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Several economic applications require to consider different data sources and to integrate the

information coming from them. This paper focuses on statistical matching, in particular we

deal with incoherences. In fact, when logical constraints among the variables are present

incoherencies on the probability evaluations can arise. The aim of this paper is to remove

such incoherences by using different methods based on distances minimization or least

commitment imprecise probabilities extensions. An illustrative example shows peculiarities

of the different correction methods. Finally, limited to pseudo distance minimization, we

performed a systematic comparison through a simulation study.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The integration problemof knowledge coming from several separate data bases,which have some variables in common as

well as some variables recorded only in one data base, occurs in several economic applications, some examples aremarketing

research [19] and microsimulation modeling [26,27,29,33,39].

In particular, we deal with the so called statistical matching problem for categorical variables, that can be represented

by the following simple situation: there are two different sources, A and B, with some overlapping variables and some

variables collected only in one source. Let X represent the common variables, Y denotes the variables collected only in A,

and Z those only in B. Thus, the data consist of two samples, one on (X, Y) and the other one on (X, Z). In this context data

are missing by design since they have been already collected separately, and to get joint data on Y and Z would be expensive

and time-consuming. Traditionally, to cope with these problems, the available data are combined with assumptions, such

as conditional independence between Y and Z given X , which are strong enough to assure a unique compatible distribution.

Actually, since there are many distributions on (X, Y, Z) compatible with the available partial information on (X, Y) and

(X, Z), it is too restrictive to consider just one of the compatible distributions (as already noted in [15,18,32] and for missing

data problem in [12,25,34]).

This problem has been already faced in a coherent conditional probability setting in [36,37]: coherence allows to check

the compatibility of partial (conditional) assessments, to manage further available knowledge and to make inference on

the variables of interest. In these quoted papers it is supposed that the two samples are drawn randomly from the same

population, here we allow that the two samples from the same population can be drawn according to different sample

schemes. This leads to interval probabilities and so to coherent lower and upper conditional probabilities.

In this paper firstly we extend a result given in [37] to interval probabilities by showing that when there is no logical

constraint among thevariables, coherence is always satisfiedbut that,whenever logical constraints arepresent, it is necessary

to check global coherence of the relevant partial assessments drawn from the different sources. If coherence is not satisfied,

we need to remove incoherences. For precise assessments this has been already done in [36] adjusting the “minimal”

incoherent assessments through minimization of norm L1.

∗ Corresponding author.

E-mail addresses: alessandro.brozzi@dmi.unipg.it (A. Brozzi), capot@dmi.unipg.it (A. Capotorti), barbara.vantaggi@sbai.uniroma1.it (B. Vantaggi).

0888-613X/$ - see front matter © 2012 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ijar.2012.06.009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82525041?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.ijar.2012.06.009
http://www.sciencedirect.com/science/journal/0888613X
www.elsevier.com/locate/ijar
http://dx.doi.org/10.1016/j.ijar.2012.06.009


A. Brozzi et al. / International Journal of Approximate Reasoning 53 (2012) 1124–1136 1125

The aim of this paper is to consider different correction methods: to perform a constrainedmaximum likelihood estima-

tion; to find the “closer” coherent adjustment with respect to some specific pseudo-distance; or to extend the maximum

coherent sub-assessment to the least commitment imprecise probabilities. The main effort is performed with the second

aforementioned method, where the choice of the pseudo-distance to minimize is crucial. In fact, pseudo-distances need to

be suitably adapted for partial conditional assessments, since they were introduced mainly for unconditional assessments.

In particular, to properly deal with statistical matching, we introduce a specific adjustment of a discrepancy introduced in

[7], that permits an unsupervised localization of the sub-domains where incoherence must be removed.

Once coherence is restored, it is possible to draw inference by computing analytically the lower and upper bounds for the

quantities of interest. Actually, our aim is in the same line of those based onmultiple imputation [32] and its extension [31],

which yields an approximation of the lower and upper bounds in the case of a multivariate normal distribution. A similar

approximation for these bounds is carried out in [15] on the base of maximum likelihood approach for categorical variables.

The paper is organized as follows: in Section 2 we briefly recall the main notions about coherent precise and impre-

cise conditionally probability assessments and we reformulate the statistical matching problem inside this framework. In

Section 3 the three aforementioned correction methods are introduced, with a particular emphasis on the minimization

of pseudo-distances and the specification of the discrepancy. In Section 4 we introduce an example built from data taken

from [15] to better show advantages and drawbacks of the different methods. Finally, in Section 5 we compare the different

pseudo-distances minimization performances through a simulation of 1000 random couples of samples drawn from a finite

population according to the same sample scheme: A with cardinality nA = 1148 and B with nB = 1165. We perform 1000

unconstrained maximum likelihood estimations of the marginal distribution for the common random variable X and of

the conditional distributions for Y |X and Z|X and we obtain 565 assessments which are not coherent. Corrected estimates

induce credal sets [38], that means convex sets of probability distributions compatible with estimates. These estimates

are compared with the original coherent ones through “goodness-of-fit” tests between the probability distribution of the

population and the joint distributions in the credal sets. In Section 6 some conclusions and remarks are given.

2. Preliminaries about coherent conditional probability

We consider coherent (conditional) probability as framework of reference: an assessment p on a set E of conditional

events is coherent if it is compatible with a conditional probability P (in the sense of de Finetti [13], see also [16,20]), on

A×A\{∅}, whereA is an algebra. Thismeans that the restriction P|E of P on E coincideswithp.We recall that any conditional

probability P on A × A \ {∅} gives rise to a suitable class of probability distributions α1, . . . , αl agreeing with P (for more

details refer to [10,11]).

Coherence has an important role also for inference, that means extension of the given assessment to any new conditional

event (see [13]):

Theorem 1. Let p be an assessment on an arbitrary family E of conditional events; then there exists a (possibly not unique)

coherent extension of p to any familyK ⊃ E if and only if p is a coherent conditional probability on E . Moreover, if p is a coherent

conditional probability on E , then the coherent probability values for any conditional event F|K ∈ K\E belong to a closed interval

[pF|K , pF|K ].
The coherence notion has been given also for imprecise conditional probability assessments, i.e., whenever the numerical

part of the assessment is elicited through interval values

lub = ([lb1, ub1], . . . , [lbn, ubn]). (1)

For assessments like (E, lub), although defined on finite spaces, there could be different kinds of coherence requirements

(for adetailedexposition, amongothers, refer to [28]). In thispaperwe focuson themost stringentone: (strong) coherence. By

taking into account a Bayesian sensitivity analysis interpretation, coherent lower-upper conditional probability assessments

(E, lub) are such that the numerical function defined by the lower (upper) bounds of the intervals lub can be obtained as

lower (upper) envelope of a set of coherent precise conditional probability assessments on E . It follows that each lower (lbi)

and upper (ubi) bound is attained through at least one of these conditional probability.

Also starting from a coherent lower-upper assessment (E, lub) it is possible to infer coherent bounds [pF|K , pF|K ] for

the coherent values of any conditional event F|K of interest through specific sequences of linear optimization problems or

satisfiability of some logical configurations (for details refer to [5]).

2.1. Statistical matching in a coherent setting

Denote by (X1, Y1), . . . , (XnA , YnA) and by (XnA+1, ZnA+1), . . . , (XnA+nB , ZnA+nB) two random samples (on categorical

variables) related to two sources A and B. We suppose that the two samples are related to the same population of interest.

In [37] the two samples are supposed to be drawn according to the same sampling scheme, here we remove this hypothesis

in order to reinterpret some of the results given in [32].
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Let Ss (with s = 1, 2) be the event “the unit is drawn according to the s-th sampling scheme” and data in file A are drawn

according to the first sampling scheme, while those in B are drawn according to the second one.

The relevant population parameters, representing (conditional) probability values, can be estimated from the two files:

from file A the probability that the next unit has Y = yj conditional on (X = xi) (for any i ∈ I)

yj|i = PY |(X=xi)(yj), (2)

and analogously from file B

zk|i = PZ|(X=xi)(zk). (3)

Moreover, from file A the probability that the next unit has X = xj can be evaluated

x
S1
i = PX(xi|S1), (4)

and analogously from file B

x
S2
i = PX(xi|S2), (5)

and, by supposing that a unit can be selected by just one sampling scheme with known sampling probabilities P(Ss) with

s = 1, 2, we get

xi = PX(xi) = x
S1
i P(S1) + x

S2
i P(S2). (6)

Usually, under the hypothesis that the samples are drawn according to the same sample scheme, such estimations

are performed through the (unconstrained) partial maximum likelihood evaluations, which coincide with the following

frequencies

yj|i = n
ij
A

ni·A
, zk|i = nikB

ni·B
, xi = ni·A + ni·B

nA + nB
, (7)

where ni·A and ni·B represent the number of units expressing (X = xi) in samples A and B, respectively, while n
ij
A stands for

the number of units in A with (X = xi, Y = yj) and nikB the number of units in B with (X = xi, Z = zk).

Note that when ni·A (equivalently for ni·B) is 0 (i.e., no observation in A is such that (X = xi)) the value yj|i (zk|i) is not

defined and no estimation is given for this specific parameter.

Now, we should deal with the whole assessment (E, p) with

E =
⎧⎨⎩ (X = xi), (Y = yj)|(X = xi), (Z = zk)|(X = xi)

for any xi, yj, zk

⎫⎬⎭ ,

p = {xi, yj|i, zk|i}i,j,k.

(8)

Then, first of all we need to check its coherence (see [11]). In the particular context of statistical matching (see [37]) the

check of coherence reduces to the compatibility of the following linear system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yj|i
∑

j,k αijk = ∑
k αijk for any yj|i

zk|i
∑

j,k αijk = ∑
j αijk for any zk|i

xi = ∑
j,k αijk for any xi∑

i,j,k αijk = 1

αijk ≥ 0

(9)

with unknowns αijk related to event (X = xi, Y = yj, Z = zk) different from the impossible one.

We recall here the result, proved in [37], that under logical independence, coherence is assured:

Theorem 2. Let X, Y, Z be three finite random variables and EX, EY , EZ the associated partition generated by X, Y, Z. Consider
the following three separately coherent conditional probability assessments {xi}i, {yj|i}j and {zk|i}k.
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Table 1

Samples A and B of Example 1.

A

X Y

0 1

0 21 27

1 4 12

B

X Z

0 1

0 33 15

1 12 4

Table 2

Marginal and conditional probabilities based on samples

A and B of Example 1.

E p

X = 0 3/4

X = 1 1/4

Y = 0|X = 0 7/16

Y = 1|X = 0 9/16

Y = 0|X = 1 1/4

Y = 1|X = 1 3/4

Z = 0|X = 0 11/16

Z = 1|X = 0 5/16

Z = 0|X = 1 3/4

Z = 1|X = 1 1/4

Then, the assessment

{xi , yj|i}i,j
is coherent (analogously for {xi , zk|i}i,k).

Moreover, if the partitions EY , EZ are logically independent with respect to EX (i.e., (X = xi, Y = yj, Z = zk) is possible for

any value xi of X, yj of Y , zk of Z s.t. the events (X = xi, Y = yj) and (X = xi, Z = zk) are possible), then the whole assessment

p = {xi , yj|i , zk|i}i,j,k on E

is coherent.

Note that, in general, if (E, p) is coherent then system (9) has more than one single solution and the set of all such

solutions constitutes a convex set usually named credal set [38], as the following example shows:

Example1. LetX, Y, Z be threebinary variableswith theonly constraint that the event (X = 0, Y = 1, Z = 1) is impossible.

Two random samples A on (X, Y) and B on (X, Z) are drawn from a common population obtaining the data given in Table 1,

where bold values denote the variables modalities and the values inside the joint samples counts.

From these observations we obtain as maximum likelihood estimations the assessment p reported in Table 2.

The assessment p is coherent since the associated linear system (9) admits solution, as for example

α111 = 2

64
, α110 = 10

64
, α101 = 2

64
, α100 = 2

64
, α010 = 27

64
, α001 = 15

64
, α000 = 6

64
.

Indeed, there is more than one joint distribution on (X, Y, Z) compatible with p. The corresponding credal set is in fact

composed by all the possible solutions of (9) which can be obtained as convex combinations of the following two extreme

distributions α1 and α2:

α1
111 = 1

16
, α1

110 = 1

8
, α1

101 = 0, α1
100 = 1

16
, α1

010 = 27

64
, α1

001 = 15

64
, α1

000 = 6

64
,

α2
111 = 0, α2

110 = 3

16
, α2

101 = 1

16
, α2

100 = 0, α2
010 = 27

64
, α2

001 = 15

64
, α2

000 = 6

64
.

The distributions α1 and α2 are computed by linear optimizations with constraints expressed through system (9).

When there are logical constraints among the variables Y and Z , the coherence of thewhole assessment (E, p) in (8) is not

in general assured by the separate coherence of the single assessments (2), (3), (6) and moreover incoherences, whenever

present, are localized among conditional events with the same conditioning event (X = xi) (for the proofs and an example

see again [37]). Note that the need to manage logical constraints arises from practical applications [15].

We consider now a more general situation: the two samples can be drawn according to different sample schemes with

unknown probabilities P(Ss). Obviously, in this case the estimate xi is not univocally determined, in fact the coherent values
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for xi are those in the interval

lubi =
[
min

{
x
S1
i , x

S2
i

}
,max

{
x
S1
i , x

S2
i

}]
.

Then, it is necessary to work with the imprecise assessments

lub = {lubi, yj|i, zk|i}i,j,k. (10)

on E . These situations arise also in practical applications, see for instance [1,35].

First of allweneed to check the coherenceof lubonE , thatmeans to check the coherence as a lowerprobability assessment

of

lub = {xi, yj|i, zk|i}i,j,k (11)

with xi the left bound of lubi, and as an upper probability assessment of

lub = {xi, yj|i, zk|i}i,j,k (12)

with xi the right bound of lubi.

Also in this case, the logical independence assumption guarantees coherence. In fact the following result holds:

Theorem 3. Let X, Y, Z be three finite random variables and EX, EY , EZ the associated partition generated by X, Y, Z. Consider
the separately coherent lower {xi}i, upper {xi}i and conditional {yj|i}j , {zk|i}k probability assessments.

Then, the assessments

{xi , yj|i}i,j
and

{xi , yj|i}i,j
are separately coherent conditional lower and upper probabilities (analogously for {xi , zk|i}i,k and {xi , zk|i}i,k).

Moreover, if the partitions EY , EZ are logically independent with respect to EX , then the whole assessments

p = {xi , yj|i , zk|i}i,j,k
and

p = {xi , yj|i , zk|i}i,j,k
are coherent conditional lower and upper probabilities, respectively.

Proof. Since {xi}i is a coherent lower probability on EX , there is a class P of probabilities on EX such that

xi = inf
P

P(X = xi). (13)

From Theorem 2we have that for any P ∈ P the assessment {P(X = xi) , yj|i}i,j is a coherent conditional probability. Hence,
by taking the lower envelope of all the coherent conditional probability assessments in P ′ = {P(X = xi) , yj|i : P ∈ P}i,j
we get (through (13)) exactly {xi , yj|i}i,j , so coherence as lower conditional probability follows.

Moreover, if the partitions EY , EZ are logically independent with respect to EX , again from Theorem 2we have that for any

P ∈ P the assessment {P(X = xi) , yj|i , zk|i}i,j,k is a coherent conditional probability, hence the lower envelope of the class

of this kind of coherent conditional probabilities gives rise to {xi , yj|i , zk|i}i,j , implying its coherence as lower conditional

probability.

The proof for {xi , yj|i}i,j and p goes along the same line. �

Also for imprecise evaluations (E, lub), if there is some logical constraint among the variables Y and Z , the coherence

of the whole assessments p and p is not assured by separate coherence of the single assessments and, whenever present,

incoherences localize among conditional events with the same conditioning event (X = xi) (the proof goes along the same

line as that for precise evaluations (E, p), see [37]).
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3. Removing incoherences in statistical matching

Estimate correction has been already studied (e.g., see [23]), but this approach does not seem suitable in the context of

statistical matching because of the lack of information due to the fact that Y and Z are not jointly observed, so the prior

distribution cannot be updated and the likelihood function has a flat ridge (as already noted in [32]).

In the following we show some methods, which could be reasonable to correct incoherent assessments.

3.1. Maximum likelihood estimates

As just mentioned, a first attempt could be based on the constrained maximum likelihood criterion ([24]):

as estimates of θ = (
P(X = xi), PY |(X=xi)(Y = yj), PZ|(X=xi)(Z = zk)

)
i,j,k are taken the values of the parameters

(
θ̂i, θ̂j|i,

θ̂z|i
)
i,j,k

, derived as solution of the program

max
θ

l(θ |nA, nB) (14)

under the constraint that θ is a coherent conditional probability assessment over E , where l(θ |nA, nB) is the log likelihood

l(θ |nA, nB) = log(L(θ |nA, nB)) = log

⎛⎝∏
i,j

(θj|iθi)n
ij
A

∏
i,k

(θk|iθi)n
ik
B

⎞⎠
= ∑

i,j

n
ij
A(log(θj|i) + log(θi)) + ∑

i,k

nikB (log(θk|i) + log(θi)). (15)

Hence, we need to deal with an optimization problem with the observed data log likelihood l(θ |nA, nB) as non-linear

objective function and a set of linear constraints, for the unknowns αijk , induced by the coherence requirement on θ (see

system (9)).

3.2. Pseudo-distances minimization

Another possible correction method is to find coherent estimates as “close” as possible to the available information rep-

resented by thewhole assessment (8). This approach implies the choice of some pseudo-distance such as Euclidean distance,

Kullback–Leibler divergence, Csiszár f-divergences. Some of these can be applied only among unconditional probabilities;

while others could be applied also for partial conditional probability assessments.

Given two conditional probability estimates p = [p1, . . . , pn] and q = [q1, . . . , qn] on E , the most widely adopted

divergencies among them are

(1) L1(p, q) =
n∑

i=1

|qi − pi|;

(2) L2(p, q) =
n∑

i=1

(qi − pi)
2;

(3) KL(p, q) =
n∑

i=1

(qi ln(qi/pi) − qi + pi).

L1 and L2 are usual metric distances, endowed with all their geometric properties, but until now remain without an

intuitive probabilistic interpretation for conditional assessments. Moreover, their use in conditional context could lead to

numerical troubles due to non-convexity of coherent assessments (see e.g. [3]).

KL(p, q) coincideswith the so-called logarithmic Bregman divergence df (q, p) and, in the unconditional case, it is widely

used for its information theoretic properties. In fact, such divergence generalizes thewell knownKullback-Leibler divergence

[21] to partial assessments, however in some cases it presents some unpleasant situation since it is based on a scoring rule

which takes into account only the events which occur and not those which do not occur.

To overcome this characteristic and to encompass the need of considering the conditional framework where the assess-

ment is given, recently in [6,7] for partial conditional assessments v = [v1, . . . , vn] ∈ (0, 1)n over E = [E1|H1, . . . , En|Hn],
the following random variable has been proposed as scoring rule:

S(v) :=
n∑

i=1

IEiHi
ln vi +

n∑
i=1

IEci Hi
ln(1 − vi) (16)
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with I· the indicator function of unconditional events.

Note that the scoring rule S(·) is a not positive function, in fact the motivation for its introduction is that the assessor

“loses less” the higher the probabilities are of occurring events, and at the same time, the lower the probabilities of events

which do not occur. The values assessed on events that turn out to be undetermined do not influence the score. Such a score

S(·) is an extension to partial and conditional probability assessments of the “total-log proper scoring rule” for probability

distributions proposed by Lad in [22, p. 355] and it has been considered in [17] as an example of equivalence between the

coherence of a partial conditional probability p and its admissibility with respect to a proper scoring rule. By considering as

a distance the difference between expected scores related to the initial evaluation p and to the evaluation qα induced by a

probability distribution α, it is possible to define the following “discrepancy”:

�(p, α) = ∑
i|α(Hi)>0

α(Hi)

(
qi ln

qi

pi
+ (1 − qi) ln

(1 − qi)

(1 − pi)

)
(17)

taking the convention 0 ln(0) = 0. Note that in �(p, α) each term is weighted by α(Hi), which reflects the “relevance” of

each context Hi with respect to all the assessments.

The main idea is to take as coherent correction of p the assessment qp ≡ qα̃ generated by the distribution α̃ solution of

the nonlinear optimization program

min
α

�(p, α). (18)

The motivation for this choice is that (intuitively) the assessor of p would expect to suffer the penalty S(p), hence we

select the coherent assessment qp that has a (probabilistic) expected score as close as possible to it. In [7] it is formally

proved that �(p, α) has all the usual divergencies properties.

Now, we stress that L1, L2, KL and discrepancy � apply on the whole domain E , so their minimizations would induce

changes also on the marginal estimate {xi}i∈I , which is coherent and it would be better to avoid any change on it. Hence, to

encompass the need to keep themarginal probabilities {xi}i∈I unchanged, recently in [8] the followingmodified discrepancy

(19) has been introduced:

�mix(p, {αi}i) = ∑
i

xi

⎡⎣∑
j

⎛⎝q
αi

j|i ln
q
αi

j|i
yj|i

+
(
1 − q

αi

j|i
)
ln

(
1 − q

αi

j|i
)

(1 − yj|i)

⎞⎠
+ ∑

k

⎛⎝q
αi

k|i ln
q
αi

k|i
zk|i

+
(
1 − q

αi

k|i
)
ln

(
1 − q

αi

k|i
)

(1 − zk|i)

⎞⎠⎤⎦ . (19)

For any i ∈ I, each distribution αi on the sample space spanned by (Y = yj)|(X = xi) and (Z = zk)|(X = xi) should fulfill

the normalizing condition αi(X = xi) = xi, and generates the conditional probabilities

q
αi

j|i = αi(Y = yj)

αi(X = xi)
q
αi

k|i = αi(Z = zk)

αi(X = xi)
. (20)

Note that the generated estimate q = {xi, qαi

j|i, q
αi

k|i}i,j,k is coherent (see e.g., [37]) and it leaves the marginal probabili-

ties {xi}i∈I unchanged. This characteristic differentiates the specialized discrepancy (19) from the discrepancy (17), as the

following simple example shows:

Example 2. Let X, Y, Z be three random variables and EX = {A1, A2}, EY = {E1, E2, E3}, EZ = {S1, S2, S3} be the three

corresponding partitions such that

S1 ∧ (E1 ∨ E2) = ∅ and S2 ∧ E1 = ∅. (21)

Consider the following conditional assessments

P(A1) = 1

3
, P(A2) = 2

3
;

P(S1|A1) = 179

1108
, P(S2|A1) = 443

1108
, P(S3|A1) = 486

1108
,

P(S1|A2) = 2

3
, P(S2|A2) = 1

9
, P(S3|A2) = 2

9
;
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Table 3

A comparison of corrections for Example 2, bold and script values highlight

differences between the two different corrections.

E P � �mix

A1 0.3333 0.3726 –

A2 0.6667 0.6274 –

S1|A1 0.1616 0.1616 0.1616

S2|A1 0.3998 0.3998 0.3998

S3|A1 0.4386 0.4386 0.4386

E1|A1 0.3483 0.3483 0.3483

E2|A1 0.0918 0.0918 0.0918

E3|A1 0.5599 0.5599 0.5599

S1|A2 0.6667 0.4848 0.4848

S2|A2 0.1111 0.0996 0.0996

S3|A2 0.2222 0.4156 0.4156

E1|A2 0.6667 0.4156 0.4156

E2|A2 0.00 0.0996 0.0996

E3|A2 0.3333 0.4848 0.4848

P(E1|A1) = 387

1111
, P(E2|A1) = 102

1111
, P(E3|A1) = 622

1111
,

P(E1|A2) = 2

3
, P(E2|A2) = 0, P(E3|A2) = 1

3
.

It is easy to check that P on events Ai is coherent, as well as P(Sj|Ai) (and analogously P(Ek|Ai)) for any Ai. However, the

whole assessment is not coherent: incoherence is localized on events conditioned to A2 since P(S1|A2) + P(E1|A2) > 1 is in

contradiction with the first constraint in (21) .

Byminimizing either�(p, α) or�mix(p, {αj})weobtain the same correction limited to the incoherent part (see Table 3),

whereas with the former also the unconditional values for P(Ai) are modified, even being coherent.

We stress that for the statistical matching problem �mix seems to be more appropriate than �. Note that, with such

specialized discrepancy, the sub-domains, where incoherence must be removed, are implicitly detected, without the need

for a preliminary inspection of the assessment (E, p).
Going back to a general approach, it is possible to proceed in twoways: a supervised procedure, apt to correct incoherent

sub-assessmentswhichwerepreviously detected; or anunsupervised approach,whichusually adjusts thewhole assessment

(8). In any case, in order to correct an estimation pwe need to look for the assessment qp that is a solution of the following

nonlinear optimization program:

min
q

δ(p, q), (22)

with δ(p, q) any pseudo-distance (if δ is � or �mix then q are those induced by α or {αi}i, respectively).
Note that the discrepancy �mix(p, {αi}i) is based on the already mentioned segmentation of the possible incoherences.

In fact, it separately applies on scenarios (X = xi) and its use in an optimization program like (22) allows to adjust only the

values inside sub-domains where incoherences appear, without any other change. Hence, its application implies that also

an unsupervised approach actually works as a supervised one.

3.3. Coherent dilation

A third possibility to adjust the initially incoherent assessment (E, p) is to determine a coherent sub-assessment (G, p|G)
and coherently extend it to the restF = E \G as prescribed by the generalized Bayesian updating scheme (see e.g. [10,11,37]

among others). Since, in general, coherent extension gives rise to an interval of plausible values,with this approach thewhole

assessment turns out to be imprecise due to the interval values ((F, [pF , pF ])). Also in such a situation, inference can be

performed again through the generalized Bayesian updating scheme but applied to imprecise evaluations (see e.g. [2,5]

among others). Whenever results of such inference are too vague since the intervals are very wide (close to [0,1]), they can

be eventually reduced by a procedure proposed in [9] that enucleates coherent cores, i.e., surely coherent subintervals with

highest degree of support.

The choice of the coherent sub-assessment (G, p|G) should followsomecriterion, since itmaynot bedetermineduniquely.

Anyhow, for the specific application to statistical matching such a choice comes quite naturally, since in [36] it has been

shown that it is possible to detect an incoherent sub-assessment (F, p|F ) with minimal cardinality.

4. A practical example

In order to compare the different proposed correction methods, we develop an example with data taken from [15] (see

also [14,37]). The data are a subset of 2313 employees (people at least 15 years old) extracted from the pilot survey of the
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Table 4

Distribution of age and professional status in file A.

Age Prof. status

S1 S2 S3 Total
A1 – – 9 9

A2 – 5 17 22

A3 179 443 486 1108

A4 6 1 2 9

Total 185 449 514 1148

Table 5

Distribution of age and educational level in file B.

Age Educ. level

E1 E2 E3 E4 Total

A1 6 0 – – 6

A2 14 6 13 – 33

A3 387 102 464 158 1111

A4 10 0 3 2 15

Total 417 108 480 160 1165

Italian Population and Household Census in the year 2000. Three categorical variables have been analyzed: Age, Educational

Level and Professional Status. In file A, containing 1148 units, the variables Age and Professional Status are observed, while

file B, consisting of 1165 observations, the variables Age and Educational Level are considered. The variables are grouped in

homogeneous response categories as follows:A1 = 15–17yearsold,A2 = 18–22yearsold,A3 = 23–64yearsold,A4 = more

than 65; E1 = None or compulsory school, E2 = Vocational school, E3=Secondary school, E4=Degree; S1=Manager, S2=Clerk,

S3=Worker.

Logical constraints between the variables Age and Educational level (Age and Professional Status) are denoted by the

symbol “–” (to be distinguished from the zero frequencies) in Table 4 (Table 5): for example, in Italy a 17 years old person

cannot have a University degree. Tables 4 and 5 show, respectively, the distribution of Age and Professional Status in file A,

and in file B that related to Age and Educational level.

Additional logical constraints involving both the variables Professional Status and Educational level are:

S1 ∧ (E1 ∨ E2) = ∅ and S2 ∧ E1 = ∅.

By considering the maximum likelihood estimations as evaluation of the relevant conditional probabilities, we get the

assessment for the variable Age:

P(A1) = 15

2313
, P(A2) = 55

2313
,

P(A3) = 2219

2313
, P(A4) = 24

2313
;

for the Professional Status given the Age:

P(S2|A2) = 5

22
, P(S3|A2) = 17

22
,

P(S1|A3) = 179

1108
, P(S2|A3) = 443

1108
, P(S3|A3) = 486

1108
,

P(S1|A4) = 2

3
, P(S2|A4) = 1

9
, P(S3|A4) = 2

9
;

for the Educational level given the Age:

P(E1|A1) = 1, P(E2|A1) = 0, P(E1|A2) = 14

33
,

P(E2|A2) = 6

33
, P(E3|A2) = 13

33
, P(E1|A3) = 387

1111
,
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Table 6

Incoherence corrections with associated inference results for S3|E4.
S1|A4 S2|A4 S3|A4 E1|A4 E2|A4 E3|A4 E4|A4 S3|E4

p 0.6667 0.1111 0.2222 0.6667 0 0.2000 0.1333 ∅
L1|F 0.2222 – 0.6667 0.6667 – – – [0,0.6285]

L1|A4 0.5266 0.0000 0.4734 0.4734 0.0000 0.2836 0.2431 [0,0.6234]

L2|A4 0.5333 0.0389 0.4278 0.4278 0.0389 0.3 0.2333 [0,0.6238]

KL|A4 0.4856 0.1179 0.3965 0.3965 0.1179 0.2914 0.1942 [0,0.6257]

�mix 0.4985 0.0939 0.4077 0.4077 0.0939 0.2943 0.2042 [0,0.6252]

ML 0.4286 0.0714 0.5000 0.5000 0.0000 0.3000 0.2000 [0,0.6254]

IPE\F [0 , 0.2222] - [0.6667 0.8889] - - - - [0,0.6386]

core [0.0017,0.6286]

IPE\{·|A4} [0 , 1] [0 , 1] [0 , 1] [0 , 1] [0 , 1] [0 , 1] [0 , 1] [0,0.6607]

core [0,0.6349]

P(E2|A3) = 102

1111
, P(E3|A3) = 464

1111
, P(E4|A3) = 158

1111
,

P(E1|A4) = 2

3
, P(E2|A4) = 0,

P(E3|A4) = 1

5
, P(E4|A4) = 2

15
.

The above assessment is not coherent as shown in [37], and in particular incoherence is localized in P(·|A4) since from

logical constraints between Educational Level and Professional Status it follows that E1 ∧ S1 = ∅ and E1 ⊆ S3, while we

have P(E1|A4) + P(S1|A4) > 1 and P(E1|A4) > P(S3|A4).
Then, we either focus on the minimal set of conditional events F = {E1|A4, S1|A4, S3|A4} involved in incoherencies as

proposed in [37] and we correct the assessment only on it (supervised approach), or we adjust the whole distribution on

Professional Status and Educational Level conditioned to A4 (semi-supervised approach).

The given assessment p is therefore corrected with respect to the different aforementioned pseudo-distances.

Results are shown in Table 6, where

• L1|F gives the solution proposed in [37] by minimizing L1 distance only on F;
• L1|A4, L2|A4, KL|A4 gives the solutions by minimizing distances only on the events conditioned on A4;• �mix generates the solution obtained by minimizing the specific discrepancy (19);
• ML gives the maximum likelihood estimation;
• IPE\F gives the coherent lower-upper extension induced by the given assessment on E \ F;
• IPE\{·|A4} gives thecoherent lower-upperextension inducedby thegivenassessmentonE\{Si|A4, Ej|A4 : i = 1, 2, 3 ; j =

1, . . . , 4};
• the last column shows the extensions of the corrections on the conditional event S3|E4 with the respective “core” rows

showing the coherent sub-interval extension with maximum support (see [9]).

Note that due to lack of space we restrict the assessment only to the values conditioned to A4, that are just those involved

in the incoherence.

Firstly,we compare the rows related to theminimal set of incoherence, and it seems that L1|F and IPE\F perform similarly.

Quite reasonable inference bounds are obtained by removing not all the set of events conditioned on A4, but just a subset (a

minimal subset). However, we can observe a drastic change on the probability values. In particular, the imprecise adjustment

IPE\F performs quite well. In fact, it induces inference bounds for S3|E4 similar to the precise corrections with the additional

possibility of focusing on the “core” sub-interval. This sub-interval, even remaining quite vague, presents the positive feature

of bounding the lower probability away from zero.

Note that L1|A4 andML give similar results and in particular they take into consideration the absence of observations for

E2|A4 in a way that the related value is not modified. Thus, the peculiarities of the maximum likelihood principle also show

in this correction of the incoherence. On the other hand, by using the other distances, precise adjustments on the sub-family

conditioned to A4 have all quite similar behavior, and in particular they modify also the assessment related to E2|A4, where

there is no observation.

The advantage of �mix correction is its automatic localization of the scenarios (in this specific example A4) where the

adjustment can be performed and their relative importance expressed by the unconditional probabilities xi. Note that we

apply�mix , insteadof�, in order toavoidanychangeon theprobabilitydistributionofX , that is coherentwithanyconditional

probability on Y |(X = x) (or equivalently Z|(X = x)), for any x, as shown in Theorem 2 and 3. In fact,� tends to change also

the distribution of X (through the weights) in order to reduce the incoherences, as shown in Example 2.
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Table 7

Finite population with (X, Y, Z) endowed with structural

zeros (−).

X Y Z

z1 z2 z3
x1 y1 – – 116

y2 – 26 5

y3 54 108 25

x2 y1 – – 277

y2 – 65 1

y3 321 1 1

Table 8

Marginal and conditional probabilities based on the pop-

ulation of Table 7.

E π

X = x1 0.3407

X = x2 0.6593

Y = y1|X = x1 0.1856

Y = y2|X = x1 0.3763

Y = y3|X = x1 0.4381

Z = z1|X = x1 0.4903

Z = z2|X = x1 0.0965

Z = z3|X = x1 0.4131

Y = y1|X = x2 0.3551

Y = y2|X = x2 0.0783

Y = y3|X = x2 0.5666

Z = z1|X = x2 0.4105

Z = z2|X = x2 0.0980

Z = z3|X = x2 0.4915

On the other side, the widest imprecise correction IPE\{·|A4}, being the one with fewer assumptions, surely performs

worst. Its vagueness on the values conditioned on A4 is due to the freedom induced by the coherence characterization, and

this reflects also on the inference performances.

Note that in Table 6 we report only the extension values for the conditional event S3|E4 as an example, however we could

compute all the values for the (conditional) events of interest, as for example for the partition generated by the three random

variables.

5. A systematic comparison of pseudo-distances minimizations

Tohave afiner discernment among thepseudo-distances tominimize in the secondproposedmethod,wehaveperformed

a systematic comparison1 by simulating 1000 couples of samples, with cardinality nA = 1148 and nB = 1165, respectively,

drawn randomly from a finite population along the same lines of Example 2. Consider three categorical variables (X, Y, Z),
with I = {1, 2}, J = {1, 2, 3}, K = {1, 2, 3}, distributed as described in Table 7, where the “−” represent the structural

zeros implied by the logical constraints

(Z = z1) ∧ ((Y = y1) ∨ (Y = y2)) = ∅, (Y = y1, Z = z2) = ∅. (23)

From each couple of samples A and B, as described in Section 2.1, we can obtain an estimate p of the probabilities π of

Table 8. Over the 1000 frequencies estimations (7) that we observed 565 were incoherent, as can be seen by computing

L1 distances between the 1000 estimates p and the corresponding corrections qp solutions of (22). In fact, L1(p, qp) = 0

corresponds to original coherent frequencies p (see e.g., Fig. 1 about corrections obtained through L2 minimization). Note

that for any choice of δ(p, q) among those proposed, we obtain the same set of null distances, since all of them are proper

pseudo-distances.

By means of the minimization (22) for pseudo-distances L1, L2, KL, �, �mix and for the constrained likelihood maxi-

mization (14) applied to the 565 incoherent estimates over the whole domain E (hence with unsupervised procedures), we

obtain six different data-sets with coherent corrections. To compare the performances we evaluate, through chi-squared

goodness-of-fit test, the adequacy of the (credal) set of joint probability distributions compatible with each estimate with

respect to the joint distribution of the population. We use the minimal χ2 statistics since in this way we look for the prob-

ability in the credal set “closer” to that of reference and in particular, when the credal set contains the joint distribution of

the population, we get a zero distance.

Results are in Fig. 2: there are box-plots of minimal χ2 statistics associated to the six data-sets of corrections and to the

data-set of the 435 coherent estimates obtained directly by applying (7). Values are reported in logarithmic scale because

1 Simulation and post-elaboration have been done through R package [30], non linear optimizations through GAMS software [4].
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Fig. 1. Empirical cumulative distribution function of L1 distances between simulated estimates p and their corrections qp through L2 minimization.
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Fig. 2. Logs ofminimalχ2 “goodnes-of-fit” for credal sets induced by pseudo-distancesminimizations (labels “L1”, “L2”, “KL”, “�”, “�mix”), constrainedmaximum

likelihoods (label “ML”) and coherent frequencies (label “cohe”) estimates. Black-boxes correspond to perfectly matched induced joint distributions.
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Fig. 3. Minimal χ2 “goodnes-of-fit” for credal sets induced by pseudo-distances minimizations “L1”, “L2”, “KL”, “�mix” and coherent frequencies (label “cohe”)

estimates. The dashed line corresponds to the 95% confidence threshold.

correction through�minimizationor constrained likelihoodmaximization (ML)presents several or severeupper outliers (in

logarithmic scale the lower outliers actually correspond to credal-sets that better fit the real joint distribution). The presence

of such anomalies induces to discard techniques based on � and ML. Without them we can compare the performance on

the remaining five data-sets obtaining the results reported in Fig. 3.

Notice the better performance of the corrected estimates with respect to the not changed ones and the best behavior of

the minimization of L2 and �mix with respect to the other pseudo-distances. Then, it seems that the correction produces

an information merging of the two samples A and B that the frequencies estimation does not meet. Among the different

possible corrections, L2 and �mix minimizations seems to better preserve the original information, moreover �mix has the

further feature of the automatic localization of the sub-domains of E where the changes are needed.



1136 A. Brozzi et al. / International Journal of Approximate Reasoning 53 (2012) 1124–1136

6. Conclusion

Checking coherence and removing incoherences in the estimations is a long debated problem in the literature; we have

studied it by focusing on statistical matching applications. In fact, in this kind of application the incoherence can arise when

the variables are linked by logical relations. We have applied several incoherence adjustment procedures in this specific

ambit: partial likelihood maximization, pseudo-distances minimization and coherent dilation. The study revealed some

differences among these adjustments. Wemainly focused on minimization of pseudo-distances and we have observed how

a specialization of usual pseudo-distances performs better. This is due to integration of sources and lack of information on

the variables not jointly observed, as is typical for the statistical matching problem. In particular, a specific adjustment of a

discrepancy shows the advantage of an automatic and weighted localization of the sub-domains where incoherence must

be removed. A comparison among different pseudo-distances based on simulated values has confirmed our expectations

and has shown a surprisingly better performance of the corrected assessment with respect to the originally coherent ones.

We have also analyzed a very simple practical application and we have shown that better results are obtained not simply

focusing on the minimal number of incoherent values, but involving all the elements conditioned to the same scenarios

in which incoherence arises. On the other hand, coherent imprecise adjustment performs better with minimal number

of changed values, with the counterpart of obviously vaguer inference conclusions that however could be improved by a

“maximally supported” core detection.
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