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Abstract

It is shown that an arbitrary m × n positive matrix can be written as a sum of at most
min {m, n} totally positive matrices, and that this is in general the best possible value for
the number of summands. Sufficient conditions are given under which fewer than min {m, n}
totally positive summands are needed.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Matrix factorizations are an important part of linear algebra. There are also well-
known results regarding decomposition of a matrix into a sum of matrices from a
specified class. For example, any symmetric matrix is the difference of two positive
definite matrices, and any positive matrix is the sum of two P -matrices (i.e., matrices
with all principal minors positive).

We show that an arbitrary m × n positive matrix can be written as a sum of at
most min{m, n} totally positive matrices, and an example is given to show that this
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is the best possible value for the number of summands. We further give sufficient
conditions under which fewer (than min{m, n}) totally positive summands are
needed.

2. Totally nonnegative and totally positive matrices

Properties and applications of the following classes of matrices can be found, for
example, in [1,2,4].

Definition 1. An m × n matrix A is totally nonnegative (totally positive) if all of its
minors are �0 (>0).

We denote these two matrix classes by TN and TP, respectively.
Clearly any entrywise nonnegative matrix (written A � 0) with all of its nonzero

entries in one row (or one column) is a TN matrix. Thus, by partitioning any m × n

A � 0 into its row (or column) vectors, A can be written as a sum of m (or n) TN
matrices with each summand containing one row (or column) of A, and all other
entries equal to 0.

The following example illustrates that for every n � 2, there exists an n × n non-
negative matrix that cannot be written as a sum of fewer than n TN matrices.

Example 1. Let n � 2 and consider the n × n “backward identity” matrix

K =




1
0 1

q
1 0

1


 .

Suppose that K = ∑n−1
k=1 Bk , where Bk =

[
b

(k)
ij

]
� 0. Since there are n positive

entries in K , there must be two positive entries in at least one matrix Bk , say Bp.
Since in every position in which K is 0, each Bk must have a 0, it follows that the
2 × 2 minor containing these two positive entries is negative and Bp is not a TN
matrix. That is, K cannot be written as a sum of n − 1 TN matrices. (Note that this
example can be extended to show that there exist m × n nonnegative matrices that
cannot be written as a sum of min{m, n} TN matrices by bordering K with either
rows or columns of 0’s.)

Since every entry of a TP matrix is positive, any sum of TP matrices is a positive
matrix. In the remainder of this paper, we address the question of whether or not
an arbitrary positive matrix can be written as a sum of TP matrices, and if so, the
number of such matrices that is required.
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3. A positive matrix as a sum of TP matrices

Every row or column vector of an m × n entrywise positive matrix A (written
A > 0) is a 1 × n or m × 1 TP submatrix, respectively. In Lemma 3 below, more
general rectangular TP submatrices of an m × n matrix are considered, and it is
shown that any such submatrix can be perturbed (leaving all of the entries of the
given TP submatrix unchanged) so as to obtain an m × n TP matrix.

We first prove a lemma that shows that a TP matrix can be bordered by a row
or column vector so that it remains a TP matrix. The second lemma below gives a
known result, namely that a row (or column) vector can be inserted between any two
rows (or columns) of a TP matrix so that it remains a TP matrix.

Lemma 1. If A > 0 is an m × n TP matrix, then there exist positive row vectors w

and x with n entries and positive column vectors y and z with m entries so that the
bordered (m + 1) × n matrices

[
A

w

]
and

[ x

A

]

and the bordered m × (n + 1) matrices

[A|y] and [z|A]
are TP matrices.

Proof. We show the existence of w, the other cases being similar. The first entry w1
of w can be chosen to be an arbitrary positive number. Then, in turn, positive values
for each of w2, w3, . . . , wn can be determined so that every minor that is completely
specified when these values are determined is positive. Note that each of these values
enters into all such determinant computations positively, so that all of the relevant
minors will be positive if each value (in turn) is chosen to be sufficiently large.

The vectors x, y and z can be determined similarly, with the values specified in
the order xn (arbitrary), xn−1, . . . , x1; y1 (arbitrary), y2, . . . , ym; and zm (arbitrary),
zm−1, . . . , z1. �

Lemma 2 [3, Theorem 2.3]. Let A > 0 be an m × n TP matrix. Then there exists a
positive row vector w with n entries (or a positive column vector y with m entries)
so that the (m + 1) × n matrix (or the m × (n + 1) matrix) obtained by inserting w

(or y) between any pair of specified rows (or columns) of A is a TP matrix.

If α, β are nonempty subsets of distinct positive integers, then A[α, β] denotes the
submatrix of A with entries from rows specified by α and columns specified by β. For
a given m × n matrix A, let the support of A, denoted supp(A), be {(i, j) : aij /= 0}.
In the following, ‖ · ‖ denotes an arbitrary matrix norm.
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Lemma 3. Given α ⊆ {1, 2, . . . , m} and β ⊆ {1, 2, . . . , n}, suppose that A � 0 is
an m × n matrix such that A[α, β] is a TP matrix, and all other aij = 0. Then for all
ε > 0, there exists an m × n TP matrix Â with Â[α, β] = A[α, β] and ‖A − Â‖ < ε.

Proof. Suppose that α = {α1, α2, . . . , αp} and β = {β1, β2, . . . , βq} in which 1 �
p � m, 1 � q � n, αi < αi+1 and βj < βj+1 for all i � p − 1 and j � q − 1. If at
least one of the index sets α, β is not a set of consecutive integers, then Lemma 2
can be used (perhaps repeatedly) to obtain a TP matrix B of order (αp − α1 + 1) ×
(βq − β1 + 1). Now, with α̃ = {α1, α1 + 1, α1 + 2, . . . , αp} and β̃ = {β1, β1 + 1,

β1 + 2, . . . , βq}, let Ã � 0 be the m × n matrix with Ã[α̃, β̃] = B, and all other
ãij = 0. Then Ã is a TN matrix in which Ã[α, β] = A[α, β] and Ã[α̃, β̃] are TP
submatrices. (If both α and β are sets of consecutive integers, then α̃ = α, β̃ = β,
Ã = A and Lemma 2 is not required.)

Next, Lemma 1 can be used to border the rows and/or columns of Ã[α̃, β̃] so as to
obtain an m × n TP matrix, say Ā, such that Ā[α̃, β̃] = Ã[α̃, β̃] (and thus Ā[α, β] =
A[α, β]).

The matrix Â is obtained from Ā by scaling the rows and columns outside of the
index sets α and β, respectively, by positive diagonal matrices. Let Â = D1ĀD2,

where D1 ≡
[
d

(1)
ij

]
and D2 ≡

[
d

(2)
ij

]
are diagonal matrices in which, for 1 � i � m

and 1 � j � n,

d
(1)
ii =

{
1, if i ∈ α,

ε̂, otherwise

and

d
(2)
jj =

{
1, if j ∈ β,

ε̂, otherwise.

Then, for any given ε and sufficiently small ε̂, ‖A − Â‖ < ε. �

In order to write a positive matrix A as a sum of TP matrices, we require a par-
titioning of the entries of A into disjoint rectangular TP submatrices. As stated at
the beginning of this section, the row (or column) vectors of A always give such a
partition. The following definition generalizes this concept.

Definition 2. A partition of an m × n matrix A > 0 into k � 1 rectangular TP sub-
matrices A[αr, βr ], for 1 � r � k, such that every position (i, j) for 1 � i � m and
1 � j � n lies in one and only one block of the partition, is called a TP k-partition
of A.

We now state our main result.

Theorem 1. If an m × n matrix A > 0 has a TP k-partition, then A can be written
as a sum of k TP matrices.
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Proof. Write A as a sum of k m × n TN matrices

A = A1 + A2 + · · · + Ak,

where, for 1 � p � k, Ap ≡
[
a

(p)
ij

]
and

a
(p)
ij =

{
aij , if i ∈ αp and j ∈ βp,

0, otherwise.

By Lemma 3, there exists an m × n matrix E1 � 0 with ‖E1‖ arbitrarily small so
that A1 + E1 ≡ A

(1)
1 is a TP matrix. Since any sufficiently small perturbation of a

TP matrix is a TP matrix, E1 can be chosen sufficiently small so that if

A = A
(1)
1 + A

(1)
2 + A

(1)
3 + · · · + A

(1)
k

in which, for 2 � p � k, supp
(
A

(1)
p

)
= supp(Ap), then A

(1)
p [αp, βp] is still a TP

matrix.
Now similarly, by Lemma 3, there exists E2 � 0 with ‖E2‖ arbitrarily small so

that A
(1)
2 + E2 ≡ A

(2)
2 is a TP matrix. Moreover, E2 can be chosen sufficiently small

so that if

A = A
(2)
1 + A

(2)
2 + A

(2)
3 + · · · + A

(2)
k

in which supp
(
A

(2)
p

)
= supp

(
A

(1)
p

)
for p /= 2, then A

(2)
1 is still a TP matrix and

A
(2)
p [αp, βp] is still a TP matrix for all p � 3.
Continuing in this manner, k such steps complete the proof, by, in turn, making

each of the k summands a (full) TP matrix. �

Since both the set of row vectors and the set of column vectors of a positive matrix
are a TP partition, we have the following.

Corollary 1. Any m × n matrix A > 0 is a sum of at most min{m, n} TP matrices.

The next result follows since any real matrix can be written as the difference of
two positive matrices.

Corollary 2. An arbitrary m × n real matrix is a sum and difference of at most 2
min{m, n} TP matrices.

The following example illustrates Theorem 1.

Example 2. Let

A =

1 3 2

2 1 1
4 2 1
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and consider the TP 3-partition of A into its row vectors. Then, for example,

A1 + E1 =

 1 3 2

0.001 0.004 0.006
0.001 0.005 0.02


 ≡ A

(1)
1

is a TP matrix, and E1 � 0 is sufficiently small so that A = A
(1)
1 + A

(1)
2 + A

(1)
3 with

A
(1)
2 =


 0 0 0

1.999 0.996 0.994
0 0 0


 , A

(1)
3 =


 0 0 0

0 0 0
3.999 1.995 0.98


 ,

and A
(1)
2 [{2}, {1, 2, 3}] and A

(1)
3 [{3}, {1, 2, 3}] are TP matrices.

Next, for example,

A
(1)
2 + E2 =


0.005 0.002 0.001

1.999 0.996 0.994
0.001 0.006 0.02


 ≡ A

(2)
2

is a TP matrix, and E2 � 0 is sufficiently small so that A = A
(2)
1 + A

(2)
2 + A

(2)
3 with

A
(2)
1 =


0.995 2.998 1.999

0.001 0.004 0.006
0.001 0.005 0.02


 ,

A
(2)
3 =


 0 0 0

0 0 0
3.998 1.989 0.96


 ,

and A
(2)
1 and A

(2)
3 [{3}, {1, 2, 3}] are TP matrices.

After one more such step, we obtain, for example,

A =

0.993 2.9976 1.9989

0.001 0.004 0.006
0.001 0.005 0.02


 +


0.005 0.002 0.001

1.992 0.993 0.993
0.001 0.006 0.02




+

0.002 0.0004 0.0001

0.007 0.003 0.001
3.998 1.989 0.96


 ,

which is the sum of three TP matrices.

4. Sharpness of our main result

We first give an example to show that the converse of Theorem 1 is not, in general,
true.
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Example 3. The matrix

A =

 2 4.1 5.3

2.7321 5.5651 6.9848
4 8.1 10.01




is the sum of the k = 2 TP matrices


 1 1 1

1.7321 2 2.025
3 4 4.01


 and


1 3.1 4.3

1 3.5651 4.9598
1 4.1 6


 ,

but A does not have a TP 2-partition since all minors of A of orders 2 and 3 are
negative.

The following example shows that Corollary 1 is sharp in that for all m, n � 2,
there exists an m × n matrix A > 0 that cannot be written as a sum of fewer than
min{m, n} TP matrices.

This example, in which the matrix K of Example 1 is modified to be positive, is
stated for the case m = n, but is easily extended to the rectangular case.

Example 4. Let n � 2, t > 1 and let A > 0 be an n × n matrix with

aij =
{

tn, if j = n − i + 1,

ε, otherwise.

If A = ∑n−1
k=1 Bk , where Bk =

[
b

(k)
ij

]
> 0, then since there are n entries in A equal

to tn and only n − 1 summands Bk , in at least one of these matrices, say Bp, there

are two distinct entries b
(p)

i,n−i+1 whose product is greater than 1 (for some fixed t

sufficiently large). Thus, for any ε < 1, the 2 × 2 minor containing these two entries
b

(p)

i,n−i+1 is negative, and Bp is not a TP matrix.

5. Concluding remarks

Example 3 shows that the sum of two 3 × 3 TP matrices need not have a positive
minor of order �2. However, Example 4 shows that something more than just posi-
tivity is required for an m × n matrix A > 0 to be a sum of fewer than min{m, n} TP
matrices.

Question 1. For any fixed k (2 � k < min{m, n}), what characterizes the sum of k

TP matrices?
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The case k = 2 seems to be especially interesting, as the following examples illus-
trate.

Example 5. Let

A =

 1 10 1000

10 1 10
1000 10 1


 .

If A = B + C is the sum of two TP matrices, with B ≡ [bij ] and C ≡ [cij ], then

(
1 10

10 1

)
=

(
b11 b12
b21 b22

)
+

(
c11 c12
c21 c22

)
=

(
b22 b23
b32 b33

)
+

(
c22 c23
c32 c33

)

are also sums of two TP matrices. Without loss of generality, suppose that b12 � c12.
Thus b12 � 5 and since b12b21 must be <1, we obtain b21 < 1

b12
� 1

5 , and thus c21 =
10 − b21 � 10 − 1

5 = 9.8. Similarly, at least one of {b23, b32, c23, c32} is �9.8. A

similar analysis of the submatrix

(
1 1000

1000 1

)
of A shows that at least one of

{b13, b31, c13, c31} is �999.998. An examination of all possible cases now shows
that A cannot be written as a sum of two TP matrices.

Example 6. Let Jn denote the n × n matrix with each entry equal to 1. Then

J3 =



1
2

1
3

1
5

2
3

1
2

1
3

4
5

2
3

1
2


 +




1
2

2
3

4
5

1
3

1
2

2
3

1
5

1
3

1
2




is a sum of two TP matrices.

Question 2. Can the rank 1 matrix Jn (for each n � 4) be written as a sum of two
TP matrices? (Note that if this is possible, then any rank 1 matrix can be so written
because of diagonal scaling.) It is likely that this is true for all n, and we have verified
this for n � 7.

In view of Examples 5 and 6, we pose the following.

Question 3. If A > 0 is an m × n matrix, does there exist a value c (possibly
depending on min{m, n}) such that if

c <

min
i,j

aij

max
i,j

aij

,

then A can be written as the sum of two TP matrices?
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