Extraconnectivity of graphs with large minimum degree and girth

C. Balbuenaa,*, A. Carmonaa, J. Fàbregab, M.A. Fiolb

a Departament de Matemàtica Aplicada III, Universitat Politècnica de Catalunya, C/. Gran Capita, Campus Nord-Edifici C2, S/N 08034 Barcelona, Spain
b Departament de Matemàtica Aplicada i Telemàtica, Universitat Politècnica de Catalunya, C/. Gran Capita, Campus Nord-Edifici C2, S/N 08034 Barcelona, Spain

Received 7 July 1995; revised 13 February 1996

Abstract

The extraconnectivity $\kappa(n)$ of a simple connected graph G is a kind of conditional connectivity which is the minimum cardinality of a set of vertices, if any, whose deletion disconnects G in such a way that every remaining component has more than n vertices. The usual connectivity and superconnectivity of G correspond to $\kappa(0)$ and $\kappa(1)$, respectively. This paper gives sufficient conditions, relating the diameter D, the girth g, and the minimum degree δ of a graph, to assure maximum extraconnectivity. For instance, if $D \leq g - n + 2(\delta - 3)$, for $n \geq 2\delta + 4$ and $g \geq n + 5$, then the value of $\kappa(n)$ is $(n + 1)\delta - 2n$, which is optimal. The corresponding edge version of this result, to assure maximum edge-extraconnectivity $\lambda(n)$, is also discussed.

1. Introduction

One of the most important properties to be taken into account when designing an interconnection network is its fault-tolerance; that is, the ability of the system to work even if some nodes and/or links fail. See the survey of Bermond et al. [1]. For instance, it is interesting to know when the graph that models the network is maximally connected or edge-connected, which means that the network remains connected if the number of elements that fail is less than its minimum degree, that is the minimum number of links incident with a node. This paper is devoted to the study of graph models for optimally connected networks with respect to the following fault-tolerance property: when some nodes or links fail, the surviving components of the network have to connect a given minimum number of nodes. This problem corresponds to the study of a kind of conditional graph connectivity introduced by Harary in [8].

* Corresponding author. Tel.: 34 3 401 72 38; fax: 34 3 401 65 04; e-mail: balbuena@etscepb.upc.es.

0012-365X/97/$17.00 Copyright © 1997 Elsevier Science B.V. All rights reserved
PII S0012-365X(96)00218-X
The standard graph theoretic terms not defined in this paper can be found in the book of Chartrand and Lesniak [4]. A simple connected graph G with diameter D is said to be ℓ-geodetic if ℓ is the maximum integer, $1 \leq \ell \leq D$, such that for any $x, y \in V(G)$ there exists at most one $x \leftrightarrow y$ path of length less than or equal to ℓ. When $\ell = D$, the graph G is called strongly geodetic, see [3, 9]. If G has girth g, then clearly G is ℓ-geodetic for $\ell = \lceil (g - 1)/2 \rceil$. Reciprocally, if G is ℓ-geodetic, then its girth g is either $2\ell + 1$ or $2\ell + 2$.

Soneoka et al. [10, 11] and Fàbrega and Fiol [5] have given sufficient conditions, in terms of the girth — or, in the case of digraphs, a new parameter of a similar significance — and the diameter, for a (di)graph to be maximally connected. For an ℓ-geodetic graph these sufficient conditions can be stated in the following way. If G has minimum degree δ, diameter D, connectivity κ, and edge-connectivity λ, then

$$\begin{align*}
\kappa &= \delta \quad \text{if } D \leq 2\ell - 1, \\
\lambda &= \delta \quad \text{if } D \leq 2\ell.
\end{align*}$$

(1)

Let G be a maximally connected graph with minimum degree δ, that is $\kappa = \delta$. If $G \neq K_{\delta+1}$ and v is a vertex of degree δ, then the set of vertices adjacent to $v, \Gamma(v)$, is a minimum order trivial disconnecting set. If every disconnecting set of vertices of cardinality δ is trivial, then G is said to be super-κ, see [2]. Analogously, G is super-λ if all its minimum edge-disconnecting sets are trivial. In this context, let us define a nontrivial set of vertices or edges as a vertex or edge set that does not contain a trivial disconnecting one. Fiol et al. have proved in [7] that if G is ℓ-geodetic with minimum degree $\delta > 2$ and diameter $D \leq 2\ell - 2$, and $F \subset V(G)$, $|F| \leq 2\delta - 3$, is nontrivial, then $G - F$ is connected. Analogously, if $D \leq 2\ell - 1$ and $A \subset E(G)$, $|A| \leq 2\delta - 3$, is nontrivial, then $G - A$ is connected. Thus, G is super-κ if $D \leq 2\ell - 2$ and G is super-λ if $D \leq 2\ell - 1$.

Let us define $\kappa(1)$ as the minimum cardinality of a nontrivial set of vertices F, if any, such that $G - F$ is not connected. Define $\lambda(1)$ in a similar way. Then, $\kappa(1)$ and $\lambda(1)$ measure the superconnectivity and edge-superconnectivity of G and, from the above results, we have that if G is an ℓ-geodetic graph with minimum degree $\delta > 2$ and diameter D, then

$$\begin{align*}
\kappa(1) &\geq 2\delta - 2 \quad \text{if } D \leq 2\ell - 2, \\
\lambda(1) &\geq 2\delta - 2 \quad \text{if } D \leq 2\ell - 1.
\end{align*}$$

(2)

If we have no further information about the structure of G, this result is best possible in the following sense. Suppose that G contains an edge with end-vertices u and v of degree δ and such that $\Gamma(u) \cap \Gamma(v) = \emptyset$. Then, the set $F = \Gamma(u) \cup \Gamma(v) \setminus \{u, v\}$ could be an example of nontrivial disconnecting set with $2\delta - 2$ vertices. Thus, for such a graph G, $\kappa(1) \leq 2\delta - 2$ and, by the results given in (2), $D \leq 2\ell - 2$ is a sufficient condition for $\kappa(1) = 2\delta - 2$. The edge case can be discussed similarly.

Given a graph G and a graph-theoretic property \mathcal{P}, Harary defined in [8] the conditional connectivity $\kappa(G; \mathcal{P})$ [edge-connectivity $\lambda(G; \mathcal{P})$] as the minimum cardinality of a set of vertices [edges], if any, whose deletion disconnects the graph and every
remaining component has property \mathcal{P}. In this paper the property \mathcal{P}_n of having more than n vertices is considered.

If H is a subgraph of G and $v \in V(H)$, let $N_H(v)$ denote the set $\Gamma(v) \setminus V(H)$ and let $N(H) = \bigcup_{v \in V(H)} N_H(v)$. Given a graph G and a fixed integer $n \geq 0$, let us say that $F \subseteq V(G)$ is n-nontrivial if F does not contain a set $N(H)$ for any subgraph $H \subseteq G$ is k vertices, $1 \leq k \leq n$ (for $n = 0$, any $F \subseteq V$ is 0-nontrivial). From this point of view, $\kappa(n) \equiv \kappa(G; \mathcal{P}_n)$ is the minimum cardinality of a n-nontrivial disconnecting set. As stated in the Introduction, $\kappa(0) [\lambda(0)]$ corresponds to the connectivity κ [edge-connectivity λ], and $\kappa(1) [\lambda(1)]$ measures the superconnectivity [edge-superconnectivity] of G. In what follows it is supposed that, for the graphs considered, such a $\kappa(n)$ exists. Otherwise, it can be assumed, by convention, some kind of optimality for such value (as the case of the complete graph is dealt with respect to the standard connectivity $\kappa(0)$). The conditional edge-connectivity $\lambda(n)$ can be defined in a similar way. Moreover, note that if F is n-nontrivial for a given n, then F is also n'-nontrivial for any $n' \leq n$. Thus, $\kappa(n') \leq \kappa(n) [\lambda(n')] \leq \lambda(n)$.

Suppose that a tree T with $n + 1$ vertices, $n \geq 0$, each of degree 6 in G, is a subgraph of G. If $F = N(T)$, then T is a component of $G - F$. Moreover, if $G - F$ is not connected and each other component has at least $n + 1$ vertices, then it is clear that $\kappa(n) \leq |F| = |N(T)| \leq (n + 1)\delta - 2n$. Note that the value $\tau(n) = (n + 1)\delta - 2n$ gives the maximum number of vertices of the neighborhood of a tree T with $n + 1$ vertices, each of degree δ in G, and so it is the optimal value of the n-extraconnectivity. In particular, $\tau(0)$ is the minimum degree δ of the graph. In [6] the following sufficient conditions for $\kappa(n) [\lambda(n)]$ to be optimal, in this sense, were stated. Let G be an ℓ-geodetic graph with minimum degree $\delta \geq 3$ and diameter D, and let $n \geq 2$. Then

$$\kappa(n) \geq (n + 1)\delta - 2n \quad \text{if} \quad D \leq \begin{cases} 2\ell - n - 1, & n \text{ even}, \\ 2\ell - n - 2, & n \text{ odd}, \end{cases}$$

$$\lambda(n) \geq (n + 1)\delta - 2n \quad \text{if} \quad D \leq \begin{cases} 2\ell - n, & n \text{ even}, \\ 2\ell - n - 1, & n \text{ odd}. \end{cases}$$

(3)

In the following section we improve the above sufficient conditions for $\kappa(n) [\lambda(n)]$ to be optimal. These conditions will now relate the parameter ℓ, the minimum degree δ, and the diameter D.

2. Optimally n-extraconnected graphs

Let us define a graph G as optimally n-extraconnected if the minimum order of every n-nontrivial disconnecting set of vertices is at least $(n + 1)\delta - 2n$. As mentioned above, the purpose of this section is to obtain sufficient conditions on the diameter of G to assure that the graph is optimally n-extraconnected. To this end, in what follows G is a graph with girth $g \geq n + 5$, minimum degree $\delta \geq 3$, n stands for a non-negative
integer, \(\tau(n) = (n + 1)\delta - 2n\), and \(F \subset V(G)\), \(|F| < \tau(n)|\), is a \(n\)-non-trivial disconnecting set. So, \(G - F\) is non-connected and all its components have more than \(n\) vertices.

The two following lemmas give some information about the structure of any component of \(G - F\).

Lemma 2.1. In any component of \(G - F\) there is a path of length at least \(n + 3\). Moreover, any vertex \(v\) of \(G - F\) lies on a path of length at least \(\lceil(n + 3)/2\rceil\).

Proof. Let \(C\) denote the component to which \(v\) belongs. If \(C\) contains a cycle, then its length is at least \(g \geq n + 5\). So, the result clearly holds in this case. Suppose that the component \(C\) is a tree. Condition \(g \geq n + 5\) also implies that \(N_C(u) \cap N_C(u') = \emptyset\) for any pair of vertices \(u, u' \in V(C)\) such that their distance in \(C\) satisfies \(d(u, u') \leq n + 2\); if not we would have a cycle with length at most \(n + 4\). Hence, as \(C\) has more than \(n\) vertices, it must have diameter greater than \(n + 2\); otherwise \(|N(C)| = |F| \geq \tau(n)\). Then, component \(C\) contains at least one \(u \leftrightarrow u'\) shortest path of length greater than \(n + 2\). Consequently, for any vertex \(v\) there exists in \(G - F\) either a \(v \leftrightarrow u\) or \(v \leftrightarrow u'\) path of length at least \(\lceil(n + 3)/2\rceil\).

Note that, by the above lemma, \(F\) is a \(n'\)-non-trivial disconnecting set for \(n' = n, n + 1, n + 2, n + 3\) and we have \(\kappa(n) \leq \kappa(n + 1) \leq \kappa(n + 2) \leq \kappa(n + 3) \leq |F|\). In particular, if \(F\) is a minimum order \(n\)-nontrivial disconnecting set, then \(\kappa(n) = |F|\) and, therefore, \(\kappa(n) = \kappa(n + 1) = \kappa(n + 2) = \kappa(n + 3)\).

Given a component \(C\) of \(G - F\) let \(\mu(C) = \max_{v \in V(C)} d(v, F)\). We have the following result:

Lemma 2.2. For any component \(C\) of \(G - F\), \(\mu(C) \geq 2\).

Proof. The proof is by contradiction. Thus, assume that \(C\) is a component of \(G - F\) such that \(\max_{v \in V(C)} d(v, F) = 1\). Let \(P = u_0u_1 \cdots u_n\) be a path in \(C\) of length \(n\). For each vertex \(v \in N_P(u_i), 0 \leq i \leq n\), let \(f_i \in F\) be a vertex at minimum distance from \(v\) and let \(F_i \subset F\) be the set of such vertices \(f_i\). Note that either \(v = f_i\) or \(d(v, f_i) = 1\). Since \(g \geq n + 5\), we have \(|F_i| \geq \delta - 2, 1 \leq i \leq n - 1, \ |F_0| \geq \delta - 1, \ |F_n| \geq \delta - 1\) and \(F_i \cap F_j = \emptyset\) for \(0 \leq i, j \leq n\). Hence, \(|F| \geq \sum_{i=0}^{n} |F_i| \geq \tau(n)\), a contradiction.

A consequence of Lemma 2.2 is that the diameter \(D\) of \(G\) satisfies \(D \geq 4\). Therefore, we have the following result.

Proposition 2.1. Let \(G\) be a graph with diameter \(D\), girth \(g \geq n + 5\), and minimum degree \(\delta \geq 3\). Then

\[\kappa(n) \geq \tau(n)\] if \(D \leq 3\).

Notice that since \(g \geq n + 5\) then \(3 \leq 2\ell - n - 1\) if \(g = 2\ell + 1\) is odd, and \(3 \leq 2\ell - n\) if \(g = 2\ell + 2\) is even. Hence, for graphs with \(D \leq 3\) and \(g \geq n + 5\), this result with

n = 0 is equivalent to (1). If n = 1 we obtain \(\kappa(1) \geq 2\delta - 2 \), that is, \(G \) is optimally superconnected. In this case the result stated in (2) is improved. If \(n = 2 \) the bounds given in (3) are also improved.

Our main result is the following theorem, which deals with the cases \(n \geq 3 \).

Theorem 2.1. Let \(G \) be a graph with girth \(g \geq n + 5 \), with minimum degree \(\delta \geq 3 \), and diameter \(D \). Then

\[
\kappa(n) \geq \tau(n) \quad \text{if} \quad D \leq \begin{cases}
2\ell - 5 & (3 \leq n \leq \delta + 2), \\
2\ell - 7 & (\delta + 3 \leq n \leq 2\delta + 1), \\
2\ell - 9 & (2\delta + 2 \leq n \leq 2\delta + 3), \\
2\ell - n + 2\delta - 5 & (n \geq 2\delta + 4), \\
2\ell - n + 2\delta - 4 & (n \geq 2\delta + 5, \ n \text{ odd}).
\end{cases}
\]

The above upper bounds on the diameter could also be written using the girth \(g \) instead of the parameter \(\ell \). For instance, since \(g \geq 2\ell + 1 \), we have that, if \(D \leq g - n - 2(\delta - 3) \) and \(n \geq 2\delta + 4 \), then \(\kappa(n) \geq \tau(n) \). Note that the minimum degree \(\delta \) of \(G \) appears explicitly in the upper bound on \(D \). Hence, for values of \(n \) large enough with respect to \(\delta \), the previous known sufficient conditions given in (3) for \(G \) to be optimally extraconnected are improved.

The following concepts and notation are used to prove Theorem 2.1. Let \(T \) be a tree contained in a given component of \(G - F \). For every vertex \(v \) of \(T \) we will consider a path \(T^*(v) = t_0v_1 \cdots v_{s_v-1}v_s = v \), \(s_v \geq 1 \), \(v_1 \notin V(T) \), such that \(d(t_i, F) > d(v_i, F) \), \(1 \leq i \leq s_v \), and \(d(h, F) \leq d(v_i, F) \) for every \(h \notin V(T^*(v)) \) adjacent to \(v_i \) (if such a path does not exist, let \(s_v = 0 \) and consider the trivial path \(T^*(v) = v \)). Given a path \(P \) in the graph \(G \), \(||P|| \) will denote its length, and thus \(||T^*(v)|| = s_v \). Moreover, define \(N^z_T(v) = \Gamma(v) \setminus \{v_{s_v-1}\} \) (if \(s_v = 0 \), then \(N^z_T(v) = N_T(v) \)) and let \(N^z_T(v) = \bigcup_{v \in V(T)} N^z_T(v) \). For any \(h \in N^z_T(v) \), let \(j_h \) denote a vertex in \(F \) such that \(d(h, j_h) = d(h, F) \). For any \(v \in V(T) \), let \(T \oplus T^*(v) \) denote a subgraph obtained by attaching to \(T \) the path \(T^*(v) \). Moreover, let \(T^* \) be the subgraph obtained by joining \(T^*(v) \) to each \(v \in V(T) \). That is, if \(V(T) = \{v_0, v_1, \ldots, v_r\} \), then \(T^* = T \oplus T^*(v_0) \oplus \cdots \oplus T^*(v_r) \). Given \(v, v' \in V(T) \), \(p_T(v, v') \) will represent the \(v \leftarrow v' \) path in \(T \). If the diameter of \(T^* \), which is at most \(\max_{u,v \in V(T)} ||T^*(u) \oplus p_T(u,v) \oplus T^*(v)|| \), is less than \(g \) then \(T^* \) is a tree. Moreover, if \(D_T < g - 2 \), then \(N^z_T(u) \cap N^z_T(v) = \emptyset \) for any \(u, v \in V(T) \). Notice that, in a certain sense, \(T^* \) is as far as possible from \(F \). Besides, \(D_T \) will stand for the diameter of the tree \(T \).

The proof of our results will use the following lemma, already used to prove Lemma 2.2.

Lemma 2.3. If any component \(C \) of \(G - F \) contain a tree \(T \) of order \(n + 1 \) such that \(N^z_T(u) \cap N^z_T(v) = \emptyset \) for any \(u, v \in V(T) \), then \(|N^z_T(v)| \geq \tau(n) \). Moreover, if the diameter of \(T^* \) is less than \(g - 2\mu(C) - 2 \), then \(|F| = \kappa(n) \geq \tau(n) \).
Proof. We have that \(N^*(T) = \bigcup_{v \in V(T)} N^*_T(v) \). Hence, by the hypothesis \(|N^*(T)| = \sum_{v \in V(T)} |N^*_T(v)| \geq \sum_{v \in V(T), s \geq 1} (\delta - 1) + \sum_{v \in V(T), s = 0} |N_T(v)| \geq (x(\delta - 1)) + (\tau(n-x)) = \tau(n) \), where \(x = \{v \in V(T) : s \geq 1 \} \). Moreover, since \(D_T^* < g - 2 \) we have that \(N^*_T(u) \cap N^*_T(v) = \emptyset \) for any \(u, v \in V(T) \). Therefore, as \(|F| < \tau(n) \) there exist \(h \in N^*_T(u), h' \in N^*_T(v) \), \(h \neq h' \), for some \(u, v \in V(T) \) such that \(f_h = f_{h'} = f \). In this way we find a closed walk \(W = f \rightarrow h T^*(u) \oplus p_T(u, v) \oplus T^*(v) h' \rightarrow f = f \rightarrow h u_s v_1 \rightarrow v_s h' \rightarrow f \), where \(f \rightarrow h \) and \(h' \rightarrow f \) are shortest paths. Since \(||W|| \leq \mu(C) + 1 + D_T^* + \mu(C) + 1 \), the condition on the diameter of \(T^* \) implies that the length of the closed walk \(W \) is less than the girth \(g \) of the graph, arriving to a contradiction. The conclusion is that \(|F| \geq \tau(n) \) and hence \(G \) is optimally \(n \)-extraconnected. \(\square \)

An important point of the above reasoning is that, from \(W \), we get a cycle and not an acyclic walk. This is because \(h \in N^*_T(u) \), \(h' \in N^*_T(v) \) and thus, the vertex adjacent with \(h \) in the shortest path \(f \rightarrow h \) is not \(u_s \), and analogously the vertex adjacent with \(h' \) in the shortest path \(h' \rightarrow f \) is not \(v_s \).

The next proposition, to be compared with Lemma 2.2, will be used in the proof of Theorem 2.1.

Lemma 2.4. If \(n \geq \delta + 1 \) then any component \(C \) of \(G - F \) satisfies

\[
\mu(C) \geq 3 \quad \text{if} \quad \begin{cases}
\delta \geq 5, \\
n - \delta + 9 < g \quad \text{for} \quad 3 \leq \delta \leq 4.
\end{cases}
\]

Proof. Assume that there exists a component \(C \) such that \(\mu(C) = 2 \). Let \(z \in V(C) \) be a vertex such that \(d(z, F) = 2 \) and denote by \(S_z \) the tree formed by \(z \) and \(\delta \) of its adjacent vertices. Clearly, \(S_z \) is contained in \(C \). Moreover, since \(n \geq \delta + 1 \), we can consider in \(C \) a tree \(T' \) with \(n \) vertices that contains \(S_z \), and such that \(D_{T'} \leq (n - \delta + 1) + 2 \). See Fig. 1. (In this figure and the following ones the vertices are drawn in different levels according to their distances to \(F \).) Then \(T'^* \) has diameter at most \(\max_{u, v \in V(T')} ||T'^*(u) \oplus p_T(u, v) \oplus T'^*(v)|| \leq (n - \delta + 1) + 2 \) — notice that \(||T'^*(v)|| \leq 1 \) for any \(v \in V(T') \) because \(\mu(C) = 2 \). Now, we are going to add one vertex to \(T' \) in order to get another tree \(T \) with \(n + 1 \) vertices, in such a way that the diameter of \(T^* \) remains upper bounded by \(n - \delta + 3 \). To this end, if there exists a vertex \(s \in V(T') \) such that \(||T'^*(s)|| = 1 \), then let \(T = T' \oplus T'^*(s) \). In this case we have that \(D_{T^*} \leq D_{T'^*} \).

Otherwise, if \(||T'^*(s)|| = 0 \) for any \(s \in V(T') \), let \(T = T' \oplus s e \), where \(e \in N(T') \cap V(C) \), whose existence is assured because \(C \) has at least \(n + 1 \) vertices. Now we have that \(D_{T^*} \leq \max \{D_{T'^*}, \max_{u, v \in V(T')} ||p_T(u, e) \oplus T^*(e)|| \} \leq (D_{T'^*} + 1) + 1 \leq n - \delta + 3 \). Thus, if \(\delta \geq 5 \) then \(D_{T^*} < g - 2 \mu(C) - 2 \) because \(g \geq n + 5 \), and \(\mu(C) = 2 \). If \(3 \leq \delta \leq 4 \) we have that \(D_{T^*} < g - 6 = g - 2 \mu(C) - 2 \) since \(n - \delta + 9 < g \). Moreover, for any \(u, v \in V(T) \), it is \(N^*_T(u) \cap N^*_T(v) = \emptyset \) because \(D_{T^*} < g - 2 \). Then, by Lemma 2.3 we have that \(|F| \geq \tau(n) \), a contradiction. \(\square \)

The following consequence improves, for \(n \geq \delta + 1 \) and \(\delta \geq 5 \), the result given in Proposition 2.1, because \(5 \leq 2\ell - n + 1 \) if \(g \) is odd, or \(5 \leq 2\ell - n + 2 \) if \(g \) is even.
Proposition 2.2. Let G be a graph with diameter D, girth $g \geq n + 5$, and minimum degree $\delta \geq 5$. Let $n \geq \delta + 1$. Then,

$$\kappa(n) \geq \tau(n) \quad \text{if} \quad D \leq 5.$$

Corollary 2.1. In the hypothesis of Theorem 2.1 if $3 \leq \delta \leq 4$, any component C of $G - F$ satisfies

$$\mu(C) \geq 3 \quad \text{if} \quad D \leq \begin{cases} 2\ell - 7 & (\delta + 3 \leq n \leq 2\delta + 1), \\ 2\ell - 9 & (2\delta + 2 \leq n \leq 2\delta + 3), \\ 2\ell - n + 2\delta - 5 & (n \geq 2\delta + 4), \\ 2\ell - n + 2\delta - 4 & (n \geq 2\delta + 5, \ n \text{ odd}) \end{cases}$$

Proof. Since $\ell \leq D$ and either $g = 2\ell + 1$ or $g = 2\ell + 2$, we always have that $g > n - \delta + 9$. Hence, by Lemma 2.4, $\mu(C) \geq 3$. \qed

The proof of Theorem 2.1 is organized in the following way. First, we will provide the proof for the first values of n, namely, $3 \leq n \leq 2\delta + 1$. In these cases the tree considered in the component of $G - F$ is directly obtained from the simple tree S_z, formed by a vertex z at maximum distance from F and δ of its adjacent vertices. For $n \geq 2\delta + 2$ a tree T with a structure not so simple will be needed. After describing the structure of T, the diameter of T^* will be studied. Then, we will assure that in any component exists a tree with more than n vertices, in such a way that the diameter of T^* is properly bounded. Finally, we will finish the proof of Theorem 2.1 for $n \geq 2\delta + 2$.

Proof of Theorem 2.1. ($3 \leq n \leq 2\delta + 1$)

From (3), the result holds for $n = 3, 4, 6$. We will extend this result to include the other values of n not greater than $2\delta + 1$.

Assume first that $3 \leq n \leq \delta + 2$ and suppose $D \leq 2\ell - 5$, which implies $\ell \geq 5$ because $D \geq \ell$. The proof is by contradiction. Let F be a n-nontrivial disconnecting set such that $|F| = \kappa(n) - \tau(n) - 1 \leq \delta^2 + \delta - 5$. Let C_z and C_y be two different components of $G - F$ and let $z \in C_z, \ y \in C_y$ be two vertices at maximum distance from F. It is clear that $D \geq d(z, y) \geq d(z, F) + d(y, F) = \mu(C_z) + \mu(C_y)$. Then, if $\mu = \mu(C_z) \leq \mu(C_y)$, we must have $\mu \leq \ell - 3$. Since $g \geq n + 5, \ \mu \geq 2$. Let S_z be a tree formed by z and δ of its adjacent vertices contained in C_z. The following different cases are considered:
(i) There exist at least two vertices \(z_1, z_2 \in \Gamma(z) \) such that \(\|S^*_z(z_1)\| = \|S^*_z(z_2)\| = 1 \). In this case, the tree \(T = S_z \oplus S^*_z(z_1) \oplus S^*_z(z_2) \) is contained in \(C_z \). The order of \(T \) is \(\delta + 3 \) and, the diameter of \(T^* \) satisfies \(\max_{u,v \in V(T)} \|T^*(u) \oplus p_T(u,v) \oplus T^*(v)\| \leq 4 \) since the path \(T^*(v) \) has length at most one for any \(v \in V(T) \), see Fig. 2. As \(4 < g = 2 \mu - 2 \) because \(g \geq 2 \ell + 1 \) and \(\mu \leq \ell - 3 \), we have \(N^*_T(u) \cap N_T^*(v) = \emptyset \) for all \(u, v \in V(T) \), and from Lemma 2.3 we have \(|N^*(T)| \geq \tau(\delta + 2) = \delta^2 + \delta - 4 > |F| \). Moreover, Lemma 2.3 also gives \(|F| = \kappa(n) \geq \tau(n) \).

(ii) There exists only one vertex \(z_1 \in V(S_z) \) such that \(\|S^*_z(z_1)\| = \|z_1\| = 1 \). Since \(d(t,F) = \mu \), we have that \(\Gamma(t) \subset C_z \). Let us consider \(S_z \). If there exists \(w \in \Gamma(t) \), \(w \neq z_1 \), such that \(\|S^*_z(w)\| = 1 \), then \(S_z \) satisfies the conditions assumed in case (i) and the theorem holds. So, suppose that \(\|S^*_z(w)\| = 0 \) for any \(w \in \Gamma(t) \), \(w \neq z_1 \), and consider \(T = S_z \oplus z_1 tw \), see also Fig. 2. The tree \(T \) has order \(\delta + 3 \), and \(\Delta T^* \leq 4 \), because \(\|T^*(v)\| = 0 \) for any \(v \in V(T) \), \(v \neq z_1 \), and \(\|T^*(z_1)\| \leq 1 \). Hence, as in case (i) we have \(N^*_T(u) \cap N_T^*(v) = \emptyset \) for all \(u, v \in V(T) \), and \(|F| = \kappa(n) \geq \tau(n) \).

(iii) For any \(u \in V(S_z) \), it is \(\|S^*_z(u)\| = 0 \). If \(n < \delta + 1 \), then \(T = S_z \) is a tree of order at least \(n + 1 \) such that \(T^* = T \). Hence \(\Delta T^* \leq 2 \) and \(|N^*_T(T)| = |N(T)| \geq \tau(n) > |F| \). If \(\delta + 1 \leq n < \delta + 2 \), then \(|N(S_z) \cap V(C_z)| \geq 1 \), because the component \(C_z \) has more than \(n \) vertices. Now we have the following subcases:

- There exist \(e, e' \in N(S_z) \cap V(C_z) \), adjacent, respectively, to \(z_e, z_{e'} \in V(S_z) \), such that \(\|T^*(e)\| = \|T^*(e')\| = 0 \) where \(T = S_z \oplus z_e e \oplus z_{e'} e' \), see Fig. 3. Now \(T = T^* \) which implies that \(\Delta T^* \leq 4 \).

- There exists \(e \in N(S_z) \cap V(C_z) \), adjacent to \(z_e \in V(S_z) \), such that \(\|Q^*_e(e)\| = \|ee_1\| = 1 \) where \(Q_e = S_z \oplus z_e e \). Now, consider \(T = Q_e \oplus ee_1 \), that satisfies \(\Delta T^* = \Delta t \leq 4 \), see also Fig. 3.

- If \(\{e\} = N(S_z) \cap V(C_z) \), then \(\mu = 2 \). Denote by \(z_e \) the vertex of \(S_z \) to which \(e \) is adjacent and let \(e' \) be a vertex in \(V(C_z) \setminus V(S_z) \) adjacent to \(e \) (such a vertex exists because, by Lemma 2.1, in \(C_z \) there is a path with length at least \(n + 3 \)). Now, the tree \(T = S_z \oplus z_e e e' \) has order \(\delta + 3 \) and \(\Delta T^* \leq \|p_T(u,e') \oplus T^*(e')\| \leq 5 < g = 2 \), because \(g \geq 2 \ell + 1 \geq 11 \), see Fig. 3. Therefore, \(N^*_T(u) \cap N_T^*(v) = \emptyset \), for all \(u, v \in V(T) \), and by Lemma 2.3 \(|N^*(T)| > |F| \). Since \(N(S_z) \setminus \{e\} \subset F \), we must have a cycle such as \(f p_T(u,v) \oplus T^*(v) \rightarrow f \), where \(f = f_h \) for some \(h \in N^*(T) \) whose length is at most \(1 + \Delta T^* + 1 + 2 \leq 9 \), which is a contradiction because \(g \geq 11 \), see Fig. 3.

- The case that remains to be considered is when \(\|Q^*_e(e)\| = \|ee_1 e_2\| = 2 \) for any \(e \in N(S_z) \), with at most one exception \(e' \), in which case \(\|Q^*_e(e')\| = 0 \). If

(i) (ii)

Fig. 2. Cases (i) and (ii).
such a vertex e' does not exist, consider the tree $T = Q_e \oplus Q^*_e(e)$, where e is any vertex in $N(S_z)$. Now $D_T \leq 5$ and then $|N^*(T)| > |F|$. Hence, we have that $f_h = f_{h'} = f$ for some $h, h' \in N^*(T)$, $h \neq h'$. Then a cycle with length at most $\| f \leftrightarrow h'uz^xee_1e_2h \leftrightarrow f \| \leq (\mu - 2) + 7 + \mu = 2\mu + 5 \leq 2\ell - 1$ exists in G because $h' \in N(S_z)$. So we get a contradiction, see Fig. 3. On the other hand, if e' exists, then $d(z_{e'}, F) = \mu$. Otherwise if $d(z_{e'}, F) = \mu$, then $d(s, F) \geq \ell - 1$ for any $s \in \Gamma(z_{e'}) \setminus \{e', z\}$, and then it would be $\| Q^*_s(s) \| \leq 1$, contradicting that $\| Q^*_s(s) \| = 2$ because $s \in N(S_z)$. Consider now the tree $T = Q_e \oplus Q^*_e(e)$, $e \neq e'$, see Fig. 3. Then a cycle of length at most $\| f \leftrightarrow e'z_{e'}zz^xee_1e_2h \leftrightarrow f \| \leq (\mu - 1) + 7 + \mu = 2\mu + 6$ exists in G, again a contradiction.

Now, assume that $D \leq 2\ell - 7$ and $\delta + 3 \leq n \leq 2\delta + 1$. In this case $\ell \geq 7$ which implies that $g \geq 15$. Then the disconnecting set has order $|F| \leq \tau(n) - 1 \leq 2\delta^2 - 2\delta - 3$ and $\mu = \mu(C_z) \leq \ell - 4$. In this case, by Lemma 2.4 and Corollary 2.1 $\mu \geq 3$, which implies that $|N(S_z) \cap V(C_z)| \geq \delta(\delta - 1)$. Now we have the following subcases:

(iv) There exists one vertex $z_1 \in \Gamma(z)$ such that $\| S^*_z(z_1) \| = \| z_1t \| = 1$. Let us consider the tree S_t and a vertex $u \in \Gamma(z_1)$, $u \neq z, t$; whose existence follows from $d(z_1, F) \geq \mu - 1$. In this case, $T = S_z \oplus S_t \oplus z_1u$ is contained in C_z, where $S_z \oplus S_t$ is the tree obtained by joining S_z and S_t as shown in Fig. 4. The order of T is $2\delta + 2$, the diameter of T^* is upper bounded by $\max_{u,v \in \Gamma(T)} \| T^*(u) \oplus p_T(u,v) \oplus T^*(v) \| \leq 6$, see Fig. 4. As $g \geq 15$, $D_T < g - 2$, and therefore, $N^*_T(u) \cap N^*_T(v) = \emptyset$ for any $u, v \in \Gamma(T)$. Then, $|N^*_T(T)| \geq \tau(2\delta + 1) = 2\delta^2 - 2\delta - 2 > |F|$. Moreover, since $6 < g - 2\mu - 2$, because $g \geq 2\ell + 1$ and $\mu \leq \ell - 4$, by Lemma 2.3 we obtain that $|F| = \kappa(n) \geq \tau(n)$. Once more we get a contradiction.

(v) For any $u \in V(S_z)$, it is $\| S^*_z(u) \| = 0$. Note that $|N(S_z) \cap V(C_z)| \geq \delta(\delta - 1)$ because $\mu \geq 3$. Let us consider the following subcases:

- There exists some $u \in V(S_z)$, $u \neq z$, such that $d(u, F) = \mu$. Consider the tree $T' = S_z \oplus S_u$ which has order 2δ. If there exists some $w \in V(S_u)$ such that $\| T'^*(w) \| = 1$, then...
Su satisfies the conditions assumed in (iv) and the theorem holds. Thus, we can suppose that \(|T^*(w)|=0\) for any \(w \in V(T')\). If \(n \leq 2\delta - 1\), then \(T = T'\) is a tree of order at least \(n + 1\) such that \(D_{T'} \leq D_T = 3\). If \(n \geq 2\delta\), then let \(e_1, e_2 \in N(T') \cap V(C_z)\), adjacents to a vertex \(w \in V(T')\), and consider the tree \(T = T' \oplus w_1 \oplus w_2\) contained in \(C_z\). Then \(T\) has order \(2\delta + 2\) and \(D_{T'} \leq 6\), see Fig. 5.

- Assume that \(d(u, F) = \mu - 1\) for any \(u \in V(S_z), u \neq z\). Then we have \(d(h, F) \leq \mu - 1\) for any \(h \in N_z(u)\) because \(|S_z^*(u)|=0\). Suppose first that there exists \(e \in N(S_z) \cap V(C_z)\), adjacent to \(z \in V(S_z)\), such that \(1 \leq |Q_e(e)| \leq 2\), where \(Q_e = S_z \oplus z \oplus e\). If \(e \in e_1\) is an edge of \(Q_e^*(e)\), then consider \(T = S_z \oplus z \oplus e \oplus S_{e_1}\), see Fig. 5. It has order \(2\delta + 2\), and as \(D_{T'} \leq 7\) we have that \(|N^*(T)| > |F|\), that is, there exist \(h, h' \in N^*(T)\), \(h \neq h'\) such that \(f_h = f_h' = f\). Moreover, \(|N^*(T)| = D_T \rightarrow 1\) if and only if \(u \in N(z)\), \(u \neq z\), and \(v \in N(e_1)\). Therefore, from \(f \leftrightarrow h \leftrightarrow v \leftrightarrow T^*(v)h' \leftrightarrow f\) we find a cycle whose length is at most \((\mu - 1) + 1 + D_{T'} + 1 + \mu \leq 2\mu + 8 \leq 2\ell\), because \(\mu \leq \ell - 4\), a contradiction since \(0 \geq \ell + 1\). Finally, let us suppose that \(|N^*(e)|=0\), for any \(e \in N(S_z) \cap V(C_z)\). As \(\mu \geq 3\), clearly \(|N(S_z) \cap V(C_z)| > \delta + 1\) and therefore the tree \(T\) is obtained by joining \(\delta + 1\) of these vertices to \(S_z\).

From now on, assume \(n \geq 2\delta + 2\) and consider a vertex \(z\) in a given component \(C_z\) such that \(d(z, F) = \mu(C_z) = \mu\). By Lemma 2.1, we know that \(z\) belongs to a path \(P_z'\) in \(G - F\) of length at least \(\lceil (n + 3)/2 \rceil\). In order to complete the proof of Theorem 2.1, we can assume that \(\mu \geq 3\) by Lemma 2.4 and Corollary 2.1. Then we can consider a subpath \(P\) of \(P_z'\) that contains vertex \(z\) as an internal vertex and with length \(4 \leq p \leq \lfloor (n - 2\delta + 4)/2 \rfloor\). Moreover, we can assume that the distance in \(P\) from \(z\) to the endvertices of this path is at least two, and \(d(v, F) > 1\) for every internal vertex \(v\) of \(P\). We get a tree \(T'\) in the following way. Attach to vertex \(z\) all the paths of length two of
the form \(zz'z_j, \ z_j \notin V(P)\), \(1 \leq j \leq \delta - 1, \ 1 \leq i \leq \delta - 2\). Moreover at least \(\delta - 2\) edges \(vw, \ w \in \Gamma(v) \setminus V(P)\), can be attached to each internal vertex \(v \neq z\). In this way, we obtain a tree \(T'\) that has diameter \(D_{T'} = p\), and, since \(q \geq n + 5 > p\), the order of \(T'\) is \(n_{T'} = p(\delta - 1) + (\delta - 2)^2 + 1\). The structure of \(T'\) is as shown in Fig. 6. Then the structure of the tree \(T\) — contained in \(C_z\) and such that it is rooted at vertex \(z\) — which we consider is as follows according to whether \(p\) attains its extreme values or not:

Type (a). If \(p = 4\) then \(n_{T'} = \delta^2 + 1\) and therefore a tree \(T = T'\) on \(n + 1\) vertices is contained in \(C_z\) if \(2\delta + 2 \leq n \leq 2\delta + 3\), since \(2\delta + 4 \leq \delta^2 + 1\).

If \(p = \lfloor (n - 2\delta + 4)/2 \rfloor\) then \(n \geq 2\delta + 4\). Keeping in mind that \(p(\delta - 1) = 2p + (\delta - 3)p\), we have that \(n_{T'} = n - 1 + (\delta - 3)^2 + (\delta - 3)p\) if \(n\) is odd, and \(n_{T'} = n + (\delta - 3)^2 + (\delta - 3)p\) if \(n\) is even. Therefore, \(n_{T'} \geq n - 1\), except for \(\delta = 3\), in which case \(n_{T'} = 2\lfloor n/2 \rfloor\). In this case \(T = T'\).

Type (b). If \(4 < p < \lfloor (n - 2\delta + 4)/2 \rfloor\) then \(n \geq 2\delta + 6\). Notice that the endvertices of \(P, t\) and \(t'\), satisfy \(d(t, F) = d(t', F) = 1\) and \(p \geq 2(\mu - 1)\). Now, if \(\delta \geq 4\) and the order of \(T'\) is less than \(n + 1\), then let \(T\) be a tree of order at least \(n + 1\) that contains \(T'\). Otherwise let \(T = T'\). On the other hand, if \(\delta = 3\) and the order of \(T'\) is less than \(2\lfloor n/2 \rfloor\), then let \(T\) be a tree of order at least \(2\lfloor n/2 \rfloor\) that contains \(T'\). Otherwise, \(T = T'\). As any component of \(G - F\) has more than \(n\) vertices, the existence of such a tree \(T\) is assured in any case. Hence, if \(\delta \geq 4\), the diameter \(D_T\) of \(T\) is at most \(p + (n - (\delta - 1)p - (\delta - 2)^2) = n - (\delta - 2)p - (\delta - 2)^2\), and if \(\delta = 3\), then \(D_T \leq p + (2\lfloor n/2 \rfloor - 2p + 2) = 2\lfloor n/2 \rfloor - p - 2\).

The characteristics of \(T\) are summarized in Table 1.

Now, we consider \(T^*\). Note that, for any given vertex \(v\) of \(T\), the length of \(T^*(v) = v_1 \cdots v_s\), is at most \(\|p_T(v, z)\|\) because \(d(v_i, F) > d(v_{i-1}, F), \ 1 \leq i \leq s_r\) or \(d(z, F) = \mu\) and \(\mu\) is the maximum possible distance to \(F\) from a vertex in the component. The following result allows us to bound the diameter of \(T^*\).

Lemma 2.5. According to the type of tree \(T\) the diameter \(D_{T^*}\) of \(T^*\) satisfies

- **Type (a):** \(D_{T^*} \leq 2D_T \leq \begin{cases} 8, & 2\delta + 2 \leq n \leq 2\delta + 3, \\ 2 \left\lfloor \frac{n - 2\delta + 4}{2} \right\rfloor, & n \geq 2\delta + 4. \end{cases}\)

- **Type (b):** \(D_{T^*} \leq 2(\mu - 1) + D_T \leq \begin{cases} n - \delta^2 + 8, & \delta \geq 4, \\ 2 \left\lfloor \frac{n}{2} \right\rfloor - 2, & \delta = 3. \end{cases}\)

Moreover, for any pair \(u, v\) of different vertices of \(T\), \(N^*_T(u) \cap N^*_T(v) = \emptyset\).
Table 1
Characteristics of the tree T

<table>
<thead>
<tr>
<th>Type (a)</th>
<th>p</th>
<th>n</th>
<th>$n_T \geq$</th>
<th>D_T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>$[2\delta + 2, 2\delta + 3]$</td>
<td>$n + 1$</td>
<td>p</td>
</tr>
<tr>
<td></td>
<td>$\left\lceil \frac{n-2\delta+4}{2} \right\rceil$</td>
<td>$\geq 2\delta + 4$</td>
<td>if $\delta \geq 4$, $n + 1$</td>
<td>p</td>
</tr>
</tbody>
</table>

| Type (b) | $\left\lceil \frac{n-2\delta+4}{2} \right\rceil$ | $\geq 2\delta + 6$ | if $\delta \geq 4$, $n + 1$ | $n-(\delta-2)p-(\delta-2)^2$ |
| | $\delta = 3, 2\left\lceil \frac{\delta}{3} \right\rceil$ | | | $2\left\lceil \frac{\delta}{3} \right\rceil - p - 2$ |

Proof. We have to bound the length of the path

$$T^*(u) \oplus p_T(u,v) \oplus T^*(v) = u_s \cdots u_1 p_T(u,v)v_1 \cdots v_s, \quad (4)$$

for any pair u, v of different vertices of T. According to T, consider the following cases:

Type (a): First, suppose that $p_T(u,z)$ and $p_T(z,v)$ have a common subpath of length $k > 0$, and assume $\|p_T(u,z)\| \geq \|p_T(z,v)\|$. As stated above, the length of the path $T^*(u)$ is at most $\|p_T(u,z)\|$ and, analogously, $\|T^*(v)\| \leq \|p_T(v,z)\|$. Thus, the length of the path given in (4) is upper bounded by $2\|p_T(u,z)\| + 2\|p_T(z,v)\| - 2k \leq 2(\|p_T(u,z)\| + 1) \leq 2D_T$ because, by the structure of T, $\|p_T(z,v)\| \leq k + 1$. On the other hand, if $p_T(u,z)$ and $p_T(z,v)$ are edge disjoint paths, then clearly $\|p_T(u,z)\| + \|p_T(z,v)\| = \|p_T(u,v)\| \leq D_T$, and we find that the length of the path (4) is now bounded by $2(\|p_T(u,z)\| + \|p_T(v,z)\|) \leq 2D_T$.

Type (b): In this case $\|T^*(u)\|$ and $\|T^*(v)\|$ are at most $\mu - 1$ and $p \geq 2(\mu - 1)$, $\mu \geq 3$. Besides, $\|p_T(u,v)\| \leq D_T$. Hence, the length of (4) is bounded by $2(\mu - 1) + D_T \leq p + D_T$. Thus, if $\delta \geq 4$, then $D_T \leq n - p(\delta - 3) - (\delta - 2)^2 \leq n - \delta^2 + 8$ because $p \geq 4$. If $\delta = 3$, we have $D_T \leq 2n/2 - 2$.

Since, in any case, the diameter of T^* is at most n, these results imply that all the vertices in the path (4) must be different and that $N^*_T(u) \cap N^*_T(v) = \emptyset$. Otherwise we would have $g \leq n + 2$, contradicting $g \geq n + 5$. \qed

In order to get in any component of $G - F$ a tree T satisfying $|N^*(T)| \geq \tau(n)$, we need the order of T to be at least $n + 1$. As seen in Table 1, this is not necessarily the case for trees of type (a) or type (b) when $\delta = 3$ and $n \geq 2\delta + 4$. However, we have the results stated in the following lemmas.

Lemma 2.6. Consider in a component of $G - F$ a tree T of type (a) or type (b), with order less than $n + 1$. It is possible to extend T to a tree Q with order $n + 1$ in
such a way that the diameter of \(Q^* \) satisfies

- **Type (a):** \(D_{Q^*} \leq 2D_T \)
- **Type (b):** \(D_{Q^*} \leq 2(\mu - 1) + D_T \)

Moreover, for any pair \(u, v \) of different vertices of \(Q \), \(N_Q^*(u) \cap N_Q^*(v) = \emptyset \).

Proof. Let \(T \) be either of type (a) or type (b). We have \(\delta = 3 \) and \(n \geq 2\delta + 4 \). We have to keep in mind that, for any vertex \(s \in V(T) \), a tree of type (a) verifies \(||T^*(s)|| \leq ||p_T(s,z)|| \leq D_T - 2 \), and for a tree of type (b), \(||T^*(s)|| \leq \mu - 1 \), where \(\mu \geq 3 \). Assume that the order of \(T \) is \(n - 1 \). We will see that it is possible to add two vertices in order to get a tree \(Q \) of order \(n + 1 \) such that, if \(T \) is a tree of type (a), then the diameter of \(Q^* \) verifies \(D_{Q^*} \leq 2D_T \), or, if \(T \) is a tree of type (b), then \(D_{Q^*} \leq D_T + 2(\mu - 1) \). Let us consider the following cases:

1. (i) Either there exist two vertices \(s, s' \in V(T) \) such that \(||T^*(s)|| = ||T^*(s')|| = 1 \), in which case the searched tree is \(Q = T \oplus T^*(s) \oplus T^*(s') \), or there exists a vertex \(s \) such that \(||T^*(s)|| \geq 2 \) and \(Q = T \oplus T^*(s) \). Obviously, \(Q \) satisfies \(D_{Q^*} \leq D_T \).

2. (i) There only exists one vertex \(s \in V(T) \) such that \(||T^*(s)|| = ||s_s_1|| = 1 \). Then \(\Gamma(s_1) \subset C \), where \(C \) denotes the component that contains tree \(T \). Let \(h \in \Gamma(s_1) \), \(h \neq s \), and consider \(Q = T \oplus ss_1h \). We have \(D_{Q^*} \leq ||Q^*(h)|| + D_T + 2 \). If \(T \) is of type (a), then \(||Q^*(h)|| \leq ||p_T(s,z)|| \), and \(D_{Q^*} \leq 2D_T \) because \(||p_T(s,z)|| \leq D_T - 2 \). On the other hand, if \(T \) is of type (b), then \(D_{Q^*} \leq (\mu - 1) + 2 + D_T \leq 2(\mu - 1) + D_T \) because \(\mu \geq 3 \).

3. (iii) Suppose that \(||T^*(s)|| = 0 \) for any \(s \in V(T) \). It must be \(|N(T) \cap V(C)| \geq 1 \). Consider the following subcases:

 - There exists \(e \in N(T) \cap V(C) \), adjacent to \(s \in V(T) \), such that \(||T^*(e)|| = ||e_1 \cdots e_r|| \geq 1 \), where \(T' = T \oplus se \). In this case let \(Q = T \oplus se_1 \). If \(T \) is of type (a), then \(||Q^*(e)|| \leq 1 + ||Q^*(e_1)|| \leq 1 + ||p_T(s,z)|| \leq D_T - 1 \) because, in the worst case, \(d(e_1, F) = d(s,F) \). Thus, \(D_{Q^*} \leq 2D_T \). If \(T \) is of type (b), then \(||Q^*(e)|| \leq \mu - 1 \), and, hence, \(D_{Q^*} \leq D_T + 2(\mu - 1) \).

 - There exist \(e_1, e_2 \in N(T) \cap V(C) \), adjacent respectively to \(s_1, s_2 \in V(T) \), such that \(||Q^*(e_1)|| = ||Q^*(e_2)|| = 0 \) where \(Q = T \oplus s_1e_1 \oplus s_2e_2 \). Then \(D_{Q^*} \leq D_T + 2 \).

 - If \(\{e\} = N(T) \cap V(C) \), then, by the construction of \(T \), it must be \(\mu = 3 \). As the component \(C \) has more than \(n \) vertices, there must exist a vertex \(e' \in C \) adjacent to \(e \). In this way, \(Q = T \oplus see' \) has order \(n + 1 \). Moreover, \(||Q^*(e')|| \leq 2 \) because \(\mu = 3 \). Thus, \(D_{Q^*} \leq ||p_Q(s', e')|| + ||Q^*(e')|| \leq D_T + 4 \) where \(s' \in V(Q) \). Therefore, if \(T \) is of type (a), then \(D_{Q^*} \leq 2D_T \) because \(D_T \geq 4 \). If \(T \) is of type (b), then \(D_{Q^*} \leq 2(\mu - 1) + D_T \) because \(\mu = 3 \) (Fig. 7).

![Fig. 7. A tree of type (b) with \(\mu = 3 \).](image-url)
In any case $D_T \leq n$ and we conclude, in the same way as in Lemma 2.6, that $N_Q^*(u) \cap N_Q^*(v) = \emptyset$, for any pair u,v of different vertices of Q. □

All the above results allow us to state the following corollary.

Corollary 2.2. In any component of $G - F$ there exist a tree T of order at least $n + 1$ such that T^* have diameter D_{T^*} bounded as follows:

| Type (a) | \(D_{T^*} \leq \begin{cases}
8, & 2\delta + 2 \leq n \leq 2\delta + 3, \\
2 \left\lceil \frac{n - 2\delta + 4}{2} \right\rceil, & n \geq 2\delta + 4;
\end{cases} |
| Type (b) | \(D_{T^*} \leq \begin{cases}
n - \delta^2 + 8, & \delta \geq 4 \text{ and } n \geq 2\delta + 6, \\
2 \left\lceil \frac{n}{2} \right\rceil - 2, & \delta = 3 \text{ and } n \geq 2\delta + 6.
\end{cases} |

Moreover, for any pair u,v of different vertices of T, $N_T^*(u) \cap N_T^*(v) = \emptyset$.

Now, we can finish the proof of Theorem 2.1.

Proof of Theorem 2.1 (continuation). \((n \geq 2\delta + 2)\)

Again, the proof is by contradiction. Let F be a n-nontrivial disconnecting set such that $|F| = \kappa(n) \leq \tau(n) - 1$. Let C_z and C_y be two different components of $G - F$ and let $z \in C_z$, $y \in C_y$ be two vertices at maximum distance from F. It is clear that $D \geq d(z,y) \geq d(z,F) + d(y,F) = \mu(C_z) + \mu(C_y)$. Assume that $\mu = \mu(C_z) \leq \mu(C_y)$.

Consider a tree T with order $n + 1$ and D_{T^*} given by Corollary 2.2. Hence for any pair u,v of different vertices of T, $N_T^*(u) \cap N_T^*(v) = \emptyset$ and therefore, by Lemma 2.3 $|N^*(T)| \geq \tau(n) > |F|$. Thus, it suffices to state in each case that $D_{T^*} < g - 2\mu - 2$, and then $|F| = \kappa(n) \geq \tau(n)$.

(i) If $D \leq 2\ell - 9$, then $\mu \leq \ell - 5$, for $2\delta + 2 \leq n \leq 2\delta + 3$. By Corollary 2.2, we have that $D_{T^*} + 2\mu + 2 \leq 2\ell - 10 + 2 < 2\ell + 1 \leq g$.

(ii) If $D \leq 2\ell - n + 2\delta - 4$, $n \geq 2\delta + 5$, and n is odd, then $\mu \leq \ell + \delta - 2 - (n + 1)/2$.

Therefore, by Corollary 2.2 we have:

- If T is of type (a), then $D_{T^*} \leq n - 2\delta + 3$. So, $2\mu + 2 + D_{T^*}$ would be bounded by $(2\ell + 2\delta - 5) + 2 + (n - 2\delta + 3) = 2\ell < g$.

- If T is of type (b) and $\delta \geq 4$, then $D_{T^*} \leq n - \delta^2 + 8$, and, again, $2\mu + 2 + D_{T^*} \leq (2\ell + 2\delta - 5 + n) + 2 + (n - \delta^2 + 8) \leq 2\ell$. Otherwise, if $\delta = 3$, then $D_{T^*} \leq n - 3$.

Thus, once more, $2\mu + 2 + D_{T^*}$ would be at most $(2\ell - n + 1) + 2 + (n - 3) = 2\ell$.

(iii) If $D \leq 2\ell - n + 2\delta - 5$ and $n \geq 2\delta + 4$, the reasoning is similar to the above case. □

3. Edge-extraconnectivity

As in the vertex case, let us define a graph G as *optimally n-edge-extraconnected* if the minimum order of every n-nontrivial edge-disconnecting set is at least $\tau(n)=$
(n + 1)\delta - 2n$. Let G be a graph with girth $g \geq n + 5$, and let $E \subset A(G)$, be a minimum n-nontrivial edge-disconnecting set such that $|E| = \lambda(n) \leq \tau(n) - 1$. It follows that $G - E = C_1 \cup C_2$, where C_1, C_2 are two different connected components, and the only edges between them are those of E. Now we consider $F = \{ f \in V(C_1) : f f' \in E \}$, and $F' = \{ f' \in V(C_2) : f f' \in E \}$. The notations and concepts are the same as in the preceding section. It is clear that Lemma 2.1 holds in $G - E$, and also holds for the first part of Lemma 2.3, that is, if C_1 contain a tree T of order $n + 1$ such that $\gamma*(u) \cap \gamma*(v) = \emptyset$ for any $u, v \in V(T)$, then $|\gamma*(T)| \geq \tau(n)$. Let $\mu = \max_{i \in \gamma(C_1)} d(v, F)$ and $\mu' = \max_{i \in \gamma(C_2)} d(F', v)$, and suppose that $\mu \leq \mu'$. Then we have the following result which is analogous to Lemmas 2.2-2.4.

Lemma 3.1. We have $\mu \geq 1$. Moreover, if C_1 contain a tree T of order $n + 1$ such that $DT < g - 2\mu - 2$, then $|E| = \gamma(n) \geq \tau(n)$. If $n \geq \delta + 1$ then,

$$\mu \geq 3 \quad \text{if} \quad \left\{ \begin{array}{l} \delta \geq 5, \\ n - \delta + 9 < g \quad \text{for} \quad 3 \leq \delta \leq 4. \end{array} \right.$$

Proof. First suppose that $\mu = 0$. Notice that in this case $V(C_1) = F$. Given $x \in V(C_1)$ let us denote by $\omega_E(x)$ the edges of E with endvertex x, and by $\omega_E(H) = \bigcup_{x \in H} \omega_E(x)$, for any $H \subset V(C_1)$. Consider a path $P = x_0 x_1 x_2 \ldots x_n$ in C_1 of length n. We have that, for any $1 \leq i \leq n - 1$, $|\omega_E(x_i)| > |\omega_E(N_p(x_i) \cap V(C_1))| \geq \delta - 2$, and for $i = 0, n$, $|\omega_E(x_i)| > |\omega_E(N_p(x_i) \cap V(C_1))| \geq \delta - 1$. Since for any $v \in V(C_1)$, $|\omega_E(v)| \geq 1$ and $g \geq n + 5$ we conclude that $|E| > \sum_{i=0}^{n} |\omega_E(x_i)| + |\omega_E(N_p(x_i) \cap V(C_1))| > \sum_{i=0}^{n} |\omega_E(x_i)| + |(N_p(x_i) \cap V(C_1))| > \tau(n)$, which is a contradiction and then $\mu > 1$.

To prove the second part, since $DT < g - 2$ we have that $N_F^*(u) \cap N_F^*(v) = \emptyset$ for any $u, v \in V(T)$. Assume that $DT = |T^*(u) \cup p_T(u, v) \cup T^*(v)|$ for some $u, v \in V(T)$. If $u \in F$ (or $v \in F$) it could be that $\gamma^*(u) \cap F' \neq \emptyset$, but in this case $|T^*(u)| = 0$. Therefore, if $|F'| \leq |E| < \tau(n)$, there exists $h \in N^*_F(v)$ such that $f_h = f \in F'$ and we find a closed walk $f p_T(u, v) \cup T^*(v) h \leftarrow f$ whose length is at most $1 + DT + \mu + 2 < g$, since $DT < g - 2\mu - 2$ and $\mu \geq 1$, a contradiction. On the other hand, if $u, v \notin F$ then as $|F| \leq |E| < \tau(n)$ there exist $h \in N^*_F(u), h' \in N^*_F(v), h \neq h'$, such that $f_h = f_{h'} = f \in F$. Now we find a closed walk $f \leftarrow h T^*(u) \cup p_T(u, v) \cup T^*(v) h' \leftarrow f$ whose length is at most $\mu + 1 + DT + \mu + 1 < g$, a contradiction. Thus, $|E| \geq \tau(n)$.

Now, assume that $\mu \leq 2$ and let $z \in V(C_1)$ be a vertex such that $d(z, F) = \mu$. As $n \geq \delta + 1$ we can consider in C_1 a tree T' of order n that contains z. The diameter of T'^* is at most $DT + 2 \leq n - \delta + 3$. Furthermore, it is possible to extend T', by adding one vertex, to a tree of order $n + 1$ such that $DT - \leq n - \delta + 3$. Thus, if $\delta \geq 5$ then $DT < g - 2\mu - 2$ because $g \geq n + 5$, and $\mu \leq 2$. If $3 \leq \delta \leq 4$ we have $DT < g - 6$ since $n - \delta + 9 < g$. Hence, for any $u, v \in V(T)$, we have $N^*_F(u) \cap N^*_F(v) = \emptyset$. Then, $|E| > \tau(n)$, a contradiction. \[\square\]

The following edge version of Theorem 2.1 derives from the above lemma and all the results of the vertex-case. Notice that this theorem improves the previous
known sufficient conditions given in (3) for G to be optimally edge-extra-connected.

Theorem 3.1. Let G be a graph with girth \(g \geq n + 5 \), with minimum degree \(\delta \geq 3 \), and diameter \(D \). Then,

\[
\lambda(n) \geq \tau(n) \quad \text{if} \quad \begin{cases}
D \leq 2\ell - 4 & (3 \leq n \leq \delta + 2), \\
D \leq 2\ell - 6 & (\delta + 3 \leq n \leq 2\delta + 1), \\
D \leq 2\ell - 8 & (2\delta + 2 \leq n \leq 2\delta + 3), \\
D \leq 2\ell - n + 2\delta - 4 & (n \geq 2\delta + 4), \\
D \leq 2\ell - n + 2\delta - 3 & (n \geq 2\delta + 5, \ n \ odd).
\end{cases}
\]

Acknowledgements

This work has been supported by the Spanish Research Council (Comisión Interministerial de Ciencia y Tecnología, CICYT) under projects TIC 92-1228-E, TIC 94-0592, the EU-HCM program ERBCHRX-CT920049, and the agreement Generalitat and E.T.S.E.C.C.P.B. Also, the authors would like to thank the referees for helpful remarks which led to many improvements in this paper.

References