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The following result is being proved. Theorem: Let e be an arbitrary line of the 2-connected,
3-regular, planar graph G such that ¢ goes not belong to any cut set of size 2. Then G contains
an even cycle for which e is a chord.

Introduction

With the help of the Four Colour Theorem it is fairly easy to show that the
prism P(G) of a 2-connected, 3-regular, planar graph G is Hamiiltonian, [4]. To
obtain the same result without using the Four Colour Theoreni, a considerable
effort is required, [1]. In fact, the material presented here is the positive outcome of
an unsuccessful attempt to achieve that goal. That is, we prove the following
theorem.

Theorem. Let G be a 2-connected, 3-regular, planar graph. If e is a line of G such
that G —e is bridgeless, then there exists an even cycle for which e is a chord.

In the proof of this theorem, use will be made of a fairly well known result
about the nonexistence of a certain graph. This result was first proved by J.W.
Moon, but it can be obtained as a consequence of a more general result as weil,
(2]

As for the terminology of this paper, we refer to [3] with the exception that we
call a graph what is called a multigraph in [3]. That is, in our notion, a graph
might contain multiple lines.

For a graph G having two totally disjoint cycles, the cyclic line-connectivity
(shortly A(G)) is define? as the size of the smallest line-cut S such that G—$ has
at least two cyclic components.

Lemma. If G is a 3-regular graph with at least four points and K, # G # K5 4, then
A(G) is defined.
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Proof (by contradiction). Clearly, for a 3-regular graph G having a bridge,
A(G)=1,i.e., A(G) is defined. Hence, a counterexample G to the Lemma must
be bridgeless and—because of Petersen’s Theorem—Hamiltonian. Let H be a
Hamiltonian cycle of G and let ac, bd be two chords of H, {a, b, ¢, d} < V(G).
Since G is a counterexample, a, b, ¢, d must lie in this order on H. Since this is
true for any two chords, it is immediate that G has two disjoint cycles if
IV(G)|>6. and G =K, G = Ks, respectively, depending on whether |V(G)|=4
or =6. This proves the Lemma.

For an arbitrary graph G and V| < V(G), the subgraph of G induced by V| is
denoted by (V). thatis, V{V)) = V,,and xye ECV))iff x, ye V,and xy € E(G).
For » face F of a plane graph, bd F denotes the boundary of F. The circumfer-
ence of F equals |[E(bd F)\. Finally, a path (cycle, respectively) in G s a sequence
U Uyl Uaer e Uy ga Uy 4 Un 0, With 5e V(G), i=1,...,r vu,€eE(G), i=
I,....r—1 and v# v, for j#k i<j k<r (1<j, k<r—1 and », =1, respec-

tively).

Proof of the Theorem. We give an indirect proof. If G has two poiants, or G = K,
or G = K, 3, then G — ¢ is Hamiltonian for every e € E(G), and the theorem holds
in this case. Therefore, G must have at least four points, and K, # G # K, ; must
hold. By the Lemma, A(G) is defined. Next we eliminate the possibility A (G) =2
where G is a counterexample to the thecrem with as few points as p.ossible. Thus,
if G has a separating pair of lines e, = x,x,, €, = v,y then G —{¢;. 5} has exactly
two components G4 and G, (each of which contains a cycle). The notavion can be

chosen such that
G =GiU[x.y]. i=12

satisfies the hypothesis of the theorem and has fewer points than G. Since
e, ¥ e# e, we assume e € E(GY). Moreover, we can choose e;. e, in such a way
that G, is 3-line-connected: Among all possible choices for ¢, 2, with e € E(GY),
take a pair with minimat !E(G,)|. An even cycle C, having ¢ as a -bhord exists in
G, and must contain x,v,: otherwise. C; would be as required in Gi. On the other
hand. G, contains an even cycle C, with x,z # x,y, as a chore; i.e.. C, contains
x>vs. (Note: (i, has no separating pair of lines, and no separating pair of lines in
G, contains e.) Therefore, each of the paths

P=C -{xy} i=12

has odd length, and obvicusly we have
E(PONE(WP:) =

That is,
C=PUP,U{e,. e}
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is an even cycle which, clearly, contains e as a chord. Thus, A (G)=2 is
impossible.

Now suppose A(G)=3. Consider a separating line set consisting of exactly
three lines ¢ = v,w;, i =1, 2, 3, such that G —{e;, e,, €5} has (exactly) twe compo-
nents G¥, G¥ each containing a cycle. Introduce the new points z,, z, and form

GizG:kU{zi}U{zinlj=1727 3}9 12132

with y;=v; for i=1 and y; =w; for i =2 (w.Lo.g. v;€ G}).

Obviously G; satisfies the hypothesis of the Theorem (since it is even thrze-
connected) and has fewer points than G,i=1, 2.

Case (a): e does not belong to the above separating set. Then, w.l.o.g., we can
assume e € E(G¥)< E(G,). An even cycle C, having e as a chord exists in G,,
and it passes through z;; otherwise C, is already in G as required. Suppose
w.lLo.g. CiN{z,y;|j=1,2,3}={z,v,, z,,}. Applying now the Theorem to G, we
find in G, an even cycle C, having z,w; as a chord. Again, form paths (now of
even length)

F’i:(:i_zi, l=1a29

PlﬂP2=¢ and C=P1UP2U{el,eg}

is an even cycle in G having e as a chord.

Case (b): W.lLo.g. ¢=-e; Considering even cycles C, in G, with z,v-, z,w;
respectively., as chords and forming P, i=1,2, and C as in Case (a), we again
obtain an even cycle in G having e (=e3) as a chord. Thus we can conclude that
A(G)=4 must hold.

Now we consider a fixed embedding of G in the plane. For simplicity’s sake we
denote this embedding by the same letter G (this is no real loss of generality
since the 3-connectedness of G implies its—basically—unique embedability). For
the distinguished iine e denote by F, and F, the faces having e as a boundary
line. Suppose F, has even circumference and thus F, has odd circumfierence;
otherwise e would be a chord of the even cycle bd F; Ubd F,~{¢}. Furthermore
denote by Lq,..., Ly 1,...,L,, n=1(mod?2), the faces adjacent to F,, F,
respectively, in a cyclic order such that L, ..., L,,; have a boundary line with
F; in common. Because of A (G)=4 the zbove L;’s are n distinct faces; for the
same reason, if i —j|>1 and L, N L;# @, then L; is adjacent to F; if and only if L;
is adjacent to F,, and neither of them is adjacent to both F,, F,. Each of these L,
1#i#2k—1, must have even circumference; otherwise, bd L, Ubd F,Ubd F,
contains an even cycle with ¢ as a chord. Similarly,

|E(bd L)|=1(mod 2) if and only if |E(bd Ly, _y)|=0 (mod 2).

Thus we have arrived at the following situation: G contains a set of faces, namely
F,,F,, L,,...,L,, such that F, and (w.l.o.g.) L, have odd circumference while
F,, L,,... L, have even circumference; and F, and L, are adjacent (see Fig. 1).
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Now we conclude that G must still contain another face F, (# F,. L,) with odd
circumfcrence: Otherwise, the dual D(G) is a triangulation of the piane with
exactly two points of odd degree which are adjacent: however, such triangulation
does not exist, [2].

By the above parity considerations, F, is not adjacent to F,. In order to finish
the proof we want to find a path P’ in D({G) with the following properties:

(1) P contains F, and exactly one other point F,, of odd degree in L:¢G) which
is an endpoint of P’

(2) F, belongs to P'.

3 (V(Py=P.

(4) Subject to (1), (2), (3), the length of P’ is minimal.

Clearly, if (1), (2), (3) can be fulfilled, then (4) can be fulfilled as well.

Once such P’ has been found, an even cycle as required can he constructed;
namely: Because of (3), those boundary lines of the faces corresponding to the
points of P" which belong to exactly one of these faces, form a cycte C. By (1), C
is even: and by (2), ed E(C) but it is a chord of C as are all those boundary lines
corresponding to the lines of P'. (Note: Because of (3), F;, F,e V(P') implies
L. Ly . ¢ V(P) which in turn implies together with (4) that bd ¥, —{e}< C for
i=1ori=2, depending on whether P’ has F, or F, as an endpoint.)

Because of A(G)=4, D(G) is 4-connected. (Note: A{(G)==4 impiies «(G) =3;
hence «(D(G)) = 3. However, «(D(G)) =3 implies the existence of a separating
wriangle in the triangulaticn of the plane D(G), which in turn implies A{(G)=3,
an obvious contradiction.) Therefore, for every point of odd degree F§# F,, L, in
D(G), there is a path P*= P(F;, F¥) in D(G) not containing L, and L,,_,. For
cach of the possible choices of P* consider (V(P*)U{F,}). Each of these induced
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subgraphs contains a shortest path P from F, to a point F, which has odd degree
in D(G). P satisfies property (1). Consider G’ =(V(P)U{F,}.

If G'is a path, then we can take P'=G' as a path satisfying properties (1), (2),
(3). By the above, we could find C as required. So we have to assume G’ not to be
a path. However, because P is a shortest path, (P) is a path, i.e., the lines of G’
not contained in the path

ﬁ = Fl’ F]Fz, P
join F, with points of P. If P is written in the form
p=F25F2T13 T19~'~y'I;aTrF0’FOy

then F\T,, F Fy¢ E(G'); otherwise T, =L,,_,, Fo= L, respectively, must hold,
contradicting the construction of P. (Note: r=1.) Therefore, if we take the
maximal j such that F,T; e E(G"), then

Pl=<{F2,F1-7},---5'rr1FO}.)

is a path. P’ satisfies property (i) since P does (possibly j=r); and obviously,
properties (2), (3) are also fulfilled by P’. Therefore, we can find—as described
above—an even cycle C with e being a chord of C. This finishes the proof of the
theorem.

Final remarks

The following corollary is—obviously—equivalent to the Theorem; its state-
ment was suggested by one of the referees.

Corollary. Let G be a 2-connected, 3-regular, planar graph, and let e, e; € E(G).
If G has an embedding in the plane such that e,, e, belong to the same face
boundary, then G has an even cycle containing both e, and e,.

As the other referee pointed out, the Theorem cannot be generalized to hold
for arbitrary 2-connected planar graphs: In the graph of Fig. 2, the cycle having
e as a chord is odd.

Fig. 2.
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