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The M5-brane anomaly
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Abstract

The problem of the M5-brane anomaly cancellation is addressed. We reformulate FHMM construction [D. Freed et al., Adv.
Theor. Math. Phys. 2 (1998) 601] making explicit the relation with the M5-brane SUGRA solution. We suggest another solution
to the magnetic coupling equation which does not need anomalousSO(5) variation of the 3-form potential and coincides with
the SUGRA solution outside smoothed out core of the magnetic source. Chern–Simons term evaluated on this solution generates
the same anomaly inflow as achieved by FHMM.
 2001 Elsevier Science B.V.

The potential anomaly of the normal bundle in the
presence of the M5-brane has three contributions. The
first one comes from a chiral theory of zero-modes
on the brane world volume, second comes from the
Chern–Simons coupling

∫
G4 ∧ I7 , whereG4 is the

4-form field strength andI7 is a gravitational Chern–
Simons. The problem of finding the third contribution
that cancels the previous two is addressed in [1] in the
following way.

Instead of considering 11-d SUGRA in the back-
ground of the 11-d M5-brane solution the other the-
ory is studied. It’s 11-d SUGRA with a 4-form
field-strength satisfying modified Bianchi identity cor-
responding to the (singular) magnetic coupling to
a 6-dimensional submanifold (which represents the
5-brane in this picture).

To have a well-defined delta-function in the mag-
netic coupling equation the source is smoothed out and
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the 4-formG satisfies

(1)dG= dρ(r)∧ e4/2,

whereρ is a bump function. It equals to−1 on the
brane (r = 0) and to 0 far away from the brane,
e4 is an angular form on theSO(5) normal bundle.
It is closed (de4 = 0) and gauge invariant under
SO(5) transformations of the normal bundle. Locally
e4 = de3. The tubular neighborhood of the brane is
removed and the resulting effective action in the bulk
is

(2)L= lim
ε→0

∫
M11−Dε(W6)

LSUGRA.

In [1] it is argued that a general solution to Eq. (1)
is

(3)G4 = dC3 +Aρe4/2−B dρ ∧ e3/2.

The requirement forG to be regular at the origin
givesA = 0 andB = 1 (sincee4 is not well-defined at
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the origin, butdρ = 0 atr = 0). Thus

(4)G4 = dC3 − dρ ∧ e3/2.

Since G should be gauge invariant underSO(5)
transformations bute3 is not (δe3 = de

(1)
2 ) C has a

gauge variation

(5)δC = −dρ ∧ e
(1)
2 /2.

This leads to an anomalous variation of the modified
Chern–Simons term in the action Eq. (2) and produces
the necessary anomaly inflow from the bulk. Chern–
Simons should be modified since the relation between
G4 anddC3 has changed.

To maintaindSCS = (a closed form) Chern–Simons
can be built out of

(6)G4 − ρe4/2 = d(C3 − ρe3/2).

This is the choice of [1]. Thus the new Chern–
Simons term is

SCS =
∫

M11−Dε(W6)

(C3 − ρe3/2)∧ d(C3 − ρe3/2)

(7)∧ d(C3 − ρe3/2).

In this approach the 5-brane is considered as a
magnetic source for the 3-form and not as a solution
toD = 11 SUGRA. “. . . the very important question of
the relation of this approach to that based on a direct
study of solutions to supergravity” [1] is left for the
future.

Let us compare Eq. (4) with the background
M5-brane solution [2]2

(8)ds2 =∆−1/3ηMN dxM dxN +∆2/3δmn dy
m dyn,

(9)G= 1

4! δ
mn∂m∆ε̄npqrs dy

p ∧ dyq ∧ dyr ∧ dys,

(10)∆= 1+
(
R

r

)3

, r = √
δmnymyn.

Here∆ is a harmonic function such that✷∆= δ(r)

that is (r4∆′)′ = δ(r) (prime ′ denotes a derivative
with respect tor). The 4-formG in the solution can
be rewritten in the form

(11)G= f (r)e4/2

2 By ε̄npqrs we denote a flat 5-d antisymmetric symbol. The 11-d
indexµ is split into(M,m), whereM is in the direction of the brane
world volume andm is in the direction transverse to the brane.

(it is shown in Appendix A), wheref (r)= 1 for r > 0
and it jumps atr = 0 sincef (r)′ = δ(r).

Therefore, the background solution of SUGRA for
5-brane satisfies the equation

(12)dG= δ(r)e4/2.

Let us regularize the delta function in the spirit of
[1], i.e., find a corresponding solution of the magnetic
coupling Eq. (1).

Away from the braneG has the forme4/2 for a
magnetic brane with a charge 1. We see thatdC in
Eq. (3) should be equal toe4 for the background
solution. ThusC exists only locally and is equal toe3
(up to a closed form). Therefore, the general solution
of magnetic coupling equationdG = dρ ∧ e4/2 can
better be written in the form

G= dC̃ +Aρ ∧ e4/2−B dρ ∧ e3/2

(13)+ (closed 4-form),

where C̃ is already globally defined. To satisfy the
asymptotic behavior of the background solution we
have to take this closed 4-form to bee4 (anddC̃ = 0
for background). Then if we setA = 1 and B= 0 we
have

(14)G= dC̃ + (ρ + 1)e4/2.

It is still regular atr = 0 sinceρ(0) = −1. In this
caseC does not have any anomalous variation under
SO(5) transformations sincee4 is gauge invariant.

Therefore, we just showed that there is a solution
of the magnetic coupling equation which coincides
with the classical solution to SUGRA outside a tubular
neighborhood of the M5-brane (whereρ = 0) and is
smooth near the brane. Let’s see what anomaly inflow
such a choice of the solution leads to. Evaluated on the
class of solutions

(15)G= dC̃ + e4/2

the gauge variation of the Chern–Simons has neces-
sary surface term. Indeed, the potential for Eq. (15)
can be defined locally asC = C̃ + e3/2. Thus the vari-
ation of the Chern–Simons is

δSCS= δ

∫
M11−Dε(W6)

(
C̃ + e3/2

) ∧ d
(
C̃ + e3/2

)

(16)∧ d
(
C̃ + e3/2

)
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=
∫

M11−Dε(W6)

de
(1)
2 /2∧ (

dC̃ + e4/2
)

(17)∧ (
dC̃ + e4/2

)
.

Integrating by parts and taking the limit and using
the fact that̃C is smooth near the brane we obtain

(18)δSCS =
∫

Sε(W6)

e
(1)
2 /2∧ e4/2∧ e4/2.

This is in accord with [1]. The anomaly inflow is
generated without any smoothing out of the magnetic
source.

As for the case of the regularized solution of
Eq. (14) , the Chern–Simons should be modified since
G is not a closed form. One can make the same choice
as in [1], namely, take a closed formG−ρe4/2 instead
(see Eq. (6)). In this caseG−ρe4/2 = e4/2+ dC̃ and
the modified Chern–Simons reads

SCS =
∫

M11−Dε(W6)

(
C̃ + e3/2

) ∧ d
(
C̃ + e3/2

)

(19)∧ d
(
C̃ + e3/2

)
.

This is the Chern–Simons (see Eq. (16)) evaluated
on the class of M5-brane solution Eq. (15).

Note that the functionρ introduced for the regular-
ization of the magnetic source does not enter in the
modified Chern–Simons.
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Appendix A. Derivation of G = f (r)e4/2

The value ofG in the solitonic solution of Eq. (9)
can be written as

G= 1

4! ε̄µνγ λρδ
ρσ ∂σ∆dyµ ∧ dyν ∧ dyγ ∧ dyλ

(A.1)= ∗̄n, n = d∆.

We denote bȳ∗ a 5-d (transverse) dual with respect
to the flat metric. We want to show that a geometri-
cal meaning of̄∗n from the point of view of the em-
beddingW6 ⊂ M11 is ∗̄n = f (r)e4, wheref (r) =
128π2r4∆′. In [1] e4 was

(A.2)

e4 = 1

4!
1

64π2
ε̄klmnpŷ

k dŷl ∧ dŷm ∧ dŷn ∧ dŷp,

where all indexes are contracted with the flat metric,
|y| = r, ŷk = yk/r anddŷk = dyl/r(δkl − δlmy

myk/

r2). In the angular forme4 there is in general some part
that depends on the connection in the normal bundle.
In the background solution it is obviously zero (it can
also be easily checked by direct calculations). To find
a relation between the normal formn and the angular
form e4 we rewrite e4 in the basis ofdym instead
of dŷm

e4 = 1

4!
1

64π2
ε̄klmnp

1

r5
yk dyl

′ ∧ dym
′ ∧ dyn

′

(A.3)∧ dyp
′
Dl

l′D
m
m′Dn

n′D
p

p′ ,

where

(A.4)Dn
m ≡ δnm − ymy

n/r2,

(A.5)dŷm = 1

r
Dm

n dyn.

Sincey[myn] = 0 only the first term in each ofDn
m

contributes in Eq. (A.3)

(A.6)

e4 = 1

4!
1

64π2
ε̄klmnp

1

r5
yk dyl ∧ dym ∧ dyn ∧ dyp.

This expression should be compared to∗̄n
n= d∆,

(A.7)∗̄n= 1

4!δ
rkε̄rlmnp∂k∆dyl ∧ dym ∧ dyn ∧ dyp.

Thus forf (r)e4/2 to be equal tō∗n the function
f (r) should be taken as

(A.8)f (r)ym/
(
128π2r5) = δmn∂n∆(r)=∆′ym/r.

It implies

(A.9)f (r)= 128π2r4∆′(r).

This is what we intended to prove. Sincer4∆′ =
const forr > 0 parameterR in ∆ can be chosen such
thatf (r)= 1.
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