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Background: Panic disorder (PD) is a prevalent and debilitating disorder but its neurobiology is still

poorly understood. We investigated resting-state functional connectivity (RSFC) in PD without

comorbidity in three networks that have been linked to PD before. This could provide new insights

in how functional integration of brain regions involved in fear and panic might relate to the

symptomatology of PD.

Methods: Eleven PD patients without comorbidity and eleven pair-wise matched healthy controls

underwent resting-state fMRI. We used seed regions-of-interest in the bilateral amygdala (limbic

network), the bilateral dorsal anterior cingulate cortex (dACC) (salience network), and the bilateral

posterior cingulate cortex (default mode network). RSFC of these areas was assessed using seed-based

correlations. All results were cluster corrected for multiple comparisons (Z42.3, po .05).

Results: Abnormalities were identified in the limbic network with increased RSFC between the right

amygdala and the bilateral precuneus in PD patients. In the salience network the dACC demonstrated

altered connectivity with frontal, parietal and occipital areas.

Limitations: The small sample size and hypothesis-driven approach could restrict finding additional

group differences that may exist. Other caveats are reflected in the use of medication by two

participants and the acquisition of the resting-state scan at the end of a fixed imaging protocol.

Conclusion: We found altered RSFC in PD between areas involved in emotion regulation and emotional

and somatosensory stimulus processing, as well as an area engaged in self-referential processing, not

implicated in models for PD before. These findings extend existing functional neuroanatomical models

of PD, as the altered RSFC may underlie increased sensitivity for bodily symptoms.

& 2012 Elsevier B.V. Open access under the Elsevier OA license.
1. Introduction

Panic disorder (PD) patients experience recurrent unexpected
panic attacks, followed by persistent concerns about having
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additional attacks, worrying about their consequences, and an
associated change in behaviour (American Psychiatric Association,
1994). An influential neuroanatomical model of PD was proposed by
Gorman and colleagues in 1989 (Gorman et al., 2000). Central to
their model is that panic derives from an abnormally sensitive fear
network consisting of the prefrontal cortex, insula, thalamus,
amygdala, and the amygdala’s afferent and efferent projections from
and to the hippocampus, brainstem, and hypothalamus. Further-
more, a defective prefrontal cortical processing has been suggested
to lead to misinterpretation of physiological triggers, ensuing in
exaggerated amygdala and fear network activation, resulting in a
panic attack (Gorman et al., 2000; Shrestha R. et al., 2009).
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Although this model has received considerable attention, the
number of functional neuroimaging studies in PD is still modest
(de Carvalho et al., 2010). PET and SPECT studies of PD revealed
decreased glucose use and/or blood flow in temporal and parietal
areas, as well as in parts of the prefrontal cortex and (para)-
hippocampal areas (Lee et al., 2006; Nordahl et al., 1990; Shin
et al., 2010), while fMRI studies using a broad range of task
paradigms reported activation and found altered activity in PD in
cortical and limbic structures such as the anterior cingulate cortex
(ACC), the amygdala, and hippocampus (de Carvalho et al., 2010).
The amygdala is perceived as the centre of the fear system with
an important function in detecting, signalling, and learning from
threat or danger (LeDoux, 1998; Phillips et al., 1992). Aberrant
functioning of amygdala circuitry is thought to have a central role
in the origin of PD and several other anxiety disorders (de
Carvalho et al., 2010; Gorman et al., 2000; LeDoux, 1998;
Phillips et al., 1992).

In contrast to task-evoked activity, resting-state fMRI enables
examination of the brain’s intrinsic functional connections in the
absence of externally controlled stimuli or tasks (Biswal et al.,
1995; Fox et al., 2007). Functional interactions between brain
areas are crucial for proper functioning of the brain. This techni-
que may therefore provide new insights in how functional
integration of brain regions involved in fear and panic might
relate to the symptomatology of PD (Fox et al., 2007). Consistently
reported resting-state networks of potential relevance to PD
include the default mode network (precuneus/posterior cingulate
cortex (PCC), medial prefrontal cortex, and lateral parietal cortex),
networks involving the amygdala, and the salience network
(Damoiseaux et al., 2006; Seeley et al., 2007; Veer et al., 2011).
The salience network, comprising the dACC and bilateral anterior
insula, is important in assessing the relevance of internal and
external stimuli in order to guide behavior (Seeley et al., 2007).

Resting-state functional connectivity (RSFC) in PD has not been
investigated before, in contrast to many other (neuro)psychiatric
disorders (Broyd et al., 2009; Greicius, 2008). In the present study
we examined RSFC in patients with PD without comorbidity,
using a seed-based correlation approach. Given the postulated
model and the anatomical and functional abnormalities found in
previous neuroimaging studies in PD, such as the frequently
reported involvement of the amygdala circuitry and the ACC
(Damsa et al., 2009; de Carvalho et al., 2010; Gorman et al.,
2000; Shin et al., 2010), we hypothesized that the amygdala-
centred network would show altered connectivity of the amyg-
dala with hypersensitivity of the fear circuitry and less top-down
control. For instance, PD patients are known to be more aware of
and to attribute a greater significance to signals coming from their
own body than healthy controls. Specifically, we expected to find
Table 1
Demographic and clinical characteristics of patients with panic disorder and healthy c

Panic disorder patien

Gender 1 male / 10 female

Scan location 3 AMC; 2 LUMC;

6 UMCG

Mean SD Mean

Age (years) 34.5 10.6 35.0

Education (years) 12.8 3.5 14.1

BAIy score at scanning 14.5 5.6 1.9

MADRSz score at scanning 12.6 8.4 1.0

Ams ¼ Academic Medical Center Amsterdam; Lei ¼ Leiden University Medical Center
a F-value.
b Z-value.
nn Mann-Whitney U Test.
y BAI ¼ Beck Anxiety Inventory.
z MADRS ¼ Montgomery-Åsberg Depression Rating Scale.
altered RSFC in networks involved in fear and emotion, and in
distinguishing relevant from less relevant stimuli. For the salience
network we expected a heightened awareness of bodily signals,
i.e. increased connectivity of areas involved in somatosensory
processing. As the default mode network shows altered connec-
tivity in depression and other anxiety disorders (Broyd et al.,
2009; Fox et al., 2007; Greicius, 2008), we also expected abnorm-
alities in the connectivity of this network in PD.
2. Methods

2.1. Participants

All subjects were recruited from the MRI study from the large-
scale longitudinal multi-centre cohort Netherlands Study of
Depression and Anxiety (NESDA). NESDA is designed to investi-
gate the long-term course and consequences of depression and
anxiety disorders. NESDA participants were recruited from the
community, through primary care and specialized mental health
institutions. The rationales, methods and recruitment for NESDA
have been described in detail elsewhere; for an overview of
diagnostics, inclusion and exclusion criteria see: (Penninx et al.,
2008; van Tol et al., 2010).

After receiving written information, all subjects provided
written informed consent. Participants underwent MRI in one of
the three participating centres (Academic Medical Centre Amster-
dam, Leiden University Medical Centre, and University Medical
Centre Groningen) (van Tol et al., 2010). The study was approved
by the Medical Ethics Committees of all three centres.

For the present study on PD without comorbidity, resting-state
fMRI data were available from 11 right-handed PD patients, and
from 11 healthy controls pair-wise matched for age, gender,
education, and scan-location (Table 1). All participants were
new to lying in an MRI scanner. Patients were diagnosed with
PD and no other psychopathology using the DSM-IV-based CIDI,
lifetime version 2.1 (American Psychiatric Association, 1994).
Participants were scanned within 8 weeks after the CIDI assessment.
Severity of anxiety symptoms at baseline and at the time of
scanning was measured with the Dutch version of the Beck Anxiety
Inventory (BAI) (Beck et al., 1988). Patients were excluded if they
scored lower than seven on the Beck Anxiety Inventory, since they
were then considered to have a ‘minimal’ level of anxiety and
considered in remission (Beck et al., 1988). Depressive symptoms on
the day of scanning were rated with the Montgomery-Åsberg
Depression Rating Scale (MADRS) (Montgomery et al., 1979), as
well as with the Inventory of Depressive Symptomatology (IDS) at
baseline and at the time of scanning (Rush et al., 1986).
ontrols.

ts (N¼11) Healthy controls (N¼11)

1 male / 10 female

3 AMC; 4 LUMC

4 UMCG

SD F / Z p

9.7 0.258a 0.974

2.1 �1.127b 0.260

2.5 �3.993b 0.001**

1.7 �3.776b 0.001**

; Gro ¼ University Medical Center Groningen.



Table 2
Anxiety and depression severity at baseline and time of scanning within panic

disorder patients.

Baseline Scanning t / Z p

Mean SD Mean SD

BAIy score 15.8 11.5 14.5 5.9 � .657a 511n

IDS7 score 20.6 11.1 18.1 6.9 1.373b 185nn

a Z-value.
b t-value.
n Wilcoxon Signed Rank Test.
nn Paired-samples t-test.
y BAI ¼ Beck Anxiety Inventory.
7 IDS ¼ Inventory of Depressive Symptomatology.
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2.2. Image data acquisition

Image acquisition took place at the three participating centres.
Images were obtained on a Philips 3 T magnetic resonance
imaging system (Philips Healthcare, Best, The Netherlands),
equipped with a SENSE-8 (Leiden University Medical Centre and
University Medical Centre Groningen) or SENSE-6 (Academic
Medical Centre Amsterdam) channel head coil.

As part of a fixed imaging protocol that also included task-
related fMRI and structural MRI, resting-state functional MRI data
were acquired for each subject using T2

n-weighted gradient-echo
echo-planar imaging with the following scan parameters in
Amsterdam and Leiden: 200 whole-brain volumes; repetition
time 2300 ms; echo time 30 ms; flip angle 801; 35 transverse
slices; no slice gap; field of view 220�220 mm; in-plane voxel
size 2.3�2.3 mm; slice thickness 3 mm. Parameters in Groningen
were identical, apart from: echo time 28 ms; 39 transverse slices;
in-plane voxel size 3.45�3.45 mm. In the darkened MR room
participants were instructed to lie still with their eyes closed and
not to fall asleep. After completion of the scan, all participants
confirmed wakefulness during acquisition. A sagittal 3-dimen-
sional gradient-echo T1-weighted image was acquired for regis-
tration purposes and grey matter analysis with the following scan
parameters: repetition time 9 ms; echo time 3.5 ms; flip angle
801; 170 sagittal slices; no slice gap; field of view 256�256 mm;
1 mm isotropic voxels.

No abnormalities were found upon inspection of the subjects’
structural images by a neuroradiologist.

2.3. Data preprocessing

FMRI data processing was carried out using FEAT (FMRI Expert
Analysis Tool) Version 5.98, part of FSL (FMRIB’s Software Library,
www.fmrib.ox.ac.uk/fsl) (Smith et al., 2004). The following pre-
statistics processing was applied: motion correction; non-brain
removal; spatial smoothing using a 6 mm full-width at half-
maximum Gaussian kernel; grand-mean intensity normalization
of the entire 4D dataset by a single multiplicative factor; high-
pass temporal filtering (Gaussian-weighted least-squares straight
line fitting, with a 0.01 Hz cut-off). Registration of the RS data to
the high resolution T1-weighted image, and the T1 to the 2 mm
isotropic MNI-152 standard space image (T1 standard brain
averaged over 152 subjects; Montreal Neurological Institute,
Montréal, QC, Canada) was carried out (Jenkinson et al., 2002).
The resulting transformation matrices were then combined to
obtain a native to MNI space transformation matrix and its
inverse (MNI to native space).

2.4. Statistical analysis

Demographic and clinical characteristics were analyzed using
SPSS 17.0 (SPSS Inc, Chicago, Illinois) using an independent-
samples t-test with significance set at po0.05. If data did not
meet the assumptions required to perform parametric analysis,
the non-parametric Mann-Whitney U-test was performed.

For the current study, a seed-based correlation approach was
employed to investigate functional connectivity during rest (Fox
et al., 2007). The following seed regions-of-interest were selected:
bilateral amygdala (for the limbic network), bilateral dACC (for
the salience network), and bilateral PCC (for the default mode
network). We created a mask in standard space for the amygdala
based on the Harvard-Oxford Subcortical Structural Probability
Atlas in FSL (Veer et al., 2011). The coordinates for the dACC seeds
were obtained directly from Table 1 of the study by Margulies and
colleagues (Margulies et al., 2007), and posterior cingulate seed
coordinates were obtained from the study by Greicius and
colleagues (Greicius et al., 2003) (Table 3). Spheres of 4 mm
radius were created around these seed voxels. The resulting
masks were then transformed to native space by applying the
inverse transformation matrix obtained from the registration
procedure, and spatially averaged time series were extracted for
each seed and for each subject. For each participant, and for each
network of interest, we performed a multiple regression analysis
using the general linear model (GLM) (as implemented in FEAT)
(Smith et al., 2004). The time courses that were extracted from
the voxels in our seed regions were entered as a regressor in a
GLM for each network separately. Apart from the two regressors
describing the left and right seeds, nine nuisance regressors were
included in the model: signal from the white matter, cerebrosp-
inal fluid signal, and the global signal, as well as six motion
parameters (three translations and three rotations). The global
signal was included to reduce artefacts associated with physiolo-
gical signal sources (i.e. cardiac and respiratory) (Fox et al., 2007).

After reslicing the resulting individual connectivity maps from
our seeds and their corresponding within-subject variance maps
into 2 mm isotropic MNI space, these were entered into a higher
level within and between groups mixed effects analysis (one- and
two-sample t-test).

As several studies have identified structural abnormalities in
PD (de Carvalho et al., 2010), we used grey matter density
information of each subject as a voxel-dependent covariate in
our higher level model to rule out the influence of any subtle grey
matter density variations. By including structural information in
the functional connectivity analysis, variance explained by poten-
tial differences in grey matter density and/or possible misregis-
trations are taken into account (Oakes et al., 2007). Lower level
contrasts were analyzed both within and between groups using
the GLM in which age and scan location were also entered as
regressors. To correct for multiple comparisons, cluster correction
was applied in all group analyses with significance set at a
corrected po .05, using an initial cluster-forming threshold of
Z42.3 (Worsley, 2001).
3. Results

3.1. Questionnaires

At the time of scanning, PD patients had a mean score of 14.5
(SD¼5.6) on the BAI and 12.6 (SD¼8.4) on the MADRS, scoring
higher than controls on both scales (BAI 1.9; SD¼2.5 and MADRS
1.0; SD¼1.7, both p’s o .05) (Table 1). BAI and IDS scores did not
change significantly between baseline and time of scanning for PD
patients (Table 2). Two out of eleven patients used an SSRI.

we first analyzed amygdala RSFC. The seeds showed similar
connectivity patterns in both groups encompassing the hippo-
campus, temporal poles, parahippocampal gyri, and the bilateral

www.fmrib.ox.ac.uk/fsl


Table 3
MNIy coordinates of the seed regions.

Seed region MNI coordinates

x y z

Amygdala 722 �6 �16

Dorsal Anterior Cingulate Cortex 76 18 28

Posterior Cinugulate Cortex/Precuneus 72 �52 26

y MNI ¼ Montreal Neurological Institute.

Fig. 1. Right amygdala negative connectivity. A¼healthy controls; B¼panic

disorder patients; C¼group difference: panic disorder patients4healthy controls.

Results are cluster corrected at po .05. Images are z-statistics, overlaid on the

MNI-152 standard brain.
Fig. 2. Left dACC positive connectivity. dACC¼dorsal anterior cingulate cortex;

A¼healthy controls; B¼panic disorder patients; C¼group difference: healthy

controls4panic disorder patients D¼healthy controls; E¼panic disorder patients;

F¼panic disorder patients4healthy controls. Results are cluster corrected at po .05.

Images are z-statistics, overlaid on the MNI-152 standard brain.

Fig. 3. Right dACC positive connectivity. dACC¼dorsal anterior cingulate cortex;

A¼healthy controls; B¼panic disorder patients; C¼group difference A4B.

Results are cluster corrected at po .05. Images are z-statistics, overlaid on the

MNI-152 standard brain.

J.N. Pannekoek et al. / Journal of Affective Disorders 145 (2013) 29–3532
orbitofrontal cortex, consistent with previous literature (Roy
et al., 2009; Stein et al., 2007). However, patients showed
increased negative right amygdala connectivity compared to
healthy controls with the bilateral precuneus and the bilateral
lateral occipital cortex (Fig. 1, Supplementary Table 1). No group
differences were found for the left amygdala analysis or when a
contrast was made for the joint amygdala seeds.

Next, we explored connectivity of the left and right dACC
probing the salience network. Overall the seeds showed similar
connectivity patterns in both groups (Figs. 2 and 3), correspond-
ing with areas described in previous research (Margulies et al.,
2007). However, in PD the left dACC showed decreased connec-
tivity with the bilateral frontal pole and superior/medial frontal
gyrus compared to healthy controls. In contrast, PD patients
showed increased left dACC connectivity with the bilateral pre-
central and postcentral gyrus, the right supplementary motor
cortex, and the right ACC (Fig. 2, Supplementary Table 2a and 2b).
Finally, PD patients showed decreased right dACC connectivity
with the right superior parietal lobule, the right lateral occipital
cortex, the right angular gyrus, and the right central opercular
cortex (Fig. 3, Supplementary Table 3). Combining the left and
right dACC in one contrast did not produce any significant group
differences.

Finally, we investigated connectivity of the default mode
network with seeds in the bilateral PCC/precuneus, yet no group
differences in default mode network connectivity were found.

Post-hoc, RS fMRI data were correlated with Beck Anxiety
Inventory symptom scores using SPSS 17.0 (SPSS Inc., Chicago,
Illinois, USA), to investigate whether the strength of connectivity
was associated with symptom severity. Non-parametric tests
were used if data did not meet the assumptions required for
parametric testing. A mask was created of the resulting brain
areas from our amygdala and dACC analyses, and the individual
z-scores from these areas were calculated using Featquery, part of
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FSL (Smith et al., 2004). No association was found between RS
connectivity strength and anxiety scores.
4. Discussion

We investigated RSFC in PD patients without comorbidity and
compared this to RSFC of pair-wise matched healthy controls with
seeds in the limbic, salience and default mode network. As
expected, abnormalities in connectivity were found in the limbic
and salience networks, but no differences were observed in the
default mode network. We found abnormal connectivity in PD
patients between the right amygdala and the bilateral precuneus,
as well as the bilateral lateral occipital cortex. We also found
altered RSFC in patients between the left and right dACC on the
one hand and frontal and more parietal and occipital areas on the
other hand. Finally, we found abnormal RSFC in patients between
the right anterior cingulate and the right superior parietal lobule,
lateral occipital cortex, postcentral gyrus, and precentral gyrus.

Increased RSFC was found between the amygdala and pre-
cuneus in PD patients. The posterior cingulate/precuneus is
thought to be involved in self-reflection and self-processing
activities like mental imagery and episodic/autobiographical
memory retrieval (Cavanna et al., 2006; Cavanna, 2007; Raichle
et al., 2001). Many of the functions of the precuneus and its
connections seem of direct relevance to the phenomenology of
PD. Four broad categories of cognitive-emotional functions have
been assigned to the precuneus, namely visuo-spatial imagery,
episodic memory retrieval, self-processing, and consciousness
(Cavanna et al., 2006; Cavanna, 2007). Disturbances of self-
processing and consciousness are characteristic elements of panic
attacks (American Psychiatric Association, 1994). Moreover, the
precuneus and interconnected posterior cingulate and medial
prefrontal cortices are constantly engaged in the gathering of
information and representation of the self as well as the external
world (Cavanna, 2007). The amygdala on the other hand serves as
an important component of the system involved in the acquisi-
tion, storage, and expression of emotional and fear memory,
playing a pivotal role in linking external stimuli to defence
responses (LeDoux, 2000, 2003). Possibly, our results indicate
that in PD patients, activation of the amygdala could lead to
decreased functional connectivity with the precuneus. From the
perspective of existing models, this finding might relate to
decreased self-processing operations with typical symptoms such
as depersonalization and loss of control experienced during a
panic attack (American Psychiatric Association, 1994; Cavanna
et al., 2006; Gorman et al., 2000). An alternative interpretation is
that a disturbance in self-processing operations underlies the
susceptibility to panic attacks, which would be in line with the
continuously present feelings of unsteadiness, depersonalization
and derealisation reported by many PD patients (American
Psychiatric Association, 1994).

For the salience network seeds, the left and right dACC, we
identified several differences in connectivity with frontal and
occipito-parietal areas, which have been implicated in the patho-
physiology of PD before (de Carvalho et al., 2010). These areas are
involved in the processing of somatosensory information, atten-
tional control and self-awareness (Bisley et al., 2010; Koechlin,
2011).

The left dorsal anterior cingulate showed increased positive
connectivity in PD with the postcentral gyrus, known as the
somatosensory cortex. This region receives proprioceptive and
cutaneous input from the body (Nelson et al., 2008). Therefore,
increased positive connectivity of the dACC with the postcentral
gyrus in PD patients might be taken to reflect the increased
processing of somatosensory stimuli in PD, resulting from or
leading to misattribution of innocuous internal and external
signals as potentially harmful. For both left and right dorsal
anterior cingulate we found altered connectivity with (bilateral)
superior parietal regions. Functional connectivity of the ACC with
superior parietal regions has previously been reported in healthy
subjects, and was suggested to be important for the maintaining
of an internal representation of bodily states, a function clearly
relevant to PD (Gusnard et al., 2001; Margulies et al., 2007;
Wolpert et al., 1998). Deviations within this circuitry might
contribute to an inaccurate internal representation and interpre-
tation of the bodily state in PD patients. We also found decreased
connectivity of the left dACC with the bilateral superior frontal
gyrus in PD patients. These findings are in line with previous
functional studies in PD, finding reduced blood flow or glucose
use in the same areas (right superior frontal gyrus) (Eren et al.,
2003; Lee et al., 2006). Interestingly, a study performed by
Goldberg and colleagues (2006) showed superior frontal gyrus
activity extending to the dorsal part of the anterior cingulate,
when during an introspection task a sensory stimulus was slowly
presented to participants after which they had to rate the
emotional effect elicited by these stimuli (Goldberg et al., 2006).
When the task increased in speed and difficulty, no activation in
the superior frontal gyrus was observed, leading the authors to
conclude that the brain is able to ‘switch off’ self-awareness when
it needs all its resources to carry out a difficult task (Goldberg
et al., 2006). Thus, dACC connectivity with the superior frontal
gyrus could possibly play a role in the disturbed self-awareness in
PD patients, who can typically experience feelings like loss of
control, going crazy, derealisation, and depersonalization during
panic attacks (American Psychiatric Association, 1994).

Abnormalities of the default mode network have been found in
various neuropsychiatric diseases, like Alzheimer’s disease, schi-
zophrenia, epilepsy, autism, attention deficit/hyperactivity disor-
der, and depression (Broyd et al., 2009; Fox et al., 2007). The
default mode network is associated with functions such as self-
referential mental processing, social cognition and emotional
processing (Broyd et al., 2009). We did not find abnormalities in
the default mode network, suggesting that processes relying on
the default mode network are not affected in PD, but this might
be due to our small sample size. However, even at lower thresh-
olds no abnormalities in connectivity of the posterior cingulate
were identified.
5. Limitations

There are several limitations important to note. An important
notion is that RSFC data should be interpreted with caution, and
any interpretation refers only to functional connectivity between
brain areas as opposed to the (dys)function of a distinct brain
region. Our sample size is relatively small and therefore some
group differences may not have been detected. Also, by opting for
a hypothesis-driven approach and thus only exploring specific
resting-state networks, abnormalities in other networks might
have been overlooked. On the other hand, the use of a seed-based
region-of-interest approach allows easier replication of our find-
ings. Pooling data from different centers is another possible
limitation. To account for this as much as possible, we have
matched our groups based on scanning site and also added a
confound regressor for site in our statistical model. A potential
limitation is that patients were not diagnosed on the exact day of
scanning but a few weeks earlier during the baseline interview.
We did not formally assess whether additional psychopathology
developed between baseline and scanning, but subjects indicated
no major changes in their symptom patterns during a short
clinical interview. Anxiety and depressive symptoms were again
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assessed on the scanning day and scores were not different from
baseline. Another potential limitation is that no specific panic
disorder scale was used, although the BAI predominantly contains
panic-related items. Another limitation is that only one male
subject in each of our groups was included, thus restricting the
generalizability of the results. Furthermore, two of the included
patients were using medication, so we cannot fully exclude
possible confounding effects of medication use. Finally, our RS
fMRI data were acquired at the end of a fixed imaging protocol
(after completion of three task-related fmri runs and the acquisi-
tion of an anatomical scan (scan sequence: Tol, word encoding,
T1-weighted, word recognition, faces)), which could potentially
have influenced RS connectivity (i.e. a spillover effect) with PD
patients still showing aberrant connectivity while the stimuli
were no longer present. Despite its limitations, this study also has
some noteworthy strengths. This is the first study to investigate
RSFC with MRI in PD. The major strength of this study is the
inclusion of PD patients without any psychiatric comorbidity. In
addition, most patients were not using psychotropic medication.

Our hypotheses regarding alterations in RSFC in PD patients
were partly confirmed. As expected, aberrancies were found in
amygdala and salience network RSFC. However, our results did
not support the hypothesis that DMN RSFC was deviant in PD
patients. In summary, our study shows altered RSFC in PD
patients of areas involved in salience and emotion processing
with areas engaged in self-processing and somatosensory proces-
sing, not implicated in current functional neuroanatomical mod-
els for PD. Although replication is warranted, disturbed functional
connectivity in these circuits should be taken into account in
future functional neuroanatomical models for PD.
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