EVEN CYCLES WITH PRESCRIHED CHORDS IN PLANAR CUBIC GRAPHS

Herbert FLEISCHNER
Institut für Informationsverarheitung der Österreichischen Akademie der Wissenschaften, Wien, Austria

Received 4 June 1981
Revised 12 May 1982

The following result is being proved. Theorem: Let e be an arbitrary line of the 2 -connected, 3 -regular, planar graph G such that e coes not belong to any cut set of size 2 . Then G contains an even cycle for which e is a chord.

Introduction

With the help of the Four Colour Theorem it is fairly easy to show that the prism $P(G)$ of a 2 -connected, 3-regular, planar graph G is Hamiltonian, [4]. To obtain the same result without using the Four Colour Theorenn, a considerable effort is required, [1]. In fact, the material presented here is the positive outcome of an unsuccessful attempt to achieve that goal. That is, we prove the following theorem.

Theorem. Let G be a 2-connected, 3-regular, planar graph. If e is a line of G such that $G-e$ is bridgeless, then there exists an even cycle for which e is a chord.

In the proof of this theorem, use will be made of a fairly well known result about the nonexistence of a certain graph. This result was first proved by J.W. Moon, but it can be obtained as a consequence of a more general result as well, [2].

As for the terminology of this paper, we refer to [3] with the exception that we call a graph what is called a multigraph in [3]. That is, in vur notion, a graph might contain multiple lines.

For a graph G having two totally disjoint cycles, the cyclic line connectivity (shortly $\lambda_{\mathrm{c}}(G)$) is defines as the size of the smallest line-cut S such that $G-S$ has at least two cyclic components.

Lemma. If G is a 3-regular graph with at least four points and $K_{4} \neq G \neq K_{3,3}$, then $\lambda_{c}(G)$ is defined.

Proof (by contradiction). Clearly, for a 3-regular graph G having a bridge, $\lambda_{c}(G)=1$, i.e., $\lambda_{c}(G)$ is defined. Hence, a counterexample G to the Lemma must be bridgeless and-because of Peterser's Theorem-Hamiltonian. Let H be a Hamiltonian cycle of G and let $a c, b d$ be two chords of $H,\{a, b, c, d\} \subset V(G)$. Since G is a counterexample, a, b, c, d must lie in this order on H. Since this is true for any two chords, it is immediate that G has two disjoint cycles if $|V(G)|>6$, and $G=K_{4}, G=K_{3.3}$ respectively, depending on whether $|V(G)|=4$ or $=6$. This proves the Lemma.

For an arbitrary graph G and $V_{1} \subset V(G)$, the subgraph of G induced by V_{1} is denoted by $\left\langle V_{1}\right\rangle$. that is, $V\left(\left\langle V_{1}\right\rangle\right)=V_{1}$, and $x y \in E\left(\left\langle V_{1}\right\rangle\right)$ iff $x, y \in V_{1}$ and $x y \in E(G)$.

For a face F of a plane graph, bd F denotes the boundary of F. The circumference of F equals $|E(b d F)|$. Finally, a path (cycle, respectively) in G is a sequence $v_{1}, v_{1} v_{2}, v_{2}, \ldots v_{r-1}, v_{r-1} v_{r}, v_{r}$ with $v_{i} \in V(G), i=1, \ldots, r, v_{i} v_{i+1} \in E(G), i=$ $1, \ldots, r-1$ and $v_{i} \neq v_{k}$ for $j \neq k, i \leqslant j, k \leqslant r\left(1 \leqslant j, k \leqslant r-1\right.$ and $v_{1}=v_{r}$, respectively).

Proof of the Theorem. We give an indirect proof. If G has two points, or $G=K_{4}$, or $G=K_{3,3}$, then $G-e$ is Hamiltonian for every $e \in E(G)$, and the theorem holds in this case. Therefore, G must have at least four points, and $K_{4} \neq G \neq K_{3,3}$ must hold. By the Lemma, $\lambda_{c}(G)$ is defined. Next we eliminate the possibility $\lambda_{c}(G)=2$ where G is a counterexample to the theorem with as few points as possible. Thus, if G has a separating pair of lines $e_{1}=x_{1} x_{2}, e_{2}=y_{1} y_{2}$, then $G-\left\{e_{1}, e_{2}\right\}$ has exactly two components G_{1}^{\prime} and G_{2}^{\prime} (each of which contains a cycle). The notition can be chosen such that

$$
G_{i}=G_{i}^{\prime} \cup\left[x_{i}, y_{i}\right], \quad i=1,2
$$

satisfies the hypothesis of the theorem and has fewer points than G. Since $e_{1} \neq e \neq e_{2}$ we assume $e \in E\left(G_{1}^{\prime}\right)$. Moreover, we can choose $e_{1} . e_{2}$ in such a way that G_{2} is 3 -line-connected: Among all possible choices for e_{1}, e_{2} with $e \in E\left(G_{1}^{\prime}\right)$, take a pair with minimal $E\left(G_{2}\right) \mid$. An even cycle C_{1} having e as a chord exists in G_{1} and must contain $x_{1} y_{1}$; otherwise, C_{1} woud be as required in C. On the other hand. G_{2} contains an even cycle C_{2} with $x_{2} z \neq x_{2} y_{2}$ as a chord; i.e., C_{2} contains $x_{2} y_{2}$. (Note: G_{2} has no separating pair of lines, and no separating pair of lines in G_{1} contains e.) Therefore, each of the paths

$$
P_{i}=C_{1} \cdots\left\{x_{i} y_{i}\right\} . \quad i=1,2
$$

has odd length, and obvicusly we have

$$
E\left(P_{1}\right) \cap E\left(P_{2}\right)=\emptyset
$$

That is.

$$
C=P_{1} \cup P_{2} \cup\left\{e_{1}, e_{2}\right\}
$$

is an even cycle which, clearly, contains e as a chord. Thus, $\lambda_{\mathrm{c}}(G)=2$ is impossible.

Now suppose $\lambda_{c}(G)=3$. Consider a separating line set consisting of exactly three lines $e_{i}=v_{i} w_{i}, i=1,2,3$, such that $G-\left\{e_{1}, e_{2}, e_{3}\right\}$ has (exactly) two comprnents G_{1}^{*}, G_{2}^{*} each containing a cycle. Introduce the new points z_{1}, z_{2} and form

$$
G_{i}=G_{i}^{*} \cup\left\{z_{i}\right\} \cup\left\{z_{i} y_{j} \mid j=1,2,3\right\}, \quad i=1,2
$$

with $y_{j}=v_{j}$ for $i=1$ and $y_{i}=w_{i}$ for $i=2$ (w.l.o.g. $v_{i} \in G_{1}^{*}$).
Obviously G_{i} satisfies the hypothesis of the Theorem (since it is even threeconnected) and has fewer points than $G, i=1,2$.

Case (a): e does not belong to the above separating set. Then, w.l.o.g., we can assume $e \in E\left(G_{1}^{*}\right) \subset E\left(G_{1}\right)$. An even cycle C_{1} having e as a chord exists in G_{1}, and it passes through z_{1}; otherwise C_{1} is already in G as required. Suppose w.l.o.g. $C_{1} \cap\left\{z_{1} v_{j} \mid j=1,2,3\right\}=\left\{z_{1} v_{1}, z_{1} v_{2}\right\}$. Applying now the Theorem to G_{2} we find in G_{2} an even cycle C_{2} having $z_{1} w_{3}$ as a chord. Again, form paths (now of even length)

$$
\begin{aligned}
& P_{i}=C_{i}-z_{i}, \quad i=1,2 \\
& P_{1} \cap P_{2}=\emptyset \quad \text { and } \quad C=P_{1} \cup P_{2} \cup\left\{e_{1}, e_{2}\right\}
\end{aligned}
$$

is an even cycle in G having e as a chord.
Case (b): W.l.o.g. $e=e_{3}$. Considering even cycles C_{i} in G_{i} with $z_{1} v_{-,}, z_{2} w_{3}$ respectively. as chords and forming $P_{i}, i=1,2$, and C as in Case (a), we again obtain an even cycle in G having $e\left(=e_{3}\right)$ as a chord. Thus we can conclude that $\lambda_{c}(G) \geqslant 4$ must hold.

Now we consider a fixed embedding of G in the plane. For simplicity's sake we denote this embedding by the same letter G (this is no real loss of generality since the 3 -connectedness of G implies its-basically-unique embedability). For the distinguished ine e denote by F_{1} and F_{2} the faces having e as a boundary line. Suppose F_{1} has even circumference and thus F_{2} has odd circumterence; otherwise e would be a chord of the even cycle bd $F_{1} \cup b d F_{2}-\{e\}$. Furthermore denote by $L_{1}, \ldots, L_{2 k-1}, \ldots, L_{n}, n \equiv 1(\bmod 2)$, the faces adjacent to F_{1}, F_{2} respectively, in a cyclic order such that $L_{1}, \ldots, L_{2 k-1}$ have a boundary line with F_{1} in common. Because of $\lambda_{c}(G) \geqslant 4$ the above L_{i} 's are n distinct faces; for the same reason, if $|i-j|>1$ and $L_{i} \cap L_{i} \neq \emptyset$, then L_{i} is adjacent to F_{1} if and only if L_{i} is adjacent to F_{2}, and neither of them is adjacent to both F_{1}, F_{2}. Each of these L_{i}, $1 \neq i \neq 2 k-1$, must have even circumference; otherwise, bd $L_{i} \cup b d F_{\mathrm{k}} \cup \mathrm{Jbd} F_{2}$ contains an even cycle with ϵ as a chord. Similarly,

$$
\left|E\left(\operatorname{bd} L_{1}\right)\right| \equiv 1(\bmod 2) \quad \text { if and only if }\left|E\left(\operatorname{bd} L_{2 k-1}\right)\right| \equiv 0(\bmod 2)
$$

Thus we have arrived at the following situation: G contains a set of faces, namely $F_{1}, F_{2}, L_{1}, \ldots, L_{n}$, such that F_{2} and (w.l.o.g.) L_{1} have odd circumference while $F_{1}, L_{2}, \ldots L_{n}$ have even circumference; and F_{2} and L_{1} are adjacent (see Fig. 1).

Fig. 1.

Now we conclude that G must still contain another face $F_{0}\left(\neq F_{2}, L_{1}\right)$ with odd circumference: Otherwise, the dual $D(G)$ is a triangulation of the piane with exactly two points of odd degree which are adjacent: however, such triangulation does not exist, [2].

By the above parity considerations, F_{0} is not adjacent to F_{2}. In order to finish the proof we want to find a path P^{\prime} in $D(G)$ with the following properties:
(1) I' contains F_{2} and exactly one other point F_{6} of odd degree in $\left.L_{1} G\right)$ which is an endpoint of P^{\prime}.
(2) F_{1} belongs to P^{\prime}.
(3) $\left\langle V\left(P^{\prime}\right)\right\rangle=P^{\prime}$.
(4) Subject to (1), (2), (3), the length of P^{\prime} is minimal.

Clearly, if (1), (2), (3) can be fulfilled, then (4) can be fulfilled as well.
Once such P^{\prime} has been found, an even cycle as required can he constructed; namely: Because of (3), those boundary lines of the faces corresponding to the points of P^{\prime} which belong to exactly one of these faces, form a cycle C. By (1), C is even; and by (2), $e \notin E(C)$ but it is a chord of C as are all those boundary lines corresponding to the lines of P^{\prime}. (Note: Because of (3), $F_{1}, F_{2} \in V\left(P^{\prime}\right)$ implies $L_{1}, L_{2 k, 1} \notin V\left(P^{\prime}\right)$ which in turn implies together with (4) that bd $F_{i}-\{e\} \subset C$ for $i=1$ or $i=2$, depending on whether P^{\prime} has F_{1} or F_{2} as an endpoint.)

Because of $\lambda_{c}(G) \geqslant 4, D(G)$ is 4-connected. (Note: $\lambda_{c}(G) \geqslant 4$ impiies $\kappa(G)=3$; hence $\kappa(D(G)) \geqslant 3$. However, $\kappa(D(G))=3$ implies the existence of a separating riangle in the triangulation of the plane $D(G)$, which in turn implies $\lambda_{c}(G)=3$, an obvious contradiction.) Therefore, for every point of odd degree $F_{0}^{*} \neq F_{2}, L_{1}$ in $D(G)$, there is a path $P^{*}=P\left(F_{2}, F_{0}^{*}\right)$ in $D(G)$ not containing L_{1} and $L_{2 k-1}$. For each of the possible choices of P^{*} consider $\left\langle V\left(P^{*}\right) \cup\left\{F_{1}\right\}\right\rangle$. Each or these induced
subgraphs contains a shortest path \bar{P} from F_{2} to a point F_{0} which has odd degree in $D(G) . \bar{P}$ satisfies property (1). Consider $G^{\prime}=\left\langle V(\vec{P}) \cup\left\{F_{1}\right\}\right\rangle$.

If G^{\prime} is a path, then we can take $P^{\prime}=G^{\prime}$ as a path satisfying properties (1), (2), (3). By the above, we could find C as required. So we have to assume G^{\prime} not to be a path. However, because \bar{P} is a shortest path, $\langle\tilde{P}\rangle$ is a path, i.e., the lines of G^{\prime} not contained in the path

$$
\overline{\bar{P}}=F_{1}, F_{1} F_{2}, \bar{P}
$$

join F_{1} with points of \bar{P}. If \bar{P} is written in the form

$$
\bar{P}=F_{2}, F_{2} T_{1}, T_{1}, \ldots, T_{r}, T_{r} F_{0}, F_{0}
$$

then $F_{1} T_{1}, F_{1} F_{0} \notin E\left(G^{\prime}\right)$; otherwise $T_{1}=L_{2 k-1}, F_{0}=L_{1}$ respectively, must hold, contradicting the construction of \bar{P}. (Note: $r \geqslant 1$.) Therefore, if we take the maximal j such that $F_{1} T_{j} \in E\left(G^{\prime}\right)$, then

$$
P^{\prime}=\left\langle\left\{F_{2}, F_{1}, T_{i}, \ldots, T_{r} F_{0}\right\}\right\rangle
$$

is a path. P^{\prime} satisfies property (1) since \bar{P} does (possibly $j=r$); and obviously, properties (2), (3) are also fulfilled by P^{r}. Therefore, we can find-as described above-an even cycle C with e being a chord of C. This finishes the proof of the theorem.

Final remarks

The following corollary is-obviously-equisalent to the Theorem; its statement was suggested by one of the referees.

Corollary. Let G be a 2 -connected, 3-regular, planar graph, and let $e_{1}, e_{2} \in E(G)$. If G has an embedding in the plane such that e_{1}, e_{2} belong to the same face boundary, then G has an even cycle coniaining both e_{1} and e_{2}.

As the other referee pointed out, the Theorem cannot be generalized to hold for arbitrary 2 -connected planar graphs: In the graph of Fig. 2, the cycle having e as a chord is odd.

Fig. 2.

References

[1] H. Fleischner, The prism of a 2 -connected, cubic graph is Hamiltonian (independent of what you think of the 4CT), to be published.
[2] H. Fleischner and P. Roy, Distribution of points of odd degree of certain triangulations in the plane, Monatsh. f. Mathematik 78 (1974) 38:5-390.
[3] F. Harary, Graph Theory (Addison Wesley, Reading, MA 1971).
[4] M. Rosenfeld and D. Barnette, Hamiltonian circuits in certain prisms, Discrete Math. 5 (1973) 389-394.

