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Abstract

Toy models have been used to separate important features of quantum computation from the rich back-
ground of the standard Hilbert space model. Category theory, on the other hand, is a general tool to
separate components of mathematical structures, and analyze one layer at a time. It seems natural to
combine the two approaches, and several authors have already pursued this idea. We explore categorical
comprehension construction as a tool for adding features to toy models. We use it to comprehend quantum
propositions and probabilities within the basic model of finite-dimensional Hilbert spaces. We also analyze
complementary quantum observables over the category of sets and relations. This leads into the realm of
test spaces, a well-studied model. We present one of many possible extensions of this model, enabled by
the comprehension construction. Conspicuously, all models obtained in this way carry the same categorical
structure, extending the familiar dagger compact framework with the complementation operations. We call
the obtained structure dagger mix autonomous , because it extends star autonomous categories, popular in
computer science, in a similar way like dagger compact structure extends compact categories. Dagger mix
autonomous categories seem to arise quite naturally in quantum computation, as soon as complementarity
is viewed as a part of the global structure.

Keywords: quantum computation, category, semantics, Hilbert space, relation, span, test space,
comprehension principle, complementary observable

1 Introduction, background, related work

Mathematical models of physical systems are often complicated. Quantum physics

in particular is built over very rich mathematical structures. The efforts to extract

conceptual components from these structures, and to analyze the particular quan-

tum phenomena supported in such fragments, can be traced back all the way to

Birkhoff and von Neumann. Nowadays, such efforts sometimes lead to toy models

[35,28,40,13,2].
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But components are only useful if they can be used to build something. Iso-

lating some quantum phenomena in partial models is only useful if we know how

to combine these partial models together, in order to relate the analyzed phenom-

ena; and how to incrementally build larger pictures of quantum theory from smaller

fragments. Categorical tools seem well suited for this purpose. Besides providing

a categorical view of quantum programming in the standard Hilbert space model

[37,38], categorical semantics of quantum computation [1,10,11,14] can be viewed as

a toolkit for building, combining and reconstructing toy models of quantum com-

putation, and nonstandard models in general. In this spirit, Coecke, Edwards have

reconstructed and extended Spekkens’ toy model in a categorical framework [13,12].

Abramsky used the Chu construction as a categorical tool for building big toy mod-

els, encompassing not only quantum computation, but possibly other exotic kinds

of systems [2,3]. Our exploration here can be viewed as an attempt in the same

direction: we propose another categorical construction that might be useful as a

piece of the toolkit of categorical semantics of quantum computation.

The starting point of the path towards this quantum categorical toolkit was the

remarkably simple observation, due to Abramsky and Coecke [1], that a basic form

of quantum entanglement can be modeled using the duality structure of compact

categories [23]. Extended with an additional operation, the contravariant functor

dagger ‡, corresponding to the operator adjunction, dagger compact categories were

thus proposed as a basic type system for an abstract view of quantum computation.

The abstract characterizations of mixed quantum states as completely positive op-

erators [39], and of quantum and classical observables in terms of special Frobenius

algebras [10,16], as well as some related algebraic structures [11,15,31], were soon

added to the quantum categorical toolkit, allowing simple characterizations of many

quantum operations [14].

In this note, we consider a categorical tool for incremental refinement of toy

models, which thus allows by adding new features, such as quantum propositions,

probabilities, or complementarity. In the Hilbert space model, quantum proposi-

tions are represented as closed subspaces. Quantum logic, initiated by Birkhoff and

von Neumann [7], was an attempt to capture the logical content of quantum theory

by axiomatizing such propositions, and studying them algebraically. The resulting

lattice theory captures some important aspects of quantum theory, but abstracts

away some other important aspects. Nevertheless, the link with quantum prob-

ability theory through Gleason’s theorem [21] is undoubtedly of great conceptual

importance.

So how can we add quantum propositions to a toy model, viewed as a dagger

compact category? The categorical construction that can be used generalizes the

familiar set theoretic schema of comprehension. It is briefly described in Sec. 2. In

the rest of the paper, we apply this categorical comprehension construction to simple

examples, and build categories of quantum systems where the quantum operations

are required to preserve the comprehended structure: e.g., quantum propositions,

observables, etc. The operations that come with these added structures, echoing

Birkhoff-von Neumann’s logics, are reflected in the structure of the obtained cat-
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egories. In Sec. 3, we finally come around to the original task of adding quantum

propositions, and adjoin quantum propositions as explicit structure to finitely di-

mensional Hilbert spaces. In Sec. 4, we describe the resulting categorical structure

and define dagger mix autonomous categories. In Sec. 5, we discuss the ways to

adjoin complementary observables to two basic models, again using the comprehen-

sion construction. In Sec. 6 we describe, very briefly, two slightly richer toy models

arising from the same construction, just to give an idea of the possibilities that it

opens. Sec. 7 lists some open questions that arise from it.

2 Categorical comprehension construction

The set theoretic comprehension principle asserts that predicates over a set S are

in one-to-one correspondence with the subsets of S:

Φ : S �� 2

{x∈S | Φ(x)} ↪→ S

The topological generalization of this correspondence establishes the equivalence be-

tween étalé spaces over a space S and sheaves of sets under S [27]. The categorical

generalizations go back to Grothendieck’s construction of the discrete fibration cor-

responding to a sheaf [ibidem]; but their logical interpretation, and the connection

with the idea of comprehension is due to Lawvere [25,30,22].

In the most general form, originally outlined in [33], the categorical comprehen-

sion schema establishes the correspondence of lax functors from a category C to the

bicategory Span and arbitrary (small-fibered) functors to C

P : C �� Span∫
C
P �� C

To explain this correspondence, we first describe the bicategory Span and the notion

of lax functors to it, and then specify the comprehension construction
∫
C P.

Definition 2.1 The bicategory Span consists of

• sets A,B, . . . as objects (0-sets);

• a morphism (1-cell) F : A �� B is a span of functions A �� F �� B;

• a transformation (2-cell) χ : F �� G : A �� B is a function F
χ �� G such that

both triangles in the following diagram commute.

F

���������

���������

χ

��

A B

G

���������

���������

(1)

D. Pavlovic / Electronic Notes in Theoretical Computer Science 270 (2) (2011) 121–139 123



While the composition of transformations is obvious, the composition of spans is

induced by pullbacks:

(F ;H)

		��������


�������

F

���������

����������� H

�����������

���������

A B C

(2)

Remark. If a span A
πA�� F

πB �� B is viewed as a set matrix F ∈ SetA×B, with

the entries Fab = 〈πA, πB〉−1(a, b), then the span composition becomes the usual

matrix composition.

Definition 2.2 A (comprehension) specification is a lax functor P : C �� Span,
consisting of the following assignments:

• for each object A ∈ |C| a set PA,

• for each morphism A
f �� B a span PA �� {f} �� PB, and moreover

• for every composable pair A
f �� B

g �� C a transformation μfg

{f ; g}



 ��

{f} ; {g}
����������

����������

μfg

��

{f}
									

��









 {g}
������������



�������

PA PB PC

(3)

• for every object A ∈ |C| a transformation ηA

{idA}
		










�������

PA PA

idPA

���������
��








ηA

�� (4)
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such that the following diagrams commute

{f}; {g}; {h} μfg ;{h} ��

{f};μgh

��

{f ; g}; {h}

μ

��
{f}; {g;h} μ

�� {f ; g;h}

{f}

id

����������������������������������� {f}; idPB f ;ηB �� {f}; {idB}

μ

��

idPA; {f}

ηA;{f}

��
{idA}; {f} μ

�� {f}

Remark. When spans are viewed as matrices of sets, then the above data become

the families:∑
β∈PB

α{f}β × β{g}γ
μαγ
fg �� α{f ; g}γ (5)

1
ηαA �� α{idA}α (6)

indexed by α ∈ PA and γ ∈ PC, and where e.g. α{f}β = 〈πPA, πPB〉−1(α, β)

denotes the entry of the set matrix {f} ∈ SetPA×PB.

Definition 2.3 The comprehension of a specification P : C �� Span is the functor∫
C P �� C where the comprehension category

∫
C P is defined as follows:∣∣∣∣

∫
C
P

∣∣∣∣= ∑
A∈|C|

PA

∫
R
P
(
〈A,α〉, 〈B, β〉

)
=

∑
f∈C(A,B)

α{f}β

An arrow in
∫
C P is thus a pair 〈f, ϕ〉 : 〈A,α〉 �� 〈B, β〉 where f ∈ C(A,B) and

ϕ ∈ α{f}β. The identities and the composition are:

id〈A,α〉 = 〈idA, ηαA〉
〈f, ϕ〉; 〈g, ψ〉=

〈
(f ; g), μαγ

fg (ϕ, ψ)
〉

The comprehension functor
∫
C P �� C is the obvious projection.
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Definition 2.4 A functor F : E �� C is said to be small if for every object A ∈ |C|
the class of objects F−1A ⊆ |E| is a set.

The correspondence. Any small functor E : E �� C induces a comprehension

specification PE : C �� Span, defined

PA=E−1A

α{f}β = {ϕ ∈ E(α, β) | Eϕ = f}
with ηαA = idα and μfg induced by the composition in E . The obvious equivalence

E �
∫
C PE preserves the projections to C. The functor E : E �� C is faithful if

and only if every span PEA �� {f} �� PEB is a binary relation, i.e. {f} ⊆
PEA× PEB. Putting this all together we get the following.

Theorem 2.5 For every category C there are one-to-one correspondences of

(i) small functors to C and lax functors C �� Span,

(ii) small faithful functors to C and lax functors C �� Rel.

Remark. Note that composing relations as spans does not directly give relations:

the assumption that the spans F � � �� A × B and G � � �� B × C in (2) are monic

does not necessarily imply that the span (F ;G) �� A×C is monic. However, the

image factorization (F ;G) �� �� [F ;G] � � �� A × C yields the relation [F ;G], which

is the usual relational composition of the relations F and G. If relations are viewed

as matrices of 0s and 1s, this factorization replaces with 1 each nonempty set that

may occur in the matrix (F ;G).

3 Comprehending quantum propositions

To begin, let us comprehend quantum propositions within the finite-dimensional

part of the standard model. The base category C is thus the category FHilb of

finite-dimensional complex Hilbert spaces, and the specification P : FHilb �� Rel
simply maps each space H to the set PH of quantum propositions, viz subspaces

χ ⊆ H. Each linear map f ∈ FHilb(H,K) induces a binary relation {f} ⊆ PH×PK
such that

χ{f}κ ⇐⇒ fχ ⊆ κ

holds for χ ∈ PH and κ ∈ PK. In the posetal bicategory Rel of relations, transfor-
mations (3) and (4) boil down to the requirements

χ{f}κ ∧ κ{g}ϑ=⇒χ{f ; g}ϑ
χ = χ′ =⇒χ{id}χ′

which are obviously satisfied. The total category
∫
FHilb P of P : FHilb �� Rel

consists of the pairs 〈χ ⊆ H〉 as objects, and a morphism 〈χ ⊆ H〉 �� 〈κ ⊆ K〉 is
simply a linear operator f : H �� K such that fχ ⊆ κ.

The upshot of this construction is that the dagger compact structure of the

base category FHilb and the orthomodular structure of each lattice PH are now
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integrated in the structure of the comprehension category
∫
FHilb P. We spell out

this structure in the next section.

4 Dagger mix autonomous categories

Definition 4.1 A star autonomous category [6] is

• a symmetric monoidal category (A,⊗,�) with

• a contravariant duality (−)∗ : Aop �� A, such that

• A(A⊗X, Y ∗) ∼= A (X, (A⊗ Y )∗), naturally in A,X, Y .

The induced correspondence A(X∗, X∗) ∼= A(X⊗X∗,�∗) ∼= A (X,X∗∗) is required
to map X∗ id �� X∗ to the unit X

η �� X∗∗ of the duality.

The dual monoidal structure (A,�,⊥) is defined by X�Y = (X∗ ⊗ Y ∗)∗, ⊥ =

�∗. It makes Aop into a star autonomous category. It is often convenient to include

both monoidal structures in the star autonomous signature.

A star autonomous category is mix autonomous [18,8] when there is a map

⊥ �� �. Since there is a natural transformation X ⊗ (Y �Z) w �� (X ⊗ Y )�Z [9],

this induces X ⊗ Z υ �� X�Z.

An autonomous category is compact when (X ⊗ Y )∗ ∼= X∗ ⊗ Y ∗ holds naturally

in X,Y , and �∗ = �.

Definition 4.2 A dagger mix autonomous category is a mix autonomous category

also equipped with a lower star functor, i.e.

• a covariant strictly monoidal duality (−)∗ : A �� A, such that

· (X∗)∗ = (X∗)∗ for every object 3 X, and �∗∗ = �,

· (f∗)∗ = (f∗)∗ for every arrow f ,

· so that we can write X‡ = X∗∗ and f ‡ = f∗∗ ;
• a coherent extranatural transformation X∗ u �� X∗, such that the diagram

X ⊗X∗

ε

��

X ⊗X∗
X⊗u�� u′⊗X �� X‡ ⊗X∗ ∼ �� (X∗

�X)‡

η‡

��
⊥ �� � �‡

commutes, where X u′ �� X‡ is the transpose of u.

In a dagger compact category, u is required to be an isomorphism. For simplicity,

X‡ = X is usually assumed.

3 Equalities between objects are considered ”evil” in categories. We could avoid this by requiring just
coherent natural isomorphisms. The next equation between the arrows would then have to be written
modulo these isomorphisms.

D. Pavlovic / Electronic Notes in Theoretical Computer Science 270 (2) (2011) 121–139 127



Conventions. Coherence of the above structures means that their natural iso-

morphisms are unique for the given domain and codomain functors. This means

that the structures can be strictified: the natural isomorphisms can be reduced to

identities by transferring the functors along them. Assuming that this was done,

X∗∗ = X, X∗∗ = X will hold on the nose.

4.1 Dagger compact structure of FHilb

We first review the structure of the category of finite-dimensional complex Hilbert

spaces and linear maps, since the models in the next sections depend on it, and the

needed reconstruction differs from [1].

• The monoidal structure is given by the usual tensor ⊗, with the unit I = C.

• H∗ = FHilb(H,C), i.e. the upper star is the dual space functor.

• H∗ is the complex conjugate of H: it has the same underlying set, but for z ∈ C

and h ∈ H, z · h in H∗ is z · h in H. Any antilinear map from H to K can be

viewed as a linear map H∗ �� K in FHilb.

• H‡ = FHilb(H∗,C) = FHilb(H,C)∗. The inner product, viewed as a linear map

〈−|−〉 : H∗ ⊗ H �� C, induces a canonical maps H �� H‡ and H∗ �� H∗.
By the Riesz representation theorem, they are isomorphisms. For f : H �� K
and b ∈ K the image f ‡b ∈ H corresponds along this isomorphism to 〈f ‡b|−〉 ∈
FHilb(H,C)∗, defined as the composite H f �� K 〈b|−〉�� C (−) �� C, i.e. 〈f ‡b|−〉 =

〈b|f−〉.

4.2 Dagger mix autonomous structure of
∫
FHilb P

On the objects, the star and dagger functors are

〈χ ⊆ H〉∗ =
〈
χ⊥ ⊆ H∗

〉
〈χ ⊆ H〉∗ =

〈
χ⊥
∗ ⊆ H∗

〉
〈χ ⊆ H〉‡ =

〈
χ ⊆ H‡

〉
where χ⊥ = {ψ ∈ H∗ | ψχ = 0} is the annihilator, while χ⊥∗ is its inverse image along

the Riesz isomorphism H∗ �� H∗, obtained by transposing the inner product. The

arrow parts of the above functors lift from FHilb, because

fχ ⊆ κ=⇒ f∗χ∗ ⊆ κ∗ ∧ f ‡κ⊥∗ ⊆ χ⊥
∗

The tensors are

〈χ ⊆ H〉 ⊗ 〈κ ⊆ K〉= 〈χ⊗ κ ⊆ H⊗K〉
〈χ ⊆ H〉 � 〈κ ⊆ K〉=

〈
(χ⊥ ⊗ κ⊥)⊥ ⊆ H⊗K

〉
Note that the unit of ⊗ is � = 〈C ⊆ C〉, whereas the unit of � is ⊥ = 〈0 ⊆ C〉. The
uniformity is realized by the Riesz’ isomorphism.
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5 Comprehending complementarity

5.1 Testables

A quantum observable is usually represented as a Hermitian operator over a Hilbert

space; the actual outcomes of an experiment are the eigenvectors of the Hermitian,

which always form a basis. So a simplified view of an observable is that it is

a basis of a Hilbert space. The distinctive feature of a quantum observable arises,

however, only when we look at several of them at once: it arises from the uncertainty

principle, which says that two observables may be incompatible, or complementary,

in the sense that measuring one disturbs the other. The problem of modeling

complementarity is that it is not a one-to-one relationship: many observables may

be complementary to many other observables. In order to capture complementarity,

we model complementary testables, construed as families of observables that can be

tested together.

Definition 5.1 Let H be a Hilbert space and Ĥ a set of rays in it, i.e. its 1-

dimensional subspaces. The colinearity ∠(a, b) of rays a, b ∈ Ĥ is then

∠(a, b) = |〈x|y〉|
|x||y|

for arbitrary nonzero vectors x ∈ a and y ∈ b. The linearity of the inner product

implies that this definition does not depend on the choice of x and y. Two rays are

orthogonal if their colinearity is 0. They are colinear if it is 1.

Definition 5.2 For c ∈ [0, 1] and a set α ⊆ Ĥ of rays in a Hilbert space H, the

c-complement is

αc = {x ∈ Ĥ | ∀a ∈ α. ∠(x, a) = c}
Definition 5.3 A testable over a finite-dimensional Hilbert space H is a pair 〈α, c〉,
where α ⊆ Ĥ, and c ∈ [0, 1], such that

• both α and αc span H, and

• αcc = α

Examples. The pair 〈Ĥ, 0〉 is a testable if and only if H = 0 is the point, because

that is the only case when the 0-complement Ĥ0 = ∅ spans H. The pair 〈Ĥ, 1〉 is

a testable if and only if H = C is the 1-dimensional space 4 , because that is the

only case when the 1-complement Ĥ1 is nonempty, and spans H. Both 〈0, 0〉 and

〈C, 1〉 are self-complementary. For a nontrivial example, let H be an n-dimensional

Hilbert space and let c = 1√
n
. Then any set β of n orthogonal rays H gives a testable

〈β, c〉, because

b ∈ β ⇐⇒ ∀x ∈ βc. ∠(b, x) = 1√
n

⇐⇒ ∀x ∈ Ĥ.

(
∀y ∈ β. ∠(x, y) = 1√

n

)
⇒ ∠(x, b) = 1√

n

4 The 1-dimensional space is denoted by C because the standard model is usually deployed over complex
Hilbert spaces. For our purposes, though, the ground field is largely irrelevant.
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So if a testable β is induced by a basis, then the c-complementary testable βc is the

union the sets of rays induced by the bases complementary in the sense of [24].

Remark. It is easy to see that 〈αc, c〉 is testable whenever 〈α, c〉 is.

Why testables? Since the rays in a testable may not be mutually orthogonal, test-

ing may not allow distinguishing the underlying state [29, Sec. 2.2.4]. Intuitively,

a testable can be tested, but the outcome may not yield a distinct observation.

The purpose of testables is to capture complementarity; and a complement of an

observable may be a mixture of multiple observables. The requirement of distin-

guishability should be imposed later in the development, through the structure of

measurements [10,31].

It is often difficult to provide a clear picture of two ideas in a single structural

sweep. Although the complementarity 5 of observables and the distinguishability

of states are both usually considered in the context of bases, toy models allow

us to conceptualize them separately. While distinguishability requires orthogonal

families, complementarity does not: a set Bc of all unit vectors complementary to a

given basis B is usually not a basis, because some of its elements are not mutually

orthogonal. In most models, Bc contain some bases, that can be extracted. But

B is in general not completely determined by any of these complementary bases,

since each of them usually admits multiple complementary bases. Yet the basis B
turns out to be completely determined the complete set Bc. That is why it seems

more appropriate to model complementarity without the orthogonality requirement,

usually imposed on observables. Hence this attempt with ”testables”.

Testables in a category. Let the specification T : FHilb �� Rel now map each

space H to the set TH of testables over H. Each linear map f ∈ FHilb(H,K) induces

a binary relation {f} ⊆ TH× TK such that

〈α, c〉{f}〈β, d〉 ⇐⇒ fα ⊆ β ∧ f ‡βd ⊆ αc

The comprehension category
∫
FHilb T has the triples 〈H, α, c〉 as the objects, where

〈α, c〉 is a testable over H. A morphism 〈H, α, c〉 �� 〈K, β, d〉 is a linear operator

f : H �� K which maps α-tests to the β-tests, while its adjoint f ‡ maps the

complementary βd-tests to αc-tests. When the rays in α and β are induced by some

bases, then this implies that the operator f diagonalizes over these bases. The

dagger mix autonomous structure is given by

〈H, α, c〉∗ = 〈H, αc, c〉
〈H, α, c〉∗ = 〈H‡, αc, c〉
〈H, α, c〉‡ = 〈H‡, α, c〉

〈H, α, c〉 ⊗ 〈K, β, d〉= 〈H ⊗ K, α× β, c · d〉
〈H, α, c〉 � 〈K, β, d〉=

〈
H⊗K, (αc × βd)c·d, c · d

〉

5 The terms ”incompatibility”, and ”unbiasedness” are often used in the same context, sometimes synony-
mously with complementarity, sometimes in different but related meanings. We take a bird’s eye view of
complementarity here, and these distinctions do not come about.
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The unit for both ⊗ and � is I = 〈C, {C}, 1〉, where C is the tensor unit in FHilb.
The mix map 〈H, α, c〉 ⊗ 〈K, β, d〉 � � υ �� 〈H, α, c〉 � 〈K, β, d〉 is thus realized by the

identity on H⊗K, since α× β ⊆ (αc × βd)c·d. The uniformity is given by the Riesz

map again.

Entangled vectors live in � but not in ⊗. Note that all vectors

I �� 〈H, α, c〉 ⊗ 〈K, β, d〉 are separated, i.e. in the form a ⊗ b, for some a ∈ α

and b ∈ β. In contrast, the space 〈H, α, c〉 � 〈K, β, d〉 contains many entangled

vectors. In fact, entangled vectors are just those that lie in the complement of

the inclusion υ of ⊗ into �. The same phenomenon — that entanglement can be

characterized by the difference between two tensors in a dagger mix autonomous

category — was present in general probabilistic theories of Barnum, Barrett, Leifer

and Wilce [4,5]. Interestingly, this formalism is not based on Hilbert spaces, but on

Foulis and Randall’s test spaces. This is what we explore next.

5.2 Test spaces and testables over relations

Sets and binary relations form a dagger monoidal category Rel, and thus provide a

rudimentary model of quantum computation, albeit with mere two scalars. Never-

theless, it turns out that some of the relevant structure in Rel is rich enough to model

some quantum phenomena in a surprisingly informative way. This category is the

playground of toy models [40,13]. Even Foulis’ and Randall’s test spaces [35,19,36],

probably the most extensively studied nonstandard quantum model 6 [41], can be

reconstructed and analyzed in this framework, using a comprehension over Rel.

First of all, transferring the algebraic characterization of bases as classical struc-

tures from Hilbert spaces [16] to relations [32] yields in Rel a distinction between

quantum channels and classical interfaces, which can be used to implement quan-

tum algorithms [31] 7 . The idea is that the classicality of an abstract basis vector

is characterized by its capability to be copied and deleted. In Rel, such a ”basis”

over a set X corresponds to a partition X =
∐

a∈α a, where
∐

denotes the disjoint

union, and each a comes with a structure of an abelian group. The abstract basis

vectors are the components of the partition, i.e. the disjoint subsets a ⊆ X viewed

as the arrows 8 1 |a �� X in Rel. See [32] for the details.

Just like the notion of basis, the notion of complementarity can be transferred

from FHilb to Rel. An algebraic characterization of complementary bases in FHilb
was proposed in [11]. An equivalent version was transferred to Rel in [31], and com-

plementary bases were used for a relational presentation of a quantum algorithm.

A careful exploration of complementary bases in Rel was provided [17]. Here we

try to comprehend complementarity without the restriction to bases, as explained

in the preceding section. So we drop the orthogonality requirement, which in Rel

6 nonstandard in the sense: not the Hilbert space model
7 It should be noted that the exponential speedup of boolean functions, provided by quantum computation,
arises from implementing them as unitaries, rather than from some inherent power of relations. But the step
of implementing a boolean function as a unitary is just as hard when it is to be executed on a ”real” quantum
computer, as when it is to be computed as a relation, i.e. executed on a nondeterministic computer.
8 In the same way, the vectors in a Hilbert space H are viewed as arrows, i.e. linear operators I �� H.
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corresponds to the disjointness of subsets.

Definition 5.4 A test space over a set X is a family of subsets α ⊆℘X which is

• covered, i.e. X = ∪α, and
• irredundant, i.e. ∀ab ∈ α. a ⊆ b ⇒ a = b

The elements of α are called tests.

Remark. If the tests are disjoint, i.e. ∀aa′ ∈ α. a∩ a′ = ∅, then α is a basis in Rel,
in the sense of [32]. Tests spaces can thus generalize bases in Rel in a similar way

in which testables generalize observables in FHilb.

Definition 5.5 The complement of a test space α over X is the set of maximal

subsets which intersect each test at a single element

α⊥ =
{
u ∈℘X | ∀a ∈ α. |u ∩ a| = 1 ∧
∀u′ ⊆ u. (∀a ∈ α. |u′ ∩ a| = 1) ⇒ u′ = u

}
Definition 5.6 A family of subsets α ⊆℘X is a testable if

• both α and α⊥ are test spaces, and

• α⊥⊥ = α.

Examples. The simplest testables over X are provided by the crudest cover {X},
and by the finest cover {{x}}x∈X , which happen to be each other’s complements.

Furthermore, an arbitrary partition β ⊆ ℘X, i.e. a basis in Rel, is also testable.

Its complement β⊥ is clearly a test space. It consists of all p ∈ ℘X which share

exactly one element with each b ∈ β. Thus all p ∈ β⊥ have the same number of

elements, |p| = |β|. This means that β⊥ contains a partition only if |β| divides
|X|. The converse is easily seen to hold. The conclusion is thus that a basis β of

X in Rel has a complementary basis if and only if all b ∈ β have the same number

of elements, and |X| = |b| · |β|. Then every complementary basis γ has |γ| = |b|
elements c ∈ γ, and each of them has |c| = |β| elements. Complementary bases

thus form a ”rectangular” structure on X. This was mentioned and used in [31,

Sec. 5.2], and explored in detail in [17]. But even a basis β of X in Rel that does

not admit a complementary basis, viz a complementary observable, always admits

a complementary testable. In terms of the induced equivalence relation

x
β∼ y ⇐⇒ ∃b ∈ β. x ∈ b ∧ y ∈ b

the requirement that each p ∈ β⊥ must contain exactly one element from each b ∈ β

means that p must never contain two
β∼-related elements, and is maximal such, or

formally:

β⊥ =
{
p ∈℘X | ∀xy ∈ p. x

β∼ y ⇒ x = y ∧

∀p′ � p ∃xy ∈ p′. x β∼ y ∧ x �= y
}

It is easy to see that β⊥⊥ = β. In fact, the argument goes through even if ∼ is not

transitive, i.e. if β is not a partition, but the set of maximal cliques for a reflexive

symmetric operation. A reader familiar with Girard’s coherence spaces [20] has by
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now probably recognized the structure that emerges. Indeed, those testables α that

can be presented as sets of cliques of symmetric reflexive relations boil down to

coherence spaces 9 . The dagger mix autonomous category of coherence spaces was

in fact reconstructed through a comprehension in [33], and it is now fully embedded

in the comprehension category of testables over Rel.

Testables over relations. Let the specification T : Rel �� Rel map each set X

to the set T X of testables over X. Each relation r ∈ Rel(X,Y ) induces a relation

α{r}β ⇐⇒ ℘℘r(α) ⊆ β ∧ ℘℘rop(β⊥) ⊆ α⊥

where ℘r(a) = {y ∈ Y | ∃x ∈ a. xry} and ℘℘r(α) = {b ∈℘Y | ∃a ∈ α. ℘r(a) =

b} define ℘℘X
℘℘r �� ℘℘Y . The comprehension category

∫
Rel T has the pairs

〈X,α〉 as objects, where α is a testable over X. A morphism 〈X,α〉 �� 〈Y, β〉
is a relation r which maps every α-test to a β-test, whereas rop maps every β⊥-test
to an α⊥-test.

Since Rel is a compact category with a degenerate dagger structure, the com-

prehension category
∫
Rel T is star autonomous category, with a degenerate dagger:

〈X,α〉∗ = 〈X,α〉
〈X,α〉∗ = 〈X,α〉‡ = 〈X,α⊥〉

〈X,α〉 ⊗ 〈Y, β〉= 〈X × Y, α⊗ β〉
〈X,α〉 � 〈Y, β〉=

〈
X × Y, (α⊥ ⊗ β⊥)⊥

〉
where α ⊗ β = {a × b | a ∈ α ∧ b ∈ β}. The unit for both tensors is 〈1, {1}〉, the
only testable over 1.

Remarks. The resulting category of testables extracts the star autonomous part

of the larger category of test spaces and test-preserving relations. This subcategory

captures a relational version of complementarity and entanglement, interpreted by

analogy with the testables in the preceding section. In contrast with the standard

model, we find, e.g., many observables that have complementary testables, but no

complementary observables. Is this just an unsound feature of a toy model? Or

is the rich, complicated combinatorics of complementary observables in the Hilbert

space model just a peculiarity of that model, inessential for quantum computation

itself?

It is fair to also mention that test spaces are interpreted in many different ways

in the literature. We viewed them as a relational version of rays 10 ; many authors

view them as an abstraction of bases. This interpretation can also be related using

comprehension; but this must be left for another occasion.

9 There, the story is usually told in terms of irreflexive relations. But this is just a matter of convention.
10There is no difference between ”rays” and ”vectors” in Rel: both are simply subsets.

D. Pavlovic / Electronic Notes in Theoretical Computer Science 270 (2) (2011) 121–139 133



6 Richer comprehensions

6.1 Quantum probabilities

The comprehension of quantum propositions in Sec. 3 can be generalized to quantum

probabilities. While the specification P : FHilb �� Rel mapped each space H to

the lattice PH of its closed subspaces, the specification P : FHilb �� Rel will map

each H to the set of quantum probability measures 11

PH= {μ : PH �� [0, 1] | μ(0) = 0 ∧ μ(H) = H ∧
〈χ|κ〉 = 0 ⇒ μ(χ⊕ κ) = μ(χ) + μ(κ)}

where 〈χ|κ〉 = 0 abbreviates ∀x ∈ χ∀y ∈ κ.〈x|y〉 = 0. The arrow part assigns to

every linear map f ∈ FHilb(H,K) the relation {f} ⊆ PH × PK which relates the

probability measures μ over H and ν over K just when it preserves them, i.e.

μ{f}ν ⇐⇒ μ = ν ◦ f
Since a measure on H induces a measure on H∗, and the measures on H and K
induce measures on H ⊗ K, the dagger mix autonomous structure of

∫
FHilb P is

similar to that of
∫
FHilb P.

By Gleason’s theorem [21,34, Sec. 4.2], every quantum probability measure (ex-

cept in dimensions 1 and 2) comes from a density operator, i.e. corresponds to

a quantum mixed state. Decomposing density operators as convex combinations

of rays,
∫
FHilb P can be equivalently presented as the category of mixed states and

linear operators that preserve the mixtures. This brings us in the realm of the

questions raised in the final sections of [14]. It is interesting that the annihilators

induce a nontrivial duality on mixed quantum states, displayed in the dagger mix

autonomous structure of the comprehension category
∫
FHilb P.

6.2 Multitestables

A test multispace is a test space over a multiset X. The idea is that an outcome

x ∈ X may occur several times.

Definition 6.1 A test multispace A over X is a pair A = 〈α, ω〉 where
• α ⊆℘X is a test space, and

• ω : X �� N is a function, assigning to each element of X its multiplicity.

We call a test multispace A = 〈α, ω〉 a multitestable whenever α is a testable.

Notation. We define the complement of a test multispace A = 〈α, ω〉 by comple-

menting the underlying test space

A⊥ =
〈
α⊥, ω

〉
Conveniently, a test multispace A can also be presented in the ”étale form”

11This is a simplified version of Mackey’s treatment in [26, Sec. 2.2].
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|A| A �� ℘X, where

|A| =
∐
a∈α

∐
x∈a

ω(x) = {〈a, x, i〉 | a ∈ α ∧ x ∈ a ∧ i < ω(x)}

and A denotes the projection 〈a, x, i〉 � �� a, by abuse of notation. Note the differ-

ence between |A| and |A⊥|.
Category of multitestables. Let the specification T : Rel �� Span map each set

X to the set TX of multitestables over it, and each relation r ∈ Rel(X,Y ) to the

span TX �� {r} �� TY , which we view as a matrix of sets, with the entries

A{r}B =
{
〈R,R⊥〉 ∈ Rel (|A|, |B|)× Rel

(
|B⊥|, |A⊥|

) ∣∣
A;℘r = R;B ∧ B⊥;℘rop = R⊥;A⊥}

|A| R ��

A

��

|B|

B

��

|A⊥|

A⊥

��

|B⊥|R⊥��

B⊥

��
℘X ℘r

�� ℘Y ℘X ℘Y
℘rop

��

The lax structure (5-6) for X |r �� Y , Y |s �� Z and A ∈ TX, B ∈ TY , C ∈ TZ

is given by

μABC
rs : A{r}B ×B{s}C �� A{r; s}C

〈R,R⊥〉 , 〈S, S⊥〉 � ��
〈
R;S , S⊥;R⊥〉

whereas ηA ∈ A{idX}A is
〈
id|A|, id|A⊥|

〉
.

The objects of the comprehension category
∫
Rel T are the triples 〈X,α, ω〉,

〈Y, β,�〉, where 〈α, ω〉 is a test multispace over X, 〈β,�〉 over Y , etc. A morphism

〈X,α, ω〉 �� 〈Y, β,�〉 is a triple
〈
r,R,R⊥〉, related as in the above specification.

The star autonomous structure, still with the degenerate daggers, is on the objects

〈X,α, ω〉∗ = 〈X,α⊥, ω〉
〈X,α, ω〉 ⊗ 〈Y, β,�〉= 〈X × Y, α⊗ β, ω ·�〉
〈X,α, ω〉 � 〈Y, β,�〉=

〈
X × Y, (α⊥ ⊗ β⊥)⊥, ω ·�

〉
The unit for both tensors is 〈1, {1}, 1〉. The duality on the morphisms is

〈r,R,R⊥〉∗ = 〈rop, R⊥, R〉 and the monoidal structure is left as an exercise. Non-

degenerate dagger structure could be obtained by considering signed multisets, i.e.

allowing negative multiplicities, with ω : X �� Z.

7 Future work

We presented several categories built by comprehension over FHilb and Rel, which
played the role of the basic models of quantum computation, suitable for refine-

ments and extensions. By refining their dagger compact structure, we arrived in
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all cases to dagger mix autonomous categories. Certain star autonomous cate-

gories have received a lot of attention in research of resource sensitive logics and

type systems. Interesting examples of this structure were previously encountered in

modeling quantum computation, e.g. in Selinger’s explorations of higher order [38].

Abramsky’s big toy models [2,3] have star autonomous structure as a prominent

feature.

There is a sense in which dagger autonomous categories give a semantically richer

structure than dagger compact categories. They capture not only the abstract com-

position and duality operations, used for building quantum systems and operations,

which correspond to the global operations of the dagger compact structure, but also

the complementarity relations, which are modeled in quantum logic, and have been

presented in dagger compact categories as local structure. Dagger autonomy arises

as soon as complementarity is viewed as a part of the global structure of quantum

computation.

However, a richer or finer picture does not always provide a better insight. One

of the most salient features of the dagger compact structure is that the calculations

with it are supported by a very convenient string diagram language. Is there a

convenient extension of that language catering for the dagger autonomous structure?

Its utility may depend on such a language.

But at least some of the fundamental concepts of quantum computation do

lift from their simple and robust presentations in dagger compact categories into

simple and robust presentations in dagger autonomous categories. For instance, the

centerpiece of categorical quantum mechanics [1] is the interpretation of entangled

pairs in terms of the compact dualities

I
η �� H∗ ⊗H H ⊗H∗ ε �� I

which satisfy the adjunction equations

(ε⊗H)(H ⊗ η) = idH (H∗ ⊗ ε)(η ⊗H∗) = idH∗

In star autonomous categories, such dualities lifts to the pairs

� η �� H∗
�H H ⊗H∗ ε �� ⊥

available for every object H. The adjunction equations now become

H

H⊗η

��
id

��







































 H∗

id

��








































η⊗H∗

�� (H∗
�H)⊗H∗

w

����������������

H ⊗ (H∗
�H)

w
��












 H∗

�(H ⊗H∗)

H∗�ε

��
(H ⊗H∗)�H

ε�H
�� H H∗

where � ⊗ X = X = X ⊗ �, and ⊥�X = X = X�⊥ is assumed for simplicity,
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and the distributivities w are as in [9,8]. Generalizing the dagger compact view

of teleportation [1,10,14], one could thus interpret � η �� H∗
�H as an entangled

pair, and H ⊗ H∗ ε �� ⊥ as a basic measurement, and get a rudimentary form of

teleportation. Remarkably, as pointed out at the end of Sec. 5.1, in many models

entanglement arises exactly from the difference between the two tensors: the entan-

gled pairs live in H∗
�H, the separated pairs in H∗ ⊗H. This phenomenon seems

to deserve further thought and exploration.

Proceeding from the above notion of autonomous duality, extending the methods

of [10], one can show that an associative algebra structure H ⊗ H ∇ �� H in an

autonomous category makes H self-dual if it satisfies the autonomous version of the

Frobenius condition:

H ⊗H

Δ⊗H

��
∇

������������������
H⊗Δ �� H ⊗ (H�H)

w

���������������

(H�H)⊗H

w
��������������� H

Δ

������������������ (H ⊗H)�H

∇�H

��
H�(H ⊗H)

H�∇
�� H�H

where Δ = ∇‡. What do classical structures, corresponding to bases and classical

observables [16,32] lift to in the dagger autonomous framework, and how do their

interact with the notions of complement? What is the meaning of the complemen-

tarity of mixed states, touched upon in Sec. 6.1? The comprehension construction

provides a handy tool for assembling toy models to explore such questions.
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