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Lysosomal storage diseases represent a group of about 50 genetic disorders caused by deficiencies of
lysosomal and non-lysosomal proteins. Patients accumulate compounds which are normally degraded in the
lysosome. In many diseases this accumulation affects various organs leading to severe symptoms and
premature death. The revelation of the mechanism by which stored compounds affect cellular function is the

basis for understanding pathophysiology underlying lysosomal storage diseases. In the past years it has
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become clear that storage compounds interfere with various processes on the cellular level. The spectrum
covers e.g. receptor activation by non-physiologic ligands, modulation of receptor response and intracellular
effectors of signal transduction cascades, impairment of autophagy, and others. Importantly, many of these
processes are associated with accumulation of storage material in non-lysosomal compartments. Here we
summarize current knowledge on the effects that storage material can elicit on the cellular level.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Many lysosomal storage diseases have already been recognized as
clinical entities in the 19th century and this process continued well
into the 20th century. At that time lysosomes were unknown and
therefore it was not clear that the various diseases share the common
feature of lysosomal storage. The classification as lysosomal storage
diseases had to await the discovery of lysosomes by Christian de Duve
in 1955 [1] and the development of the concept of lysosomal diseases
by Hers ten years later [2]. Hers was interested in glycogen storage
diseases and he noticed that one of these diseases was different from
the others: In Pompe disease the deficient enzyme had an acidic pH
optimum and glycogen was not stored in the cytoplasm but rather in
an organelle surrounded by a membrane. Hers suggested that
glycogen in Pompe disease is stored in lysosomes. This laid the
ground for the classification of the already clinically recognized
disorders as lysosomal storage diseases. In many of the diseases,
however, the storage material was already identified long before
lysosomes were discovered. Storage of glucosylceramide in Gaucher
disease, for example, was already recognized in 1924. Analysis of the
chemical structure of stored compounds allowed for working
hypotheses on which enzyme could be responsible for the metabolic
defect in the respective disease. In 60ties and 70ties of the last century
the enzymatic defects in many of the various disorders were identified
in this way. A prominent example is the recognition of glucocereb-
rosidase deficiency as the underlying defect in Gaucher disease [3].
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Most lysosomal storage diseases are caused by deficiencies of
soluble lysosomal proteins residing in the lumen of the lysosome
(Table 1). A minority is caused by defects in lysosomal membrane
proteins. Except for defects of transporters our knowledge of how
deficiencies of lysosomal membrane proteins cause storage is still
lagging behind. It should be emphasized that a number of lysosomal
storage diseases are caused by the deficiencies of non-lysosomal
proteins residing either in the endoplasmic reticulum, the Golgi
apparatus or the endosomal pathway. We refer to the two reviews by
Gasnier and Dierks in this issue which cover deficiencies of lysosomal
membrane proteins and non-lysosomal proteins as a cause of
lysosomal diseases. The neuronal ceroid lipofuscinoses representing
a particular subgroup of lysosomal diseases are reviewed by Jalanko
and Braulke in this issue.

Lysosomal diseases are most frequently classified according to the
major storage compound. Clinically this classification is very useful
and well accepted. Thus, disorders in which the accumulation of
glycosaminoglycan fragments prevails are classified as mucopolysac-
charidoses, those dominated by lipid storage as lipidoses. It must be
emphasized, however, that in most lysosomal diseases more than one
compound accumulates and in some disorders for various reasons the
stored material can be rather heterogeneous. Thus, a number of
lysosomal glycosidases are not specific for a certain substrate but
rather for a sugar residue and the stereochemistry of its linkage. This
residue and linkage may occur in glycosaminoglycans as well as in
lipids, so that a deficiency of the enzyme results in storage of both. For
example, B-galactosidase which is deficient in Gy, gangliosidosis is
involved in the degradation of sphingolipids, oligosaccharides and
keratan sulphate, all of which accumulate in patients. The degradation
of many sphingolipids depends on activator proteins some of which
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Table 1
Lysosomal storage disorders

Disease Defective protein

Storage materials

Mucopolysaccharidoses (MPS)
MPS [ (Hurler, Scheie, Hurler/Scheie)
MPS II (Hunter)

MPS IIIA (Sanfilippo)

MPS IIIB (Sanfilippo)

MPS IIIC (Sanfilippo)

MPS IIID (Sanfilippo)

MPS IV A (Morquio-A)

MPS IV B (Morquio-B)

MPS VI (Maroteaux-Lamy)
MPS VII (Sly)

a-Iduronidase

Iduronate-2-sulphatase

Heparan N-sulphatase (sulphamidase)
N-Acetyl-a-glucosaminidase

N-Acetylglucosamine-6-sulphatase
3-Galactosidase
{-Glucuronidase

Multiple sulphatase deficiency (Austin) Formylglycine-generating enzyme

Spingolipidoses
Fabry a-Galactosidase A

Ceramidase
B-Glucosidase
Galactocerebroside [3-galactosidase

Farber lipogranulomatosis
Gaucher
Globoid cell leukodystrophy (Krabbe)

Metachromatic leukodystrophy Arylsulphatase A

Niemann-Pick A and B Sphingomyelinase

GM1 gangliosidosis 3-Galactosidase

GM2 gangliosidosis (Tay-Sachs)
GM2 gangliosidosis (Sandhoff)

B-Hexosaminidase A
3-Hexosaminidase A and B

Oligosaccharidoses and glycoproteinoses
Aspartylglucosaminuria

Fucosidosis

a-Mannosidosis

3-Mannosidosis

Sialidosis

Schindler disease

Aspartylglucosaminidase
a-Fucosidase
a-Mannosidase
-Mannosidase

Sialidase
a-N-Acetylgalactosaminidase

Glycogenosis
Pompe (glycogen-storage-disease type II) co--Glucosidase

Acetyl-CoA: a-glucosamide N-acetyltransferase

N-Acetylgalactosamine-6-sulphate-sulphatase

Dermatan sulphate and heparan sulphate, GM2, GM3, SCMAS
Dermatan sulphate and heparan sulphate, GM2, GM3, SCMAS
Heparan sulphate, GM2, GM3, GD2, SCMAS, ubiquitin

Heparan sulphate, GM2,GM3, GD2, unesterified cholesterol, SCMAS
Heparan sulphate, GM2, GM3, GD2

Heparan sulphate, GM2,GM3, GD2

Keratan sulphate, chondroitin-6-sulphate

Keratan sulphate, oligosaccharides

N-Acetylgalactosamine-4-sulphatase (arylsulphatase B) Dermatan sulphate, GM2, GM3, unesterified cholesterol

Heparan sulphate, dermatan sulphate, chondroitin-4- and -6-sulphates,
GM2, GM3, ubiquitin

Heparan sulphate, dermatan sulphate, chondroitin-4- and -6-sulphates,
sulpholipids

Globotriaosylceramide, galabiosylceramide, globotriaosylsphingosine,
blood-group-B glycolipids

Ceramide

Glucosylceramide, GM1, GM2, GM3, GD3, glucosylsphingosine
Galactosylceramide, psychosine lactosylceramide, globotriaosylceramide,
globotetraosylceramide, fucosylneolactotetraosylceramide

Sulphatide, 3-O-sulpholactosylceramide, lysosulphatide, seminolipid,
gangliotetraosylceramide-bis-sulphate, GM2

Sphingomyelin, cholesterol, bismonoacylglycerophosphate, GM2, GM3,
glucosylceramide, lactosylceramide, globotriaosylceramide,
globotetraosylceramide

GM1, GA1, GM2, GM3, GD1A, lyso-GM1, glucosylceramide, lactosylceramide,
oligosaccharides, keratan sulphate

GM2, GD1aGalNac, GA2, lyso-GM2

GM2, GD1aGalNac, globoside, oligosaccharides, lyso-GM2

Aspartylglucosamine

Fucose containing oligosaccharides and H-antigen-glycolipid
Mannose-containing oligosaccharides, GM2, GM3

Man(31 — 4)GIcNAc disaccaride

Sialyloligosaccharides and sialylglycopeptides

Glycopeptides with N- or O-linked oligosaccharides, oligosaccharides

Glycogen

Examples of lysosomal storage diseases. Left column gives the name of the disease, middle column the deficient protein and the right column the stored compounds. GM1, GA1, GM2,
GM3, GD1A are abbreviations for the respective gangliosides. SCMAS: subunit ¢ of mitochondrial ATP synthase.

function as biological detergents presenting the lipids to the
degrading enzymes (see the review of Schultze and Sandhoff in this
issue). Since one activator can present different lipids to different
enzymes its deficiency causes more than just one lipid to accumulate.
In many diseases there is substantial secondary accumulation of
compounds which cannot be explained by the underlying enzymatic
defect (see the review of Vanier and Walkley in this issue). Thus, some
gangliosides accumulate secondarily in mucopolysaccharidoses and
accumulation of glucosylceramide - the storage compound of Gaucher
disease - in Niemann-Pick Type C disease may reach levels of type 2
Gaucher patients. Therefore it must be kept in mind, that for various
reasons in a number of diseases there is more than just one storage
compound. From a pathophysiological point of view this is important
since minor storage compounds may play major roles in pathogenesis.
Thus, from a biochemical point of view the widely used classification
according to the accumulating substrate is not fully systematic.
Research in the last ~25 years focussed on the genetics of
lysosomal storage disorders. During this time period the majority of
genes of lysosomal enzymes were cloned and a myriad of disease
causing mutations were identified. Certainly identification of the
underlying enzymatic defect, cloning and identification of the disease
causing gene and characterization of mutations has contributed
enormously to our understanding of lysosomal diseases. Nevertheless
we still lack a clear description of the relevant events leading from the
disease causing mutations to the symptoms of the disease which are

determined by mechanisms operating not only at the cellular level but
also in tissues and organs. The cellular consequences of substrate
accumulation are determined by the type of storage material, the
extent of storage, the type of storing cells, and the direct or indirect
consequences that lysosomal storage has on basic cellular processes
such as intracellular trafficking and autophagy. Certainly, it is a
challenge to differentiate the extent by which each of these alterations
quantitatively contributes to pathogenesis. Thus, revelation of
pathophysiologic mechanisms in lysosomal storage diseases is a
complex and demanding task which requires an integrated approach
ranging from molecular genetics, biochemistry, cell biology and
immunology, to name a few, as well as the use of animal models. It
is expected that modern genomic, proteomic and system biology
approaches will also play a role in the years to come.

In summary, even though lysosomal storage diseases were among
the first genetic diseases for which the primary biochemical defects
were elucidated, there is still a lot to learn about the underlying
pathogenetic mechanisms. This review summarizes our current knowl-
edge about the effects storage material elicits on the cellular level.

2. Alterations of signalling pathways
Compounds accumulating in lysosomal storage diseases can

affect signal transduction pathways at different levels. Storage
compounds can function as ligands of receptors (Krabbe disease,
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mucopolysaccharidoses), modify receptor response (Hurler syn-
drome, Niemann Pick Type C disease), alter subcellular localization
of receptors (Niemann Pick Type C disease), and alter activities of
enzymes involved in signal transduction cascades (Krabbe disease).
Since it may be difficult for the non-specialist reader to distinguish
the various diseases which we address repeatedly but in different
sections of this review we have summarized the main features of
these diseases in Table 2.

2.1. Non-physiologic activation of signal transduction receptors

2.1.1. Glycosaminoglycan fragments activate the TLR4 receptor in
mucopolysaccharidoses

Mucopolysaccharidoses are a group of lysosomal disorders caused
by defects in the degradation of glycosaminoglycans such as heparan-,
dermatan- or chondroitin sulphate, respectively. Most patients display
severe central nervous system involvement, organomegaly, soft tissue
disease, and affection of cartilage causes degenerative joint disease
and reduced bone growth.

Mucopolysaccharidoses provide an example in which extracellularly
accumulating storage compounds lead to non-physiologic activation of
signal transduction receptors. Lipopolysaccharide (LPS) is an endotoxin
of gram-negative bacteria which binds and activates the Toll like
receptor 4 (TLR4). This leads to the secretion of a variety of
proinflammatory cytokines eliciting a response of the innate immune
system. Glycosaminoglycan breakdown products structurally resemble
LPS [4]. Therefore it is not surprising that the accumulation of
glycosaminoglycan breakdown products in mucopolysaccharidoses
activate the TLR4 receptor [5]. Several genes involved in TLR signalling
were found to elevated in mucopolysaccharidoses animals [6]. Among
those are TLR4 itself, LPS binding protein and MyD88 which is an adapter
protein acting downstream of TLR4. Accordingly, in dog, cat and rat
models of mucopolysaccharidosis VII and mucopolysaccharidosis VI,
respectively, glycosaminoglycan storing chondrocytes display higher NO
levels, secrete enhanced amount of proinflammatory cytokines such as
IL-1p3, TNF-a¢ and TGF-p3. The expression of these cytokines increases

Table 2
Overview of major symptoms of the diseases frequently referred to in this review

with age of the animals and thus with development of pathology. NO
and cytokines induce the expression of matrix metalloproteases which
through their proteolytic activity may directly contribute to cartilage
degeneration.

While there is degeneration of cartilage in mucopolysaccharidoses
there is frequently hyperplasia of synovial tissue. TLR4 stimulation
does not only lead to increased production of proinflammatory
cytokines but also leads to alterations of ceramide levels in stimulated
cells. Interestingly, chondrocytes and synovial cells appear to react
differently to TLR 4 signalling with respect to ceramide levels.
Mucopolysaccharidosis VI chondrocytes showed a substantially
increased baseline ceramide level which could not be further
stimulated by the addition of dermatan sulphate. Since ceramide is
a proapoptotic signalling molecule this contributes to the increased
apoptosis of chondrocytes in mucopolysaccharidosis models. In
contrast, in synovial fibroblasts of mucopolysaccharidosis it was the
prosurvival lipid sphingosine-1-phosphate which was elevated. This
proliferative lipid explains that no apoptosis was seen in synovial
fibroblasts but rather an increased proliferation [6].

Another example of non-physiologic activation of signal transduc-
tion receptors is the activation of the TDAGS receptor by the lysolipid
psychosine in a mouse model of Krabbe disease. Since lysolipids and in
particular psychosine can affect various processes involved in signal
transduction the effects of this lysolipid will be comprehensively
reviewed in Section 2.4.

2.2. Modification of signal transduction receptor response

2.2.1. Impaired FGF-2 and BMP-4 signalling in Hurler syndrome

Hurler syndrome is caused by the deficiency of a-L-iduronidase
which leads to the accumulation of heparan and dermatan sulphate
fragments with reduced 6-O-sulphation [7]. Importantly, the accu-
mulation of heparan sulphate oligosaccharides is not restricted to
lysosomes but also occurs in the extracellular matrix. Of note,
extralysosomal accumulation of storage compounds occurs in various
lysosomal storage diseases and there are several examples in which

Krabbe disease globoid cell leukodystrophy

Early apoptosis of oligodendrocytes and Schwann cells leads to dys/demyelination. In infantiles the disease starts in between

3 and 6 months of age with hyperirritability and progresses rapidly to severe, lethal neurologic impairment.

Gaucher disease

Three types (1, 2, 3) can be distinguished.

Type 1 is the most common and most attenuated form. Lipid storing macrophages cause dysfunction of liver, spleen and bone
marrow. Symptoms involve hepatosplenomegaly, thrombocytopenia, skeletal deformations and bone fractures.

Importantly there is no nervous system involvement

Type 2 In addition to visceral symptoms patients have severe neurologic involvement. Brain biopsies show extensive

neuronal death.

Type 3 is intermediate between type 1 and 2

Niemann Pick Type A

The disease manifests early in infancy and is characterized by hepatosplenomegaly and rapid progressive neurodegeneration.

Lipid storing foam cells can be found in many visceral organs. In brain there are numerous swollen and vacuolated neurons in

particular in the cerebellum.
Niemann Pick Type C

Children develop progressive ataxia, dystonia and dementia and variably hepatosplenomegaly. Pathologically there are foam cells

in visceral organs and neuronal storage in the brain.

Hurler disease

Many organs are affected. Patients have skeletal deformities, hernias, coarse facial features, hepatosplenomegaly, cardiomyopathy,

corneal clouding and severe mental retardation.

Multiple sulphatase deficiency

Deficiency of an enzyme modifying sulphatases posttranslationally causes loss of activity of a wide range of sulphatases.

Clinically neurologic symptoms prevail. In addition patient have attenuated signs of mucopolysaccharidosis like hepatomegaly,
dysostosis multiplex and coarse facial features. Pathologically neurologic symptoms are due to progressive demyelination as a
consequence of sulpholipid storage in oligodendrocytes.

Gz gangliosidosis Tay-Sachs diseases
Sandhoff disease
Gn1 gangliosidosis

The diseases are dominated by rapidly progressing neurologic symptoms manifesting in the first year of life. Pathologically there
is extensive neuronal GM2 ganglioside storage.
Progressive neurologic symptoms start in the first year of life and are accompanied by facial dysmorphism, skeletal dysplasia and

hepatosplenomegaly. Extensive neuronal storage, axonal degeneration and demyelination are found pathologically. Storing
histiocytes are found in many visceral organs.

Fabry disease Onset during childhood or adolescense painful paresthesias, angiokeratoma, renal disease, cardiomyopathy and stroke. There is
no neuronal involvement. Pathologically there is widespread lipid storage predominantly in endothelial and smooth muscle cells
of blood vessels.

Severe central nervous system involvement developing during childhood typically with hyperactivity and aggressive behaviour
is characteristic. Compared to other mucopolysaccharidoses there is only mild visceral and skeletal disease.

Patients have hepatosplenomegaly, hernias, dysostosis multiplex, short stature and delayed development.

Sanfilippo syndrome

Mucopolysaccharidosis VII
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this extralysosomal accumulation is of high pathophysiologic rele-
vance. Glycosaminoglycans bind various growth factors. Binding is
specific and determined by the type of glycosaminoglycan, its
sequence, sulphation and three dimensional structure [8]. In some
cases glycosaminoglycans act as growth factor reservoirs and as
coreceptors in signal transduction. Although molecular details are still
unclear, fibroblast growth factor 2 (FGF-2) depends on heparan
sulphate in particular on its 6-O sulphation for binding to and efficient
signalling through the FGF receptor [7]. Binding of FGF-2 to this
receptor is reduced in cells derived from Hurler syndrome patients
and consequently also the proliferative response of these cells to FGF-
2 [9]. When heparan sulphate located on the surface of «a-L-
iduronidase deficient cells was enzymatically removed and replaced
by heparan sulphate isolated from normal cells the binding defect was
corrected and the proliferative response to FGF-2 was restored. In
contrast, heparan sulphate obtained from cells of Hurler syndrome
patients could functionally not replace enzymatically removed
heparan sulphate on normal cells. Thus, heparan sulphate oligosac-
charides accumulating extracellularly in Hurler syndrome interfere
with the binding of FGF-2 to its receptor and impair signal
transduction through this cascade. This reduces the survival promot-
ing activity of FGF-2 and may explain the increased rate of apoptosis
seen in cells of Hurler patients. FGF-2 acts proliferatively and
protectively on a number of cell types among which are neurons
and neuronal precursor cells [10]. Thus, it is conceivable that the
impaired signalling through the FGF-2-FGF receptor/heparan sul-
phate complex in Hurler syndrome contributes to neurodegeneration
occurring in this disease.

This concept of impaired growth factor signalling caused by the
extracellular and cell surface accumulation of abnormal glycosami-
noglycan fragments is likely to provide pathophysiologic explanations
also for the other mucopolysaccharidoses. In this context it is
interesting to note that proliferation of neural progenitor cells,
which depends on FGF-2 [11] was reduced in a mouse model of
Sanfilippo syndrome type B and a dog model of mucopolysacchar-
idosis VII, respectively [12,13].

The modulation of growth factor signalling may not only provide
an explanation for the neurodegeneration seen in the respective
diseases but also for skeletal pathology. Since many growth factors
bind glycosaminoglycans, storage is likely to affect also signalling
pathways important for development and maintenance of tissues
other than the brain. Thus, also BMP-4 (bone morphogenetic protein
4) signalling is impaired in Hurler syndrome [14]. BMPs are growth
factors which belong to the TGF-P growth factor superfamily and also
bind to heparan sulphate [15]. They are known to control proliferation,
differentiation and apoptosis in various tissues among which are the
nervous system and the skeleton [16], two tissues predominantly
affected in most mucopolysaccharidoses. Comparable to FGF-2, the
accumulation of abnormal heparan sulphate (and possibly also
dermatan sulphate) oligosaccharides impairs BMP-4 induced signal-
ling in cells of Hurler patients. Multiple studies have shown that BMPs
are important for bone and cartilage development [16] and therefore
alterations in BMP signalling pathways are likely to contribute to the
skeletal and cartilage abnormalities frequently found in patients with
mucopolysaccharidoses.

2.2.2. Impaired insulin signalling in a mouse model of Niemann Pick Type
C disease

Alterations of lipid composition of the plasma membrane due to
lipid storage can also modify signal transduction through transmem-
brane receptors. Niemann-Pick type C disease is caused by deficiency
of the NPC-1 protein involved in cholesterol trafficking. Patients
accumulate non-esterified cholesterol as well as sphingolipids. These
lipids are thought to play an important role in the formation of lipid
rafts which have been shown to be critical for insulin receptor
signalling in hepatocytes [17]. Cholesterol accumulation in Niemann-

Pick type C disease does not only occur in the endosomal/lysosomal
compartment but also in the plasma membrane itself [18]. Con-
comitantly, the fatty acyl chains of other membrane lipids were more
saturated in murine NPC-1 deficient cells resulting in reduced plasma
membrane fluidity [18]. Autophosphorylation of the insulin receptor
through its tyrosine kinase activity was impaired in hepatocytes of a
mouse model of Niemann-Pick type C disease [18]. Impaired
signalling was also found in isolated plasma membranes proving
that the mechanisms leading to reduced phosphorylation are effective
at the plasma membrane. In addition, reduction of cholesterol in the
plasma membranes isolated from Niemann-Pick type C hepatocytes
improved insulin receptor signalling which demonstrates that plasma
membrane lipid composition has a direct influence on signal
transduction. Impaired insulin receptor signalling may cause insulin
resistance comparable to diabetes type II. So far, however, there are no
indications of insulin resistance in Niemann-Pick type C patients or
the respective mouse model.

2.2.3. Insulin resistance in Gaucher disease type |

Insulin resistance, however, has been found in patients with
Gaucher disease type 1 [19]. This lipidosis is caused by glucosylcer-
amidase deficiency and results in the storage of glucosylceramide
primarily in macrophages. For reasons which are not entirely clear,
Gns ganglioside levels are also increased in tissues of patients with
Gaucher disease [20]. Gy3 ganglioside is known to modify insulin
receptor signalling substantially. In the absence of Gy3 ganglioside,
insulin receptor autophosphorylation is enhanced leading to
increased insulin sensitivity [21]. In contrast, increased Gy3 ganglio-
side levels impair insulin receptor signalling [22]. This increased level
of Gyi3 ganglioside may explain the insulin resistance found in patients
with Gaucher disease type 1 and would provide an example in which a
minor storage compound is responsible for one of the symptoms
found in the patients. Experimental prove, however, for this hypoth-
esis is still missing.

2.3. Signalling from endosomes

2.3.1. Endosomal TLR4 receptor levels are increased in a mouse model of
Niemann Pick Type C disease

Signalling through transmembrane receptors is not restricted to the
plasma membrane but continues in endosomes after receptor inter-
nalisation [23]. Furthermore, delivery of receptors from the plasma
membrane to the lysosome plays an important role in the physiologic
downregulation of receptors and thus termination of signalling.

Primary fibroblasts from Niemann-Pick type C patients secrete
increased amounts of cytokines such as IFN-p, IL-6- and IL-8. These
cytokines may play a crucial role in sustaining the microglial
activation which is thought to play a critical role in the neurodegen-
eration observed in this disease. Toll like receptors (TLR) are a family
of 12 members and are important in the regulation of innate immune
responses. In particular, activation of TLR-4 was shown to increase the
production of IFN-B, IL6 and IL8 the very cytokines which among
others are elevated in Niemann-Pick type C disease [24]. The TLR4
receptor is present on the plasma membrane as well as in endosomes
and its signalling is switched off by lysosomal degradation [25]. In
murine Niemann-Pick Type C cells the TLR4 level is substantially
increased in particular in the intracellular endosomal fraction.
Exposure to LPS a ligand of TLR4, caused increased cytokine
production and secretion of Niemann-Pick type C cells indicating a
more sensitive reaction towards this bacterial endotoxin [24]. These
data suggest that the disturbed endosomal/lysosomal trafficking in
Niemann-Pick type C (see Section 5) leads to increased endosomal
accumulation and possibly decreased lysosomal degradation of TLR4
receptors which results in more intense signalling. This in turn leads
to enhanced cytokine secretion contributing to the inflammatory
component in pathogenesis of this disease. Ablation of TLR4, however,
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in a mouse model of Niemann-Pick Type C disease decreased the
secretion of IL6 only partially and the number of activated glial cells
was not reduced. Thus, enhanced TLR4 receptor signalling may not be
a major contributor to pathogenesis in vivo. Nevertheless this example
provides an interesting pathogenic concept in which altered endoso-
mal trafficking alters receptor signalling due to changes in receptor
distribution. Since alterations of endosomal trafficking are not unique
for Niemann-Pick Type C disease but also occur in other lipidoses (see
Section 5) endosomal accumulation of signal transduction receptors is
likely to play a role also in other lysosomal storage diseases,
particularly lipid storage disorders.

2.4. Effects of psychosine and other lysosphingolipids on
signal transduction

A number of lysosomal disorders are caused by defects in
sphingolipid degradation. In these diseases storage of sphingolipids
is frequently accompanied by accumulation of the respective lysolipid
of the stored compound. Lysosphingolipids are derivatives of
sphingolipids which have lost the amide linked acyl chain and are
biologically active compounds [26]. Here we focus on psychosine the
lysolipid of galactosylceramide, since it has been most thoroughly
investigated.

2.5. Psychosine activates the TDAG8 receptor

Krabbe disease is caused by the deficiency of galactosylceramidase
which results in the inability to degrade the sphingolipid galacto-
sylceramide and its lysolipid derivative psychosine. Since galactosyl-
ceramide is abundant in myelin, severe myelin pathology and
consequently severe neurologic symptoms are the pathological hall-
mark of this disease. It is in particular the concentration of psychosine
(Fig. 1) which is dramatically increased in brains of Krabbe patients
and the respective animal model the twitcher mice [27-29]. Krabbe
disease is also known as globoid cell leukodystrophy, because of the
presence of giant, multinuclear macrophage/microglia derived cells
particularly in white matter which pathologists have described as
globoid cells. When a myelomonocytic cell line was exposed to
galactosylceramide and psychosine, only the latter induced the
formation of large multinuclear cells [30] resembling globoid cells.
In psychosine treated cells the cleavage furrow separating the cells
during cellular division forms initially but then disappears. Thus,
cytokinesis - the separation of cytoplasma following mitosis — cannot
be completed whereas nuclear division proceeds which provides an
explanation for the development of the giant, multinuclear globoid
cells (Fig. 2). The signals inhibiting cytokinesis in these cells are
transmitted through the orphan G-protein coupled receptor TDAG8
[T-cell associated gene 8] acting through an increase of cAMP.

Psychosine and some structurally related lysosphingolipids such as
glucosylsphingosine or sphingosylphosphorylcholine were identified
as specific ligands for this receptor [31]. The K, of psychosine for the
TDAGS receptor is around 3 pM, a concentration not reached under
physiologic conditions. In Krabbe disease, however, psychosine
accumulates to high micromolar concentration allowing activation
of the TDAGS receptor. Psychosine is an example in which a compound
accumulating in a lysosomal storage disorder provides a non-
physiologic ligand for a signal transduction receptor. The effects of
the activation of this receptor give a direct explanation for one of the
pathological hallmarks of the disease, the giant, multinuclear globoid
cells.

2.5.1. Psychosine inhibits protein kinase C

Compounds accumulating in lysosomal storage diseases can
directly affect components of signal transduction pathways down-
stream of receptor activation. Thus, lysosphingolipids in general are
potent reversible inhibitors of proteinkinase C [26]. Proteinkinase Cis
activated by the lipid diacylglycerol which is generated from
phosphatidylinositolbisphosphate in the course of signal transduc-
tion pathways mediated by phospholipase C. Lysosphingolipids
interfere with the interaction of diacylglycerol with proteinkinase C
preventing activation of the enzyme [26]. As mentioned above the
lysolipid psychosine accumulates in Krabbe disease and causes
apoptosis of oligodendrocytes and Schwann cells [32-34]. Platelet
derived growth factor and glial growth factor elicit a proliferative
response in Schwann cells by acting through a protein kinase C
mediated pathway [35]. Cultured Schwann cells isolated from
twitcher mice - the mouse model of Krabbe disease - respond less
well to these growth factors than normal cells. Moreover, Schwann
cells from twitcher mice are tenfold more sensitive to stauroporine —
an inhibitor of protein kinase C - than normal cells indicating a
preexisting inhibition of protein kinase C possibly by psychosine.
Interference with proteinkinase C mediated growth factor signalling
could therefore account partially for the loss of myelin producing
cells in Krabbe disease.

2.5.2. Psychosine interferes with IGF-1 signalling

Insulin like growth factor I (IGF-1) is one of the growth factors
acting on oligodendrocyte precursors. IGF-1 inhibits oligodendrocyte
precursor apoptosis [36] and promotes oligodendrocyte development
[37]. Mice deficient for the IGF-1 receptor have reduced number of
oligodendrocytes and show substantial decrease of the size of corpus
callosum and the anterior commissure two myelin rich regions. This
underlines the importance of IGF-1 receptor signalling for normal
oligodendrocyte development and myelination [38]. Thus, any
impairment in the signal transduction pathways of IGF-1 can possibly
contribute to the loss or malfunction of oligodendrocytes in Krabbe
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Fig. 1. Structure of psychosine. Lysosphingolipids accumulate in many sphingolipid storage diseases. They are derived from cerebrosides or gangliosides. In contrast to the original
lipids lysosphingolipids have lost the acyl side chain attached to the amino group of the sphingosine backbone. As a prominent example the figure shows the structure of

galactosylceramide (top) and its respective lysolipid psychosine (bottom).
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Fig. 2. Psychosine leads to the formation of multinuclear cells. HeLa cells were exposed to 35 uM psychosine and nuclei were stained with propidium iodide (c), control cells, (d)

exposed cells. Modified from [30].

disease. In oligodendrocytes IGF-1 acts through the activation of the
antiapoptotic PI3K-Akt/PKB or the MAPK/Erk1-2 signal transduction
pathways, respectively [39]. In murine oligodendrocyte precursor cells
psychosine causes a dose dependent decrease in both Akt und ERK1-2
phosphorylation accompanied by an activation of caspase-3 resulting
in apoptosis. When psychosine treated cells were exposed to high
doses of IGF-1, Akt phosphorylation and to a lesser extent also Erk1-2
phosphorylation was restored [39]. This led to a reduced cleavage of
caspase-3 resulting in a reduced apoptotic rate in oligodendrocyte
precursor cells [39]. Thus, the inhibition of IGF-1 mediated anti-
apoptocic signalling pathways by psychosine may be one reason for
the death of oligodendrocytes in Krabbe disease.

2.5.3. Psychosine activates phospholipase A2

Another major target of psychosine is phospholipase A, which
cleaves the membrane lipid phosphatidylcholine into lysophosphati-
dylcholine and arachidonic acid. Both products are biologically highly
active lipids involved in numerous physiological and pathophysiolo-
gical reactions. Injection of lysophosphatidylcholine into the brain
induces demyelination in vivo [40]. Importantly brain samples of
Krabbe disease patients and twitcher mice show increased levels of
lysophosphatidylcholine [41]. The second product of phospholipase A,
arachidonic acid causes generation of reactive oxygen species and free
radicals which pose a significant oxidative threat possibly contributing
to pathogenesis.

Exposure of oligodendrocytes to psychosine increases production
of lysophosphatidylcholine and release of arachidonic acid [41]. When
secretory phospholipase A, is inhibited, psychosine dependent
generation of arachidonic acid and lysophosphatidylcholine is
abolished. Moreover inhibitors of secretory phospholipase A, pre-
vented psychosine induced apoptosis and activation of caspase-3
whereas inhibitors of other phospholipase A, isoenzymes are not
effective. Thus, psychosine activates secretory phospholipase A, the
exact mechanisms, however, still needs to be resolved. Activation
enhances the production of lysophosphatidylcholine. This lipid
mediator induces caspase-3 mediated apoptosis which could be
relevant for the oligodendrocyte loss in Krabbe disease.

2.5.4. Psychosine reduces AMP activated kinase activity

AMP activated protein kinase (AMPK) is considered as a crucial
enzyme in the regulation of glucose and lipid metabolism. AMPK
senses cellular energy levels and maintains the balance between ATP
production and consumption. In a status of low energy it is activated,
switches off anabolic pathways and activates catabolic pathways and
vice versa. Exposure of cells to psychosine downregulates AMPK
activity which leads to a preponderance of biosynthetic pathways in
the treated cells. Oligodendrocytes treated with psychosine display

enhanced synthesis of fatty acids and cholesterol while 3-oxidation as
a catabolic pathway was inhibited. Thus, psychosine may also
influence the energy status of a cell by modulating the AMPK master
switch in energy balance [42]. The inhibition of this kinase by
psychosine favours energy consuming over energy generating path-
ways. The resulting lower energy load could also contribute to
oligodendrocyte loss.

2.5.5. Lysolipids in other lipid storage disorders

Lysosphingolipids accumulate in various lipid storing diseases and
may represent a factor of general importance for the pathogenesis
of lipidoses. Glucosylceramide is the major storage compound in
Gaucher disease. The respective lysosphingolipid glucosylsphingo-
sine, however, also accumulates in the brain of Gaucher type 2 and 3
patients, which suffer from severe neurodegeneration. When cul-
tured neurons were exposed to increasing concentrations of glucosyl-
sphingosine the compound clearly had a toxic effect on these cells,
implicating this lysolipid in the neurodegeneration occurring in this
disease [43]. Similarly to psychosine, glucosylsphingosine binds the
TDAGS8 receptor [31] and activates phospholipase A, [41]. It also
inhibits CTP:phosphocholine cytidylyl-transferase activity [44] (see
Section 2.3). This enzyme is rate limiting in phosphatidylcholine
synthesis. Since phosphatidylcholine is a major membrane lipid
glucosylsphingosine, induced changes in lipid biosynthesis may be of
pathogenic relevance. Similarly, lyso-Gy, ganglioside accumulates in
Tay Sachs disease and lyso-Gy; ganglioside in Gy gangliosidosis
[45].

Fabry disease is a lipidosis caused by the deficiency of -
galactosidase. This enzyme is involved in the degradation of
globotriaosylceramide. Fabry disease patients not only accumulate
globotriaosylceramide but also substantial amounts of the respective
lysolipid globotriaosylsphingosine [46]. One of the pathological signs
of Fabry disease is increased intima media thickness of the carotids
due to smooth muscle cell proliferation. Interestingly, when cultured
smooth muscle cells were exposed to globotriaosylsphingosine at
concentrations similar to those found in the plasma of patients, these
cells showed an increased proliferation, providing a direct explanation
for the increased intima media thickness [46]. How globotriaosyl-
sphingosine on the cellular level causes an increased proliferation of
smooth muscle cells remains to be determined.

3. Alterations of intracellular calcium homeostasis
3.1. Enhanced Ca™ ™ release from the ER in Gaucher disease

Many pathways involve the release of calcium ions from the
endoplasmic reticulum into the cytosol. Increase of cytosolic calcium
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ion concentration triggers a variety of cellular responses like e.g.
calcium/calmodulin dependent pathways. ER function is substantially
altered in various lipidoses.

Gaucher disease is caused by the deficiency of glucosylceramidase
which results in the storage of glucosylceramide. In the more severe
type 2 form of this disease neurodegeneration is one of the
dominating symptoms. Glucosylceramide not only accumulates in
lysosomes but its concentration is 10 fold increased also in micro-
somes isolated from brain of patients suffering from the more severe
neuronopathic forms of Gaucher disease [47].

Glucosylceramide storing neurons display an increased calcium
release from the endoplasmic reticulum in response to a glutamate
stimulus [48] (Fig. 3). This results in enhanced glutamate induced
neurotoxicity which may explain partly the neurodegeneration seen
in this disease. There are two endoplasmic reticulum located ligand
gated Ca™ " channels which release calcium into the cytoplasm: the
inositol-1,4,5-trisphosphate (InsP3) receptor and the ryanodine
receptor. The former opens upon binding of InsP3 which is
generated in many different signal transduction pathways, the latter
opens upon binding of cycloADP-ribose or palmitoyl-CoA, respec-
tively, the role of which in signal transduction pathways is currently
poorly understood. More importantly, the ryanodine receptor is
controlled by cytoplasmic calcium levels. Increased cytosolic calcium
opens the ryanodine receptor which leads to a further calcium
release from the endoplasmic reticulum. Glucosylceramide accumu-
lating in the membranes of the endoplasmic reticulum sensitizes the
ryanodine receptor to agonist mediated calcium release from the
endoplasmic reticulum. It does not affect the calcium release
properties of the InsP3 receptor [48]. The sensitization occurs at
concentrations of glucosylceramide which are well in the range of
those found in brain microsomes of patients [47,48]. Thus, glutamate
may induce an increase in cytosolic calcium either by opening of
ionotropic calcium permeable glutamate receptors or through the
increase of InsP3 by activation of metabotropic receptors. In both
cases the cytoplasmic calcium increases and triggers calcium
induced opening of the ryanodine receptor. Since the receptor is
sensitized by glucosylceramide this results in an increased response
to glutamate in storing neurons. Enhanced glutamate toxicity results
in an increased rate of apoptosis which may explain partly the
neurodegeneration occurring in the severe type 2 forms of Gaucher
disease.

Alteration of ryanodine receptor mediated calcium release from
the endoplasmic reticulum was also demonstrated in microsomes
isolated from autoptic brain of Gaucher patients. Importantly, the
degree of agonist induced release of calcium from the isolated
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Fig. 3. Glucosylceramide accumulation alters neuronal response to glutamate. Primary
rat control (open circles or rhombus) or glucosyceramide storing neurons (closed
circles) were exposed to glutamate and the release of Ca* * from the ER was measured by
using a fluorescent dye. Delta F/F is the change in fluorescence (F) intensity divided by
basal fluorescence as a measure of calcium response. The response of glucosyceramide
storing cells to glutamate is larger than the response of control cells. Figure from [48].

microsomes correlated with disease severity: the strongest response
was found in microsomes of patients suffering from the most severe
neuronopathic form whereas less calcium was released from micro-
somes of patients suffering from the attenuated subacute or non-
neuronopathic forms. These results provide strong evidence that
alterations of calcium release from the endoplasmic reticulum are
pathogenetically relevant in vivo [49].

3.2. Reduced reuptake of Ca™™ into the ER in GM1 and
GM?2 gangliosidosis

Alterations of calcium homeostasis in the endoplasmic reticulum
have also been described for Gy; ganglioside, Gy, ganglioside and
some lysosphingolipids. Surprisingly, the mechanisms through which
the various lipids act are distinct. Whereas glucosylceramide
sensitizes the ryanodine receptor, Gy and Gy, ganglioside in contrast
inhibit the reuptake of calcium into the endoplasmic reticulum by
lowering the Vmax of sarco/endoplasmic reticulum Ca*™ ATPase
(SERCA). SERCA is the endoplasmic reticulum located calcium
transporter which pumps calcium from the cytoplasm back into the
endoplasmic reticulum [50] to terminate Ca™" mediated cellular
responses. Since inhibition of SERCA activity has been shown to result
in neuronal apoptosis [51] this may provide at least a partial
explanation for neurodegeneration in the Gy, gangliosidoses, Tay-
Sachs and Sandhoff disease, respectively. Since secondary accumula-
tion of Gy, ganglioside is a widespread phenomenon in lysosomal
storage diseases (see Table 1) alterations of SERCA activity may play a
more general role in pathogenesis of lysosomal disorders. Reduced Ca™* *
reuptake by SERCA is also of importance in Niemann-Pick type A
disease which is caused by the deficiency of sphingomyelinase which
results in sphingomyelin storage. In this case, however, reduction of
SERCA activity was caused by a severe reduction of SERCA expression
[52] rather than inhibition. Moreover, this is accompanied by an
almost complete loss of expression of the InsP3 receptor in the
cerebellum [52]. The fact, that different structurally related lipids
target important regulators of endoplasmic and cytosolic calcium
levels points to a physiologically relevant regulation which is so far
poorly understood.

3.3. Unfolded protein response in Gyy; gangliosidosis

The dysregulated calcium homeostasis in the endoplasmic
reticulum does not only lead to an increase in cytoplasmic calcium
but also to a concomitant decrease of calcium in the endoplasmic
reticulum. Proper folding of proteins inside the endoplasmic
reticulum is guided by a number of chaperones - such as calnexin
or calreticulin - which critically depend on calcium. If the cytosolic
calcium concentration is increased at the expense of the calcium
within the endoplasmic reticulum this interferes with proper protein
folding. Gy; gangliosidosis is caused by the deficiency of p-
galactosidase resulting in storage of Gy ganglioside. Gyy; ganglioside
storing cells elicit an unfolded protein response as a consequence of
altered calcium homeostasis in the endoplasmic reticulum [53]. This
may be a direct consequence of the SERCA inhibition by accumula-
tion of Gy ganglioside in the endoplasmic reticulum [50]. Usually
this unfolded protein response improves cell survival because the
accumulation of protein aggregates due to external or internal effects
is prevented. Cellular stress, however, elicited by a continuous
unfolded protein response results in apoptosis which is among
other pathways initiated by the activation of the endoplasmic
reticulum located caspase-12. Thus, the alterations of endoplasmic
reticulum calcium homeostasis provide two explanations for an
enhanced apoptosis contributing to neurodegeneration in lipidoses.
The increase in cytosolic calcium may trigger signal transduction
pathways to an extent which is toxic for the cell and the depletion of
calcium in the endoplasmic reticulum leads to a prolonged unfolded
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protein response which results in activation of caspase-12 and
apoptosis [53]. For a more detailed review of the GM; ganglioside
storage induced pathways involved in the unfolded protein response
the reader is referred to [54].

4. Alterations in lipid biosynthesis

Little is known about how cells measure and regulate the complex
lipid composition of cellular membranes. It seems obvious that
synthesis and degradation of the various lipids must be fine tuned
to maintain membrane homeostasis. Therefore storage of a particular
lipid is likely to affect the metabolism of other lipids.

4.1. Synthesis of phospholipids is reduced in Gy, gangliosidosis

Neurite growth of embryonic hippocampal neurons isolated from
Gmz ganglioside storing Sandhoff mice is significantly decreased
compared to controls [55]. Metabolic labelling experiments revealed
a decreased level of phospholipids in the neurons from Sandhoff mice
[56]. These findings were confirmed by in vivo labelling experiments
in mice. Labelling of phosphatidycholine was decreased in the brain
of GM, ganglioside storing Sandhoff mice whereas labelling in liver
and spleen was unaffected. The same applies also for the steady state
levels of these lipids in mice [56] and autopsy samples of patients
[57]. Key enzymes in the synthesis of phosphatidylcholine and
phosphatidylserine are CTP:phosphocholine cytidylyl-transferase and
phosphatidylserine synthase, respectively. Compared to wild type
mice, activities of both enzymes are decreased in the brain of
Sandhoff mice. A direct inhibitory effect of Gy, ganglioside was
excluded. Rather data suggest that regulation of activity of these
enzymes occurs posttranslationally. This suggests that Gy, ganglio-
side storage affects synthesis of phospholipids which are major
components of cellular membranes and precursors of important lipid
second messengers. The reduced synthesis rate of these lipids may
explain the impaired neurite growth of neurons derived from
Sandhoff mice.

4.2. Enzymes of phospholipid synthesis are activated upon
glucosylceramide storage

In contrast, glucosylceramide storing neurons from mice repre-
senting a model of Gaucher disease show an increase in the number
of axonal branch points and significantly longer neurites than control
mice [58]. In these cells the levels of various phospholipids were
elevated. This elevation is most likely caused by a direct activation of
CTP:phosphocholine cytidylyl-transferase the rate limiting enzyme
in the synthesis of phosphatidylcholine by glucosylceramide.
Although the relevance for neuronal pathology in the severe forms
of Gaucher disease remains unclear the increased synthesis of
phosphatidylcholine may explain partly the visceral pathology of
Gaucher disease. Visceral pathology is mainly due to glucosylcer-
amide storage in macrophages which are enlarged. Glucosylceramide
stimulates phospholipid synthesis not only in storing neurons, but
also in macrophages [59]. The increase in macrophage size upon
lipid storage depends on the presence of CTP:phosphocholine
cytidylyl-transferase since macrophages of mice deficient for this
enzyme do not become enlarged when exposed to glucosylceramide.
Thus, enlargement of macrophages is due to alterations in mem-
brane lipid biosynthesis.

Furthermore, Gaucher patients display hepatosplenomegaly. Of
note, the amount of glucosylceramide stored in the liver is too low to
account for the increase in liver size [60]. Wild type mice in which the
degradation of glucosylceramide was pharmacologically inhibited
developed hepatomegaly due to increased cell proliferation [61]. Thus,
hepatosplenomegaly in Gaucher patients may be due to alterations of
phospholipid synthesis leading to enlarged macrophages and gluco-

sylceramide induced cell proliferation enhancing the number of cells
in the liver of Gaucher patients.

5. Alterations of trafficking

Since the endosomal and lysosomal pathway are functionally
connected it is not surprising that lysosomal storage affects intracel-
lular sorting events. In particular, in the sphingolipidoses it can be
expected that accumulation of membrane lipids affects intracellular
membrane flow and sorting.

5.1. Trafficking of lipids is altered in lipidoses

When fluorescently labelled short acyl chain derivatives of lacto-
sylceramide were added to cultured normal cells and cells of patients
suffering from various lipid storage diseases a remarkable difference was
noted. Whereas in normal cells the lactosylceramide derivative is
endocytosed and transported to the Golgi apparatus, in cells of patient
with lipid storage diseases, it accumulates in the endosomal/lysosomal
pathway, suggesting an alteration of the endosomal sorting common to
all lipidoses [62]. Endocytosis of the lactosylceramide derivative is
clathrin-independent and occurs through a caveolae-mediated path-
way. This sorting is substantially influenced by cholesterol levels.
Depletion of cholesterol from cells of patients suffering from lipidoses
restores sorting of lactosylceramide derivatives to the Golgi apparatus.
Similarly, when normal cells are overloaded with cholesterol the
lactosylceramide derivative accumulates in the endosomal/lysosomal
pathway asit does in lipidosis cells. This finding suggests that cholesterol
homeostasis may generally be altered in patients with lipidoses [62]. The
control and proper regulation of vesicle transport depends on ras-
associated binding proteins (rab-proteins) which currently encompass a
family of more than 60 proteins. Overexpression of the small rab 7 and 9
proteins in Niemann-Pick type C cells restores the abnormal sorting
showing that these proteins have a role in the sorting of glyco-
sphingolipids to the Golgi apparatus and that their function may be
perturbed in lipid storage diseases [63].

5.2. Alterations of receptor trafficking in lipidoses

So far there is only little information on alterations of protein
sorting in lysosomal storage disorders. Niemann-Pick disease type A is
caused by the deficiency of sphingomyelinase. Storage of sphingo-
myelin occurs among other cells also in lung macrophages of patients.
Lung macrophages isolated from a sphingomyelinase deficient mouse
show a reduced endocytosis of the mannose-6-phosphate receptor
whereas the endocytosis of the mannose receptor is unaltered [64].
The underlying mechanisms, however, by which lipid storage affects
specifically the endocytosis of the mannose-6-phosphate receptor are
unknown. Effects on the endocytosis of receptors, however, may
depend on the accumulating lipid and the cell type investigated. Thus,
in sulphatide storing kidney cells from a mouse model of metachro-
matic leukodystrophy both the endocytosis of the mannose-6-
phosphate receptor and the transferrin receptor are enhanced. A
more detailed examination revealed that whereas the internalisation
rate of both receptors is enhanced, their recycling rate is reduced. The
data are in accordance with a generally increased endosomal pool in
sulphatide storing kidney cells [65]. The effect of the accumulated lipid
on receptor sorting appears to be indirect, since accumulated
sulphatide and mannose-6-phosphate receptors do not colocalize. An
altered localization of the mannose-6-phosphate receptor towards the
late endosomal compartment was also reported for cells from
Niemann-Pick Type C patients [66]. Thus, the endosomal pool of
receptors may be increased in several lipid storing diseases. This could
also provide an explanation for increased concentration of the TLR4
receptor in endosomes of Niemann-Pick type C cells (see Section 2.3)
[24].
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6. Role of autophagy in pathogenesis

The lysosome plays a major role in an important degradation
pathway, autophagy, which mediates the cellular turnover of proteins
and organelles. Fusion between the autophagosome and the lysosome
is a crucial step in this process [67]. The physiological relevance of
autophagy was first identified in transgenic mice in which essential
autophagy genes were disrupted, resulting in accumulation of
polyubiquitinated protein aggregates and neurodegeneration, thus
indicating that autophagy is required for neuronal survival [68,69].
Furthermore, protein aggregates accumulating in some common
neurodegenerative diseases, such as Parkinson, Alzheimer and
Huntington diseases, were found to be autophagy substrates [70],
leading to the possibility of treating these diseases with autophagy-
inducing drugs [71,72].

During autophagy a large portion of cytosol is sequestered in
specific vesicles (autophagosomes, Avs) and then degraded upon
fusion with lysosomes. Through basal autophagy the cell regulates
also turnover of organelles, such as mitochondria, peroxisomes and
endoplasmic reticulum. Beyond this basal activity, autophagy can be
induced as response to many adverse circumstances: during nutrient
depletion autophagy allows generation of ATP from catabolism of
macromolecules; during oxidative stress, induction of autophagy
allows the efficient removal of damaged organelles and proteins from
the cytoplasmatic environment, acting as pro survival pathway [72].
Induced autophagy leads to abnormal overproduction of autophago-
somes in the cells, a condition often associated to cell death. However,
it is still unclear whether this represents an attempt to survive, or is
itself the mechanism by which the cell dies (autophagic or type 2 cell
death). It is reasonable to assume that beyond a certain threshold
autophagic activity results in massive degradation of organelles and
molecules that leads to cell death [73].

Recently, there has been an increased interest in investigating the
autophagic pathway in lysosomal storage diseases based on the
hypothesis that lysosomal storage may interfere with lysosomal
contribution to the autophagic process. The rationale behind this
interest hinges on the observation that neurons from animal models
of lysosomal storage diseases show an accumulation of protein
aggregates and of mitochondria, which are autophagy substrates.
Table 3 summarizes the data obtained in the lysosomal storage
diseases in which an involvement of autophagy was investigated.

The first evidence for an involvement of autophagy in lysosomal
storage diseases was obtained in a mouse model of Danon disease, in
which accumulation of autophagic vacuoles was observed in several
tissues [74]. The accumulation was limited to early autophagosomes
and, therefore, a defect in a maturation step was proposed [74].
Similarly, autophagosome accumulation was observed in neurons
from murine models of Neuronal ceroid-lipofuscinoses (NCLs) [75,76].

Interestingly, the presence of activation of autophagy was suggested
as a means to provide a pro-survival feedback response to the disease
process [79]. In mucolipidosis type IV it was postulated that a
defective autophagic recycling of mitochondria may lead to aberrant
mitochondrial fragmentation that in turn activates an apoptotic-
mediated cell death [77].

A profound disturbance of the autophagic pathway was demon-
strated in a mouse model of Pompe disease in which an increase of
autophagic-like vacuoles was detected. It is interesting to note that in
this study the authors linked the autophagic build up to a deficiency of
the trafficking/processing of the recombinant therapeutic enzyme
along the endocytic pathway [78], suggesting that autophagy
dysfunction may have an impact in determining the efficacy of
enzyme replacement therapies [79].

The autophagic pathway was also studied in lysosomal storage
diseases caused by defective lipid trafficking, such as Niemann Pick
type C and the sphingolipidosis Sandhoff disease. A direct role of
autophagy in the neuronal cell death observed in Niemann Pick type C
was proposed [80]. Moreover, analysis of tissues derived from a
Niemann Pick type C mouse model and of fibroblasts isolated from
Niemann Pick type C and Sandhoff patients showed increased LC3
levels and elevated number of autophagic vacuoles [80]. Importantly,
in this study the authors demonstrated an enhanced autophagic
degradation of long-lived proteins associated with increased expres-
sion of Beclin-1, which is activated during autophagy induction [81].

A block of autophagy was recently demonstrated in two models of
lysosomal storage diseases, multiple sulphatase deficiency (MSD) and
mucopolysaccharidosis type IIIA [mucopolysaccharidosis-IIIA] [82,83].
Co-localization between autophagosomes and lysosomes was sig-
nificantly reduced in cells derived from affected mice, suggesting a
fusion defect (Fig. 4). Functional evidence for an impaired degradation
of autophagic substrates was obtained by expressing exogenous
aggregate-prone protein, such as expanded Huntingtin and mutated
alpha-synuclein, in cultured cells from MSD mice, resulting in a
decreased rate of their clearance. As a consequence of impaired auto-
phagy, significant accumulation of polyubiquitinated proteins and
aberrant mitochondria was detected in tissues from affected mice
(Fig. 5). The multifunctional protein “p62/A170/SQSTM1”, which is
involved in the targeting of polyubiquitinated proteins to the
autophagosomes and selectively degraded via the autophagic path-
way, was also found to accumulate in cells from affected mice, further
supporting a defect of autophagy [82].

Finally, increased autophagy and concomitant activation of beclin-
1 were recently reported in another lipid storage disease, G-
gangliosidosis [84] in which autophagy dysfunction was proposed to
be responsible of neuronal cell death.

Altogether these studies firmly establish the presence of autophago-
some accumulation in lysosomal storage diseases. This may be the

Table 3
Autophagy involvement in lysosomal storage disorders
Disease Autophagosomes Autophagy dysfunction Induction of autophagy Block of autophagosome- Reference(s)
accumulation in disease pathogenesis (Beclin-1 activation) lysosome maturation
(LC3-II increase)
Danon disease aF aF ? P Tanaka et al., Nature 2000 [74]
Neuronal ceroid- + aF aF ? Koike et al., Am. J. Pathol. 2005; Cao et al.,
lipofuscinoses (NCL) J. Biol. Chem 2006 [75,76]
Pompe 3F aF ? ? Fukuda et al., Ann. Neurol. 2006 [78]
Mucolipidosis type IV~ + P ? aF Jennings et al., J. Biol. Chem. 2006 [77]
Niemann-Pick C (NPC) + + + - Ko et al., Plos Genetics. 2005; Pacheco et al.,
Hum. Mol. Genet. 2007 [80,]
Multiple Sulphatase aF P = aF Settembre et al., Hum. Mol. Genet. 2008 [82]
Deficiency (MSD)
Mucopolysaccharidosis  + aF = aF Settembre et al., Hum. Mol. Genet. 2008 [82]
type IIIA (MPS-IIIA)
GM1-gangliosidosis aF aF Eis ? Takamura et al., Biochem. Biophys. Res.

Commun. 2008 [84]

Overview of alterations of autophagy in lysosomal storage disease.
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Fig. 4. Defective autophagosome-lysosome fusion in MSD MEFs. Co-localizazion of LAMP1 and LC3 in wild type and MSD MEFs stained for LAMP1 (red) and LC3 (green). Confocal
microscopy shows a reduction in the extent of co-localization of LAMP1 and LC3 proteins in MSD cells indicative of a reduced autophagosome-lysosome fusion. From [82].

result of either an induction of autophagy, or of a defective autophago-
some maturation. In some lysosomal storage diseases, such as NCL,
Niemann Pick type C and GM1 gangliosidosis, autophagy was found to
be activated as evident from increased levels of beclin-1 [75,76,81,82].
In other types of lysosomal storage diseases, such as Danon disease,
Mucolipidosis IV, mucopolysaccharidosis-IIIA and MSD, evidences for a

partial block of autophagosome maturation was observed [74,77,82].
More specifically, impaired autophagosome-lysosome fusion was
demonstrated in MSD cells [82]. A unifying hypothesis that may solve
this apparent discrepancy between a block and an induction of
autophagy in lysosomal storage diseases is that lysosomal storage
may affect fusion efficiency between autophagosomes and lysosomes,
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Fig. 5. Block in autophagy leads to accumulation of dysfunctional mitochondria. Electron microscopy analysis of the brain cortex neurons from MSD mice and wild type littermates
(bar: wild type =2.1 pm; MSD = 1.8 um). MSD neurons contain a significantly higher number of mitochondria (m) compared to wild type neurons. The mitochondrial membrane
potential (A¥m) measured in MSD MEFs is reduced compared to wild-type cells, as evidenced by the increase in the percentage of cells that lost their A¥m, thus indicating that

mitochondria accumulating in MSD are dysfunctional. From [82].
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leading to a partial block of autophagy. This may in turn activate a
compensatory feedback mechanism through which autophagy is
induced (most likely by beclin-1-mediated activation). Both processes,
the block and the activation of autophagy, may mediate pathogenesis in
different ways but they belong to the same dysfunctional process. In
other words, the consequence of autophagy dysfunction on cellular
physiology may depend on the severity of the block and on the ability of
autophagy induction response to overcome this block without
generating an excessive and deleterious build up of the autophagic/
lysosomal compartment.

The evidence for a defective autophagy in lysosomal storage
diseases suggests a model by which the secondary accumulation of
autophagic substrates, such as polyubiquitinated proteins and
aberrant mitochondria, has a leading role in LSD pathogenesis,
possibly even more than the primary storage material (Fig. 6). This
model, if correct, may represent an important point of intersection
between lysosomal storage diseases and more common types of
neurodegenerative diseases such as Alzheimer, Parkinson and Hung-
tinton, suggesting the possibility of overlapping therapeutic strategies.

7. Conclusion

Considering that it is less than 60 years ago that lysosomes were
discovered research on lysosomal storage diseases has moved forward
at a tremendous pace. The current challenge in the field is to
understand how the stored material affects cellular and organ
function. Recent years have shown that accumulating compounds
can act as unphysiologic ligands of signal transduction receptors.
Examples are the lysolipid psychosine and the glycosaminoglycan
fragments in Krabbe disease and mucopolysaccharidosis, respectively.
In Hurler syndrome glycosaminoglycan fragments can modulate
growth factor receptor responses and altered membrane lipid
composition in Niemann Pick type C disease impairs insulin receptor
autophosphorylation. In addition, endosomal TLR4 receptor accumu-
lation in this disease may result in enhanced signalling from this
receptor. Psychosine accumulates in Krabbe disease and is the most
thoroughly examined lysolipid. It affects various enzymes involved in
signal transduction pathways and in all likelyhood this is also relevant
for lysolipids accumulating in other lipidoses. Glucosylceramide, Gyq
and Gy; ganglioside enhance calcium release from the ER or inhibit

[LYSOSOMAL STORAGE |

| Defective autophagosome-lysosome fusion |

| IMPAIRED AUTOPHAGOSOME MATURATION |

| secondary
| storage

Accumulation of

Accumulation of
toxic proteins aberrant mitochondria

____________________

| Cellular damage/distress

[ Inflammatory response ‘

CELL DEATH

Fig. 6. A proposed model for the pathogenesis of LSDs. Lysosomal storage leads to a
reduced ability of lysosomes to fuse with autophagosomes. This results in a block (at
least partial) of autophagy maturation and defective degradation. Consequently
autophagy substrates such as polyubiquitinated protein aggregates and dysfunctional
mitochondria accumulate and promote cell death. The inflammatory response to cell
damage further contributes to cell death.

Table 4
Common mechanisms in various lysosomal disorders

Inflammation Altered
Calcium
homeostasis

Disease Autophagy

Dysfunction

Lysolipid
Accumulation

Mucopolysaccharidoses (MPS)
MPS I (Hurler)
MPS III (Sanfilippo) i
MPS VI (Maroteaux-

Lamy)
MPS VII (Sly) +
MSD + +

++ +

Spingolipidoses
Fabry
Gaucher S8 S
Globoid cell 4L
leukodystrophy
(Krabbe)
Niemann-Pick A AF
Niemann-Pick C +
G gangliosidosis aF
G2 gangliosidosis
(Sandhoff)
Multiple sulphatase i +
deficiency

+ 4+

Glycogenosis
Pompe (glycogen- 4F
storage-disease type II)

Table summarizes pathogenically relevant mechanisms likely to play a role in various
lysosomal storage disorders. The role of inflammation was not discussed in this review.
The reader is reffered to a recent review of Castaneda et al. on immune system
alterations in lysosomal disorders [85].

the reuptake, respectively. Consequently altered Ca™* homeostasis in
Gaucher disease and Gyjor Gy gangliosidosis may be of high
pathogenic relevance. It should be emphasized that most of these
alterations in cellular processes are not caused by storage material
present in the lysosome, but rather by accumulation at other
intracellular and extracellular locations. Some disease mechanisms
are not unique to specific disorders but are of relevance in various
diseases (Table 4). This applies for impaired autophagy, inflammation,
alteration of Ca™* homeostasis and lysolipid accumulation.

We are currently experiencing the era of enzyme replacement
therapy. Although for most diseases it will not be curative it must be
appreciated as an important step towards treatment of these diseases.
The scientific basis of this therapy was worked out in the 70ies and
80ies of the last century. Similarly, the current revelation of
pathogenic pathways is likely to identify therapeutic targets which
can be used for the benefit of the patients in future.
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