77 which
were not dissociated but only slightly shifted to
faster migrating forms in psd1Δ and psd1Δ psd2Δ
mitochondria (Fig. 2c, lanes 2 and 3) (the slight
mobility shifts may indicate that PE is bound to
TIM23 in wild-type mitochondria but not critical for
the stability of the translocase). The mobility of the
TIM22 translocase was not affected in the mutant
mitochondria (Fig. 2c, lanes 5 and 6). One hallmark
of mitochondria lacking CL is the dissociation of
AAC oligomers.35,39 In contrast, depletion of PE did
not block the oligomerization of AAC but only led to
a slight mobility shift of AAC oligomers (Fig. 2c,
lanes 8 and 9).
In summary, the import of presequence-carrying

preproteins and carrier proteins is impaired in PE-
depleted mitochondria. The main import machiner-
ies TIM23 and TIM22, as well as the AAC oligomers,
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Fig. 2. PE-depleted mitochon-
dria are impaired in import of
preproteins into and across the
inner membrane. (a) Isolated mito-
chondria from wild-type, psd1Δ,
and psd1Δ psd2Δ yeast strains
were incubated with the 35S-labeled
precursors of cytochrome c1 (Cyt1),
F1β, and Su9-DHFR in import
buffer [3% (w/v) bovine serum
albumin, 250mM sucrose, 80mM
KCl, 5mM MgCl2, 5mM methio-
nine, 2mM KH2PO4, 10mM Mops/
KOH, pH7.2, 2mM NADH, 5mM
creatine phosphate, 0.1mg/ml cre-
atine kinase, and 2mM ATP] at
25°C for the indicated periods. In
control reactions, the membrane
potential (Δψ) was dissipated
prior to import by addition of
8μM antimycin A, 1μM valinomy-
cin, and 20μM oligomycin. The
import reactions were stopped by
adding 8μM antimycin A, 1μM
valinomycin, and 20μM oligomy-
cin. After washing with SEM buffer
(250mM sucrose, 1mM ethylene-
diaminetetraacetic acid, and 10mM
Mops/KOH, pH7.2), the mitochon-
dria were lysed under denaturing
conditions and subjected to SDS-
PAGE followed by digital autora-
diography. p, precursor; i, interme-
diate; m, mature. (b) Isolated
mitochondria from wild-type,
psd1Δ, and psd1Δ psd2Δ yeast
strains were incubated with 35S-
labeled AAC at 25°C as indicated in
the presence or absence of Δψ. The
mitochondria were lysed with 1%
(w/v) digitonin in digitonin buffer
[20mM Tris/HCl, pH7.4, 50mM
NaCl, 0.1mM ethylenediaminete-
traacetic acid, and 10% (v/v) glyc-

erol] and protein complexes were separated by blue native electrophoresis.78,79 35S-labeled proteins were detected by
digital autoradiography. (c) Wild-type, psd1Δ, and psd1Δ psd2Δ mitochondria were lysed with 1% (w/v) digitonin in
digitonin buffer and subjected to blue native electrophoresis. Protein complexes were detected by Western blotting using
the indicated antisera.
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are not dissociated when PE is depleted, indicating
that PE is not crucial for the stability of these
complexes.

PE is required for the activity of the
respiratory chain

We noticed that the mitochondrial import of the
precursor of F1β was more severely affected by PE
depletion than the import of Su9-DHFR (Fig. 2a). It
was previously shown that the import of F1β
requires a higher membrane potential and is thus
more sensitive to a reduction of Δψ than the import
of Su9-DHFR,74 raising the possibility that the
preprotein import defects observed in PE-depleted
mitochondria may be related to a reduction of Δψ in
the mutant mitochondria.

To assess the membrane potential of mitochon-
dria, we used a Δψ‐sensitive fluorescent dye.39,76,82

Δψ was partially reduced in psd1Δ mitochondria
and strongly decreased in psd1Δ psd2Δ mitochon-
dria (Fig. 3a). We determined the activity of the
respiratory chain by oxygen consumption and
observed that the rate of oxygen consumption was
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Fig. 3. PE is required for the activity of the respiratory chain. (a) The membrane potential (Δψ) of wild-type, psd1Δ, and
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10mM MgCl2, 0.5mM ethylenediaminetetraacetic acid, and 20mM KPi, pH7.2] as described previously.39,82 (b) The
oxygen consumption of isolated wild-type, psd1Δ, and psd1Δ psd2Δ mitochondria was analyzed by oxygraph
measurements at 25°C. Isolated yeast mitochondria (100μg protein) were added to 2ml of buffer (10mM Mops/KOH,
pH7.2, 250mM sucrose, 5mM MgCl2, 80mM KCl, 5mM KPi, 1mM ADP, and 1mM NADH) and oxygen consumption
was measured. The oxygen flux (negative time derivative of oxygen concentration) corrected for instrumental
background flux was expressed in picomoles per second per milliliter. Shown are the mean values with standard error of
the mean (n=3). (c and d) The activity of the cytochrome bc1 complex (c) and the cytochrome c oxidase (d) was determined
in submitochondrial particles prepared from wild-type, psd1Δ, and psd1Δ psd2Δ yeast cells as described earlier.83,84

Ubiquinol-dependent cytochrome c reduction was measured as described by Palsdottir and Hunte84 using 3μg protein
(submitochondrial particles), 50μM horse heart cytochrome c, and 80μM decylubiquinol for 1ml assay volume (40mM
potassium phosphate buffer, pH7.4, 1mM NaN3, and 0.05 % β-D-undecylmaltoside). Reduction of cytochrome c was
monitored at 550nm and the activity was calculated with an extinction coefficient of 19.4mM−1 cm−1. The activity was
fully sensitive to the specific inhibitor stigmatellin (1μM). Cytochrome c oxidase activity was measured as described by
Horvath et al.85 with 50μM reduced horse heart cytochrome c and 3–50μg of protein (submitochondrial particles) in 1ml
assay volume (75mM potassium phosphate buffer, pH7.4, 1mM antimycin A, and 0.05% β-D-dodecylmaltoside).
Oxidation of cytochrome c was monitored and quantified as for the cytochrome bc1 complex. The activity was fully
sensitive to the specific inhibitor sodium azide (1μM). Specific enzyme activities are based on total protein determined by
bicinchoninic acid assay (Pierce). Three preparations per strain were used and the activity measurements were repeated
five times for each sample. Mean values with standard error of the mean are shown. (e) The activity of the mitochondrial
ATPase was assessed by in‐gel calcium phosphate precipitation upon ATP hydrolysis.86,87 Mitochondria isolated from
wild-type, psd1Δ, or psd1Δ psd2Δ strains were lysed with 1% (w/v) digitonin in digitonin buffer and protein complexes
were separated by blue native electrophoresis. Subsequently, the gel was washed with water and incubated with ATP-
containing buffer (50mM glycine, pH8.4, 5mMMgCl2, and 20mMATP) for 20min and transferred into 10% (w/v) CaCl2
solution. Incubation was performed until calcium phosphate precipitation became visible and the reaction was stopped
by transfer into water. V2, ATP synthase dimer; V, ATP synthase monomer; F1, F1 part of the ATP synthase.
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reduced in psd1Δ mitochondria and more severely
decreased in psd1Δ psd2Δ mitochondria (Fig. 3b).
Budding yeast does not contain complex I of the
respiratory chain. The cytochrome bc1 complex and
cytochrome c oxidase are the two proton-pumping
respiratory complexes and thus we analyzed their
activities individually. The activity of the cyto-
chrome bc1 complex was only marginally affected
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by the depletion of PE (Fig. 3c), whereas the activity
of the cytochrome c oxidase was considerably
reduced (Fig. 3d). The protein levels of several
subunits of cytochrome c oxidase such as Cox1 were
moderately reduced in the psdmutant mitochondria
(Fig. S2), supporting the conclusion that cytochrome
c oxidase was affected in the mutants. The F1Fo-ATP
synthase was visualized in native gels by ATPase
activity staining,86,87 revealing comparable activities
in wild-type and psd mutant mitochondria (Fig. 3e).
Taken together, the stepwise decrease of PE levels

in psd1Δ and psd1Δ psd2Δ mutants correlates with
the stepwise decrease of cytochrome c oxidase
activity, oxygen consumption, membrane potential,
and preprotein import into and across the inner
membrane. Thus, both PE and CL are important for
the activity of the respiratory chain and the
generation of a membrane potential. A decreased
Δψ results in an impaired protein import into and
across the inner membrane.74,76

Lack of PE stabilizes respiratory chain
supercomplexes

The cytochrome bc1 complex and cytochrome c
oxidase form supercomplexes that can be resolved
by blue native electrophoresis. The supercomplexes
contain a dimer of the cytochrome bc1 complex (III2)
and one (III2/IV) or two copies (III2/IV2) of
cytochrome c oxidase (Fig. 4a and b).44,45 We lysed
mitochondria with digitonin and analyzed the
protein complexes by blue native electrophoresis
and immunodecoration. Surprisingly, the super-
complexes were not dissociated in psd1Δ and
psd1Δ psd2Δ mitochondria, but rather formed a
larger oligomeric assembly, containing both cyto-
chrome bc1 complex and cytochrome c oxidase
(Fig. 4a, lanes 2 and 3; Fig. 4b, lanes 2, 3, 5, and 6).
The amount of free cytochrome c oxidase was
decreased upon depletion of PE (Fig. 4b, lanes 2, 3,
and 6), indicating that the lack of PE stabilizes the
interaction of both complexes. For comparison, lack
of CL in crd1Δ mitochondria has an opposing effect
on the supercomplexes as the association of the
cytochrome bc1 complex with cytochrome c oxidase
is destabilized (Fig. 4a, lane 5; Fig. 4b, lane
8).38,39,47,48,82,88,89 Neither succinate dehydrogenase
(complex II) nor the F1Fo-ATP synthase (complex V)
altered their blue native mobility upon depletion of
PE (Fig. 4c), indicating that these complexes were
not present in the large oligomeric assembly of the
respiratory chain.
In conclusion, PE and CL are both important for

mitochondrial function. Like CL, PE is required for
maintaining the membrane potential, which is
crucial for the import of preproteins into and
across the inner membrane. The activity of the
respiratory chain, in particular of cytochrome c
oxidase, is decreased when PE (this study) or
CL48,49 is depleted. However, PE and CL showed
different effects on the molecular level when the
stability of mitochondrial protein complexes was
analyzed. Lack of CL results in dissociation of
AAC oligomers and destabilization of respiratory
chain supercomplexes.35,38,39,48,49 In contrast, upon
depletion of PE, the AAC oligomers remained
stable and even higher forms of the respiratory
chain supercomplexes were observed. CL and PE
were shown to bind to the cytochrome bc1 complex
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and cytochrome c oxidase, likely including the
interface of both complexes.42,43,48,64,90,91 CL and
PE are both non-bilayer‐forming phospholipids.
Their opposite effects on protein complex stability
may provide an explanation why CL does not fully
compensate for the loss of PE and vice versa.6,27 CL
has a negatively charged head group, whereas PE is
a zwitterionic phospholipid of neutral charge,
suggesting that the differently charged head groups
may contribute to the differential effects on protein
complex stability. Wenz et al. indeed showed that
the negative charge of CL is important for main-
taining the structural integrity of respiratory
supercomplexes.91 Wittig and Schägger92 and
Bultema et al.93 proposed that the cytochrome bc1
complex and the cytochrome c oxidase can be
organized into higher oligomeric structures that are
larger than the known supercomplexes and called
them respiratory strings or megacomplexes. Our
results suggest that such structures are stabilized
when PE is depleted and thus megacomplexes of
the respiratory chain can be detected on blue native
gels.
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