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The following result is being proved. Theorem: Let e be an arbitrary line of the 2-connected, 
3-regular, planar graph G such that e cioes not belong to any cut set of size 2. Then G contains 
an even cycle for which e is a chord. 

Introduction 

With the help of the  Four  Colour  Theorem it is fairly easy to show that  the 

prism P(G)  of a 2-connected,  3-regular ,  p lanar  graph G is Harrfiltonian, [4]. To 
obta in  the same result  without  using the Four  Colour  Theorem,  a considerable 

effort is required,  [1]. In fact, the mater ial  presented  here is the positive outcome of 
an unsuccessful a t tempt  to achieve that  goal. That  is, we prove the following 

theorem.  

Theorem.  Let G be a 2-connected, 3-regular, planar graph. I f  e is a line of G such 
that G - e  is bridgeless, then there exists an even cycle for which e is a chord. 

In the proof  of this theorem,  use will be made: of a fairly well known result 

about  the nonexistence of a certain ~ a p h .  This result was first proved by J.W. 
Moon,  but  it can be obta ined  as a consequence of a more  general  result as well, 

[2]. 
As  for the terminology of this paper ,  we refer  to [3J with the exception that we 

call a graph what  is called a mul t igraph in {3]. That  is, in otai" notion, a graph 

might  contain mult iple lines. 
For  a graph G having two total ly disjoint  cycles, the cyclic line.-connecti,6ty 

(shortly a~(G)) is define,~ as the size of the smallest  l ine-cut  S such that G - S has 

at least two cyclic components .  

Lemma.  I f  G is a 3-regular graph with at least four points and K4 ~ ('7 • K3,3, then 

/re(G) is defined. 

0012-365X/83/0000--0000/$03.00 © 1983 Nor th-Hol land  



276 1.t. Fleischner 

Proof  (by contradiction). Clearly, for a 3-regular graph G having a bridge, 
~,.(G) = 1, i.e., A~(G) is defined. Hence, a counterexample G to the Lernma must 
be bridgeless and--because  of Petersen's  Theorem--Hamil tonian .  Let  H be a 
Hamiltonian cycle of G and let ac, bd be two chords of H, {a, b, c, d } c  V(G). 
Since G is a countmexample,  a, b, c, d must lie in this order  on H. Since this is 
true for any two chords, it is immediate that G has two disjoint cycles if 
I V(G)t > 6, and G = Ka, G = K3,3 respectively, depending on whether I V(G)I = 4 
or =6. This proves the Lemma. 

For an arbitrary graph G and Vt c V(G), the subgraph of G induced by V1 is 
denoted by (VI). that is, V((VI)) = Vl, and xy a E((Vl}) iff x, y ~ V~ and xy ~ U(G).  

For a face F of a plane graph, bd F denotes the boundary of F. "[he circumfer- 
ence of F equals IE(bd F)I. Finally, a path (cycle, respectively) in G is a sequence 
t~l, tllt)2,122 . . . . .  l.)r-i, Ur IV,,V, with v~cV(G),  i = 1  . . . . .  r, vivi ,~cU(G), i= 
1 . . . . .  r - I  and v ~ v k  for j ~ k ,  i~] ,  k<~r (l~<j, k<~r-1  and ~Jt=t;,, respec- 

tively). 

Proof of the Theorem. We give an indirect proof. If G has two points, or G = K,~, 
or G := K 3 .  3, then G - e  is Hamiltonian for every e e E(G),  and the theorem holds 
in this case. Therefore, G mu';t have at least four points, and K., :/: G ¢ "J~3,3 m u s t  

hold. By the Lemma, A~.(G) is defined. Next we eliminate the possibi'.ity .~tc(G) = 2 
where G is a counterexample to the theorem with as few points as t" ossible. Thus, 
if G has a separating pair of lines el = xlxz, e2 = Y~Y2, then G - { e ~ .  e2} has exactly 
two components G'~ and G', (each of which contains a cycle). The not.rfion can be 
chosen such that -~ 

Gi=:G'iU[xi.  yi], i : - 1 , 2  

satisties the hypothesis of the theorem and has fewer points than G. Since 
el ¢ e¢  e: we assmne eE E(G't). Moreover,  we can choose el.. e2 in such a way 
that Ge is 3-line-connected: Among  all possible choices for e~, e2 with e e E(G~), 
take a pair with minimal ~,E(G2)[. An even cycle C~ having e aa a :hard  exists in 
Gt  and must contain x~y~: otherwise, Ct wou!d be as required i.a G. On the other 
hand. G2 contains an even cycle C2 with x2z¢ x2y?. as a chore;  i.e., Cz contains 
xey2. (Note: G2 has no separating pair of lines, and no separating pair of lines in 
G~ contains e.) Therefore, each of the paths 

P i : - ( ,  '{xiyi}, i = 1 , 2  

has odd length, and obvic, usly we have 

E(PO f) E(P:) :: ¢. 

That is. 

(" = P~ U P2 U {et, ee} 



Even cycles with prescribed chords in planar cubic graphs 277 

is an even cycle which, clearly, contains e as a chord. Thus, * ~ ( G ) = 2  is 
impossible. 

Now suppose A¢(G)= 3. Consider a sepm'ating line set consisting of exactly 
three lines e~ = v~w~, i = 1, 2, 3, such that G - { e ,  e2, e3} has (exactly) two comp~- 
nents G*,  G *  each containing a cycle. Introduce the new points z~, z2 and form 

G, = G*U{z,}U{z,y~ I J = 1, 2, 3}, i = 1, 2 

with y~ = v  i for i =  1 and yj =w~ for i =  2 (w.l.o.g. v i ~ Gl*). 
Obviously G~ satisfies the hypothesis of the Theorem (since it is evezT, three- 

connected) and has fewer points than G, i = 1, 2. 
Case (a): e does not belong to the above separating set. Then, w.l.o.g., we can 

assume e ~ E(G~*)c E(GO. An even cycle Ct having e as a chord exists in G~, 
and it passes through z~; otherwise C~ is already in G as required. Suppose 
w.l.o.g. C~ f-I{z~q I J = 1, 2, 3} = {z~v~, zeta}. Applying now the Theorem to G2 we 
find in G2 an even cycle (?2 having zaw3 as a chord. Again, form paths (now of 
even length) 

P~=C~-z~, i =  1,2;  

P~NPz=O and C=P1UPzU{e~,e2} 

is an even cycle in G having e as a chord. 
Case (b): W.l.o.g e = e 3 .  Considering even cycles G in G~ with zlv:., zzw3 

respectively., as chords and forming P,, i - - 1 ,  2, and C as in Case (a), we again 
obtain an even cycle in G having e ( -e3)  as a chord. Thus we can conch~de that 
At(G) ~> 4 must hold. 

Now we consider a fixed embedding of G in the p!ane. For simplicity's sake we 
denote  this embedding by the same letter G (this is no real loss of geaerali ty 
since the 3-connectedness of G implies i t s - -bas ica l ly- -unique embedability). For 
the distinguished line e denote  by F1 and F2 the faces having e as a boundary 
line. Suppose F~ has even circumference and thus Fz has odd circumference; 
otherwise e would be a chord of the even cycle bd F~ O b d  F2-{e}.  Fur thermore  
denote  by LI . . . . .  L2k-1 . . . . .  L, ,  n-~ 1 (mod 2), the faces adjacent to F:,  F2 
respectively, in a cyclic order  such that L~ . . . . .  L2k-i have a boundary line with 
F~ in common.  Because of h.~(G)~>4 the above L~'s are n distinct faces; for the 
same reason, if [i - j [  > 1 and Li f'l L i ~ O, then Li is adjacent to F~ if and only if Lj 
is adjacent to F2, and neither of them is adjacent to both F~, Fz. Each of these L~, 
1 ~ i7~2k-  1, must have even circumference; otherwise, bd L~ Ubd/ :~  U b d  F2 
contains an even cycle with e as a chord. Similarly, 

IE(bd L1)[-- 1 (mod 2) if and only if [E(bd L2k-~)[ =-0 (rnod 2). 

Thus we have arrived at the following situation: G contains a set of faces, namely 
FI,  F2, Ll  . . . . .  L~, such that F2 and (w.l.o.g.) L1 have odd circurnfereilce while 
FI, Lz . . . .  /~  have even circumference; and F2 and LI are adjacent (see Fig. 1). 
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Now we conclude that G must still contain another face Fo (~ F2, LO with odd 
circumfcrcnce: Otherwise, the dual D(G) is a triangulation of the plane with 
exactly two points of odd degree which are adjacent: however, such triangu!ation 
does not exist, [2]. 

By the above parity considerations, Fo is not adjacent to F2. I ,  order to finish 
the proof we ,a, ant t~) find a pa'~h P' in D(G) with the following prei~'erties: 

(I) ? '  contains F2 and exactly one other point F~:~ of odd degree in L,~G) which 
is an endpoin't of P'. 

(2) F I belongs to P'. 
(3) <V(P')> = P'. 
(4) Subjecl to (1), (2}, (37, the length of P'  i~ minimal. 

Clearly, if (IL (2), (3) cal~ be fulfilled, then (4) can be fulfilled as well. 
Once such P' h~s been found, an even cycle as required can be ~onstructed; 

namely: Because of (37, those boundary lines of the faces corresponding to the 
points of P' which belong to exaclly one ,ff these faces, form a cycle C. By (1), C 
is even; and by (2),. e% E(C) but it is a chord of C as are all those boundary lines 
correspondirag to the lines of P'. (Note: Because of (3), F~,F2e V(P') implies 
L,, Lak ~q~ V(P') which in turn implies together with (4) that bd F~-{e}c  C for 
i = 1 or i=  2, depending on whether P'  has F~ .or F2 as an endpoint.) 

Because of h~.(G) ~ 4, D(G) is 4-connected. (Note: he(G) ~-" 4 impiies i< (G) = 3; 
hence ~(D(G))m 3. However, K(D(G))=  3 implies the existence of a separating 
~riangle in the triangulation of the plane D(G),  which in turn implies he(G)= 3, 
an obvious contradiction.) Therefore, for every point of odd degree F~ ~ Fz, L~ in 
D(G),  there is a path P* = P(F2, F*) in D(G) not containing Lt and Lzk-~. For 
each of the possible choices of P* consider <V(P*)U{F~}>. Each of these induced 
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subgraphs contains a shortest path/5 from F2 to a point Fo which has odd degree 
in D(G).  P satisfies property (1). Consider G'=(V(P)O{F1}).  

If G'  is a path, then we can take P ' =  G' as a path satisfying properties (1), (2), 
(3). By the above, we could find C as required. So we have to assume G'  not to be 
a path. However, because P is a shortest path, (15) is a path, i.e., the lines of G'  
not contained in the path 

P = FI, F1F2, P 

join F~ with points of /5. I f /3  .is written in the form 

P = Fa, FaT~, T~ . . . . .  T ,  TrFo, Fo, 

then F~T1, FIFo~E(G');  otherwise TI =Lzk_t, Fo=LI respectively, must hold, 
contradicting the construction of /3. (Note: r~>l.) Therefore, if we take the 
maximal j such that F1T i ~E(G') ,  then 

e '  = ({F2, F,, T i . . . . .  'r,, Fo}) 

is a path. P' satisfies property (1) since /5 does (possibly j =  r); and obviously, 
properties (2), (3) are also fulfilled by P'. Therefore, we can find--as described 
above---an even cycle C with e being a chord of C. This finishes the proof of the 
theorem. 

Final remarks 

The following corollary, is--obviously--equi ~,alent to the Theorem; its state- 
ment was suggested by one of the referees. 

Corollary. Let G be a 2-connected, 3-regular, pI~.nar graph, and let el, e2~ E(G). 
I f  G has an embedding in the plane such that el, e2 belong to the same face 
boundary, then G has an even cycle containing both el and e2. 

As the other referee pointed out, the Theorem cannot be generalized to hold 
for arbitrary 2-connected planar graphs: In the graph of Fig. 2, the cycle having 
e as a chord is odd. 

O 

Fig. 2. 
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