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Abstract-Mathematical essence and structures of the feedforward neural networks are investi- 
gated in this paper. The interpolation mechanisms of the feedforward neural networks are explored. 
For example, the well-known result, namely, that a neural network is an universal approximator, can 
be concluded naturally from the interpolative representations. Finally, the learning algorithms of the 
feedforward neural networks are discussed. @ 2003 Elsevier Ltd. All rights reserved. 
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1. INTRODUCTION 

Because of its learning and representation abilities, neural networks have been applied to various 
practical areas. In this paper, we wish to study the rich meanings of the neural approach from 
the mathematical and interpolation standpoint. One of the problems is the transfer function 
generally used in the literature, where there exists no paralysis or inhibition after excitation. 
Although, in reality, a neuron cannot stay excited indefinitely. In this work, we assume there 
exists paralysis. Based on this assumption, we obtained trapezoidal and triangular neurons. By 
the use of these neurons, we can obtain various interpolation functions, which show naturally 
why the neural network is an universal approximator. 

In the following, mathematical neural network and fuzzy neurons are first defined in the next 
section. Then, in the following two sections, we obtained various interpolation functions. Finally, 
the learning algorithm is discussed. 
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2. MATHEMATICAL NEURON AND 
MATHEMATICAL NEURAL NETWORK 

The most frequently encountered artificial neuron models are neurons with multiple inputs 
and single output such as the McCulloch and Pitts (MP) neuron shown in Figure 1, where 
x = (x1,52,... ,z,) represents the input vector, W = (WI, wz, . . . , w,)~ a weight vector, 8 the 
threshold value, and cp the input-output function or the activation function of the neuron. 
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Figure 1. McCulloch and Pitts artificial neuron. 

Let z represent the output, then the relationship between input and output can be represented 
a.9 

Depending on the transfer function used, this type of artificial neuron can be further divided 
into the two-valued output model and the continuous-valued output model. 

MP NEURON WITH TWO-VALUED OUTPUT. For the two-valued output, cp is a step function 

‘p (u> = 
{ 

1, uL0, 
0, u < 0. 

MP NEURON WITH CONTINUOUS-VALUED OUTPUT. Here the transfer function, cp, can be a 
trapezoidal function, a sigmoidal function, or a displacement function 

i 

0, u < uo, 
u - 210 

‘PC”) = - Ul - uo’ 
2LO<U5Ulr (3) 

I 1, u > Ul, 

cp (u) = [l + exp (-u + c)]-’ , 

cp (u) = 21 + c, 

c = constant, 

c = constant. 
(4) 

(5) 

Notice that, when c = 0, the displacement function reduces to an identity function. 

REMARK 1. When (Vu) (v)(u) E [O,l]), th e neuron can be called a fuzzy neuron. Further- 
more, the neural network linked by fuzzy neurons should be called a fuzzy neural network. This 
definition of a fuzzy neuron is weak and it can be strengthened. Notice the term “X W” in 
equation (1) which means ~~., wixi, if the pair of operators (+, .) in this term is replaced by 
the pair of operators (V, A), then this term becomes Vn,ln(wi A ZQ). With this new term, the 
neuron becomes a strengthened fuzzy neuron. 

Based on the above-defined neuron models with multiple input and single output, we can define 
a “mathematical neuron” as follows. 
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DEFINITION 1. Let R be the real number field, for any D c R” and E c R, a function, 

f:D---+E, (Zl,Z2,...,4 -z=f(Zl,Z2,...,GI), 

is &led a mathematical neuron. When f(D) = (0, 1) or (-1, l}, f is ca1Jed a two-valued 
mathematical neuron; when f(D) C [0, 11, f is called a fuzzy mathematical neuron. 

Clearly, the neuron defined by equation (1) is a special example of the mathematical neuron 

z= f (Zl,Z2,... ,xnj+(@jzi-e). 

A network is called a fuzzy mathematical neural network, if it is formed by fuzzy mathematical 
neurons. 

Now, let us consider the structure of the activation function. Equation (2) can be generalized 
and rewritten as 

Thus, equation (1) simplified to 

z=cp’ ~WiXi =fp’(W.X), ( > i=l 
(7) 

then cp’(W . X) = cp(W . X - 0). In other words, cp and ‘p’ are equivalent. The threshold 8 has 
been absorbed into cp’. Let y = W. X - 8, then p’(y) has the form 

d(Y) = { 
1, ee, 
0, y < e. (8) 

Moreover, the activation functions defined by equations (3)-(5) can be treated similarly. 
If equation (2) is rewritten as 

cp (4 = 
1 

1, u 2 8, 
0, u < e, (9) 

then the relationship between input and output represented by equation (1) can be simplified as 

z=cp kWjXi =cp(W.X). 
( > i=l 

Figure 2 illustrates the activation function defined by equation (9). 
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Figure 2. The activation function. 
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From Figure 2, we see that the neuron will be excited when u 1 8, i.e., (P(U) = 1. However, 
there is a problem in this plot, because there is no limit on the value of u. The question is whether 
there exists an upper bound on u such that p(u) = 0 when u 1 ug. 

In reality, for any neuron, u cannot increase indefinitely. From a biological standpoint, once 
the neuron is excited, there should exist a bound 0’ > 8 such that when u 2 8’, the neuron will 
turn to paralysis or inhibition. In other words, there should exist an 8’ > 8 such that (p(u) = 0 
when u > 8’. Thus, equation (9) should be rewritten as 

cp (4 = 
1, 8 I u < e’, 
0, otherwise. 

(11) 

Figure 3 illustrates an activation function with bounded excitation as defined by equation (11). 
In fact, excitation and inhibition should not happen suddenly or catastrophically. There should 
exist transition or buffer zones for both excitation and inhibition. Thus, a more reasonable 
activation function may be the following trapezoid, which is illustrated in Figure 4. 

‘11 - e1 
i&-q- e1 <u5e2, 

(12) 

Furthermore, in a certain special situation, we may have the equality, 82 = 03. Thus, equa- 
tion (12) may degenerate into the following “triangle wave” activation function (see Figure 5): 

P(U) = e3 - u - e2<U<e3, e3 - e27 
0, otherwise. 

A 

44 
1 . , . . . . . . . . . . 

c 21 
0 8 8’ 

Figure 3. Activation function with upper bound. 

(13) 

Figure 4. Trapezoidal activation function. 
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Figure 5. ‘Itiangle wave activation function. 

For a given n-dimensional vector W = ( ~1, ~2, . . . , w,)~, if we map C : Rn ---+ R such that 

72 

(QrX2,. . . ,Z,)HC(zq,Z2 )...) L&~WiZi=X.WI 
i=l 

then all the neurons defined above can be expressed as f = cp o C, i.e., 

z=f(21,22,...,5,) = ((POC)(~1,52,~~~~GJ 

=(P(c(m,~27... ,Xn))=p ~WiXi =cPCx’W. 

( > i=l 

(14 

This reflects the well-known fact that neurons have a basic feature of integrating by C first and 
then activating by cp. 

3. INTERPOLATION OF FEEDFORWARD NEURAL NETWORK 

A typical feedforward neural network is shown in Figure 6. Since a complicated network can 
always be decomposed into simpler ones, we shall start our investigation of the mathematical 
essence and structure of neural network from some simpler components. 
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Figure 6. Feedforward neural network. 
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Figure 7. A two-layer feedforward neural network with single input and single output. 

In most cases, a feedforward neural network can be regarded as a mapping: 

When n = m = 1, F reduces to a function of a single variable: y = F(x), which can be represented 
by a two-layer feedforward neural network with single input and single output as shown Figure 7. 

Now, let the activation function of the neuron fi be (pi, i = 1,2,. . . , n+l, the connection weight 
from fi to fn+l be ‘wi, i = 1,2,. . . , n, and pn+l be the identity function: (P~+~(u) = u; then from 
equation (lo), the output of the network, which is illustrated in Figure 7, can be represented by 

F (xl = Y = fn+l (fl (x) , f2 (x) , . . . , fn (x)1 

= fn+l ($71 (x) , (p2 (z> 1.. . 1%(x)) =%+l (@(X,Wi) 
(15) 

= 2 Cpi(X)Wi. 

i=l 

Clearly, equation (15) is just the general formula of interpolation, where the activation functions 
ql,cpz,. . . , (P,, form the basic functions of interpolation. In other words, given an appropriate set 
of basic functions, (~1, (~2,. . . , (Pi, equation (15) forms an interpolation function. 

EXAMPLE 1. In equation (15), let the activation functions Cpi (i = 1,2, . . . , n) be the following 
“rectangular waves” (see Figure 8): 

(pi (u) = 
1, hIuI&+1, 

0, otherwise, 
i= 1,2 ,..., 71, (16) 

then F(X) = cy=, cpi(x)uri is a piecewise zero-order interpolation function, where the graph of 
the interpolation composed of discrete steps (see Figure 9). 

From Figure 9, we can see that, for a two-layer feedforward neural network and for given a 
group of data {(&, w~)}(~s~<~), the interpolation function F(x) = Cy=, pi(x)wi is based on the 
set of points (Bi,Wi), i = 1,2,. . . , n. Notice that, for such a network, the threshold values Bi 
(i = 1,2,. . . ) n) are the basic points of interpolation, the weights wi (i = 1,2,. . . , n) are the 
values of the function to be interpolated, and the activation functions cpi (i = 1,2, . . . , n) form 
the basic functions of interpolation. This means that the neurons of the hidden layer are just the 
basic functions of interpolation. 
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Figure 8. Rectangular wavea ss activation functions. 
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Figure 9. Piecewise zero-order interpolation function. 

EXAMPLE 2. In equation (15), let the activation functions (pi (i = 1,2,. . . , n) be the following 
“triangle waves” (see Figure 10): 

e2 - u 
PI(U) = &-zp elIuLe2, 

(17) 
0, otherwise, 

I 

u - eiml 
ei -6,-l’ eivl 5 u 5 ei, 

Pi(U)= ei+l-” 0. <u<e. 
ei+l-ei’ * - %+I, 

0, otherwise, 

where i = 2,3, . . . , n - 1. 
u - enml 

(Pn (4 = en -en-1’ k1 I u 5 en, 

0, otherwise, 

(18) 

09) 
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Figure 10. Triangle waves as activation functions. 

e n-l 

Figure 11. Piecewise linear interpolation function. 

then F(z) = Cy=, cpi( ) x w2 is a piecewise linear interpolation function, where the graph of the 
interpolation function composed of polygonal lines (see Figure 11). 

The most important aspect of neural network is its learning ability, which is achieved by adjust- 
ing the connecting weights. From the standpoint of interpolation (see Figure ll), the adjustment 
of weights is the adjustment of the values of wi so that the representation can approximate f(&), 
(i = 1,2,... , n), sufficiently such that the interpolation function F(z) can sufficiently represent 
the desired function f(x). Furthermore, the threshold values 6Ji, i = 1,2,. . . , n can also join the 
learning process. The values of Oi, i = 1,2,. . . , n, can be adjusted so that optimal positions can 
be obtained such that F(z) can approximate f(x) more accurately. 

From the above discussions, we can obtain the following conclusion: given any continuous 
function y = f(x), there exists a two-layer neural network as that shown in Figure 7 such that 
the network can approdmate this function f(x) to any given degree of precision. 

4. THREELAYER FEEDFORWARD NEURAL 
NETWORK WITH TWO-INPUT ONE-OUTPUT 

Figure 12 illustrates a three-layer feedforward neural network with two-input one-output, where 
the neurons hij are assumed to be hyperbolic functions, i.e., hij(u, u) = uv (i = 1,. . . , n, j = 
1,. , m), and the neuron h is assumed to be the summation C, that is, 

n m 

h(ull,u12,. . . ,unm) = C(UII,U~~, . . . ,%m) = c CwWij. 
j=l j=l 

Let all the connection weights from fi and gj to hij (i = 1,. . . , n, j = 1,. . . , m) be 1, then the 
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Figure 12. Three-layer feedforward neural network. 

output of the network can be represented as follows: 

which is a typical piecewise bivariate interpolation function formula. 

EXAMPLE 3. Let the function fi(z) in equation (20) defined by equation (16), and the func- 
tion gj(y) defined as 

gj (Y) = 
l, &j I Y I fij+l, 
0, otherwise, (21) 

where j = 1,2,. _. ,m, 6j and &+i (cf. Section 2) are the thresholds of the neuron gj (j = 
1,2,. . . , m), then the function F(z, j) 
zero-order interpolation function, which 
weights wij. 

determined by equation (20) is a piecewise bivariate 
can approximate the function f (z, y) by adjusting the 

EXAMPLE 4. In equation (20), let the functions fi(x) and gj(y) be triangle wave activation 
functions. In other words, the functions fi(x) are defined by equations (17)-(19), and the func- 
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tions gj(y) are also defined by equations (17)-(19) except that t$ is replaced by Sj, and n by m. 
Now, F(z, y) becomes a piecewise bivariate linear interpolation function. 

Following Section 3, we can obtain a second conclusion: given any bivariate continuous function 
z = f (x, y), there exists a three-layer neural network as that shown in Figure 12 such that the 
network can approdmate this function f(x, y) to any degree of precision. 

5. LEARNING ALGORITHMS OF THE 
FEEDFORWARD NEURAL NETWORKS 

Begin with a simple case, consider the learning algorithm of the two-layer feedforward neural 
network with one input and one output as that shown in Figure 7. The relation between the 
input and output of the network is 

F (xl = 2 9% (x) ‘wi. (22) 
i=l 

Consider supervised learning with a group of training sample as 

((xi,~i)li=l,2,...,~). (23) 

Substituting the training samples into equation (22), we obtain a system of linear equations with 
wj (j = 1,2, . . . , m) as the unknowns: 

$3 (Xl) Wl + ‘p2 (Xl) w2 + . . . + (Pn (Xl) wn = I/l, 

$3 (x2) ‘wl + 92 (x2) w2 + . . . + (Pn (x2) ‘wn = y2, 

(24) 

cpl (XP) Wl + 92 (xp) w2 + ‘. . + 9n (xp) ‘UIn = Yp. 

Let aij = ‘pj(xi), A = (aij),xn, Y = (yi,yz,. . . ,Y~)~, and W = (~1~~2,. . ,w~)~, then 
equation (24) can be simplified as 

AW=Y. (25) 

Since W is unknown in equation (25), we usually try to find a W* = (wi, ws, , w:)~ such 
that AW approximates Y sufficiently close according to some sort of norm 11 . 11, such as 

min IlAW - YII. (26) 

Therefore, it becomes a problem of optimization. 
In the field of neural network, the norm II . 11 is often taken as the following form: 

(27) 

This is an optimization problem with quadratic objective function and without any constraint, 
which can usually be solved by the gradient descent algorithm. To solve equation (26), let the 
gradient be 

dE (W) BE(W) 
aw,aw ,..., - . 

1 2 
(28) 

Assume that we have carried out k iterations and obtained the kth result Wk. Then the (k + l)th 
iteration result wk+r can be obtained by the use of a linear search along the the gradient direction 
Of -VE(Wk), i.e., 

wk+l = wk - PkVE (wk) , (29) 
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where the step size factor pk satisfies the following optimal condition: 

E (wk - PkVE (wk)) = m;lnE (Wk - nVE (Wk)) . (30) 

Combine equations (29) and (30), we have 

wk+l = 1s (wk, -VE (wk)) , (31) 

where “1” and %” represent the first letter of “linear” and “search”, respectively. 
Thus, we obtain a sequence of points W,-,, WI, W,, . . . , where Wo is the initial point that can be 

chosen arbitrarily. Hopefully, this sequence of points {Wk} converges to the minimum point W’. 

REMARK 2. To reduce computation, the linear search is usually not carried out in the literature. 
The learning algorithm is frequently some sort of simplified form of equation (29). For example, 
denoting &$ = VE(W), then we have the following equation: 

w=wk ’ 
(32) 

which is just one of the algorithms in common use. It is a simplified form of equation (29), 
because p is chosen in advance instead of obtaining pk by minimization along the gradient. 

REMARK 3. It is easy to show that (-VE(Wk+i))(-VE(Wk)) = 0 which means that 
-VE(Wk+i) is perpendicular to -VE(Wk). Thus, the gradient directions form a “sawtooth”. 
This phenomenon is well known in the gradient optimization literature. This is one of the prin- 
ciple reasons why neural networks generally converge slowly. 

REMARK 4. The quadratic equation, equation (27) can be rearranged as follows: 

+2 ($WW) f&W+...+2 ($ailh) wlw,+2 ($aizai3) w2w3 (33) 

+2 (gai2ai4) w2w4+...+2 (gai2f-h) w2wn+...+2 ($qn-~ain)wn-~wn] 

+(-gailYi) W~+(-~aizSi)WZ+...+(-~a,S) wn++g!J? 

=;WTQW+BTw+c, 

where 

qij = 2 akiakj, 

k=l 



1872 H.-X. Lr AND E. S. LEE 

with qij = Qji and bi = - ~~=, akiyk. Clearly, we have 

VE(W) = QW + B. (34) 

To obtain the stationary point of E(W), let VE(W) = 0 E (O,O, . . . , O)T. When Q is a positive 
definite matrix, the unique stationary point can be obtained as follows: 

W* = -Q-IB. 

The Hesse matrix at this point is 

V2E (W*) = V (VE (W*)) = 

a2E(W) d2E(W) d2E(W) 
3Wf ~ ... aw,aw1 

a2E(W) d2E(W) d2E(W) 
aw1aw2 aw,z ... Bw,Bwz 

. . . . . . 

d2E(W) d2E(W) a2E(W) 
aw,aw, dwadw, ... aW; 

(35) 

= Q, 

UJ=UJ* 
which is a positive definite matrix because Q is positive definite. From optimization theory, we 
know that W* = -Q-lB is the unique minimal point of the problem. 

REMARK 5. Since the learning algorithm, equation (31) or equations (29) and (30), is in an 
implicit form, it is not very convenient to use. Let us consider the explicit form. From Remark 3, 
we known that (VE(Wk+r)TVE(Wk) = 0. Substituting equation (34) and then equation (29) 
into this expression, we have 

(Q (wk - PkvE (wk)) + BjT (Qwk + B) = 0. 

Rearranging this equation, we have 

WE (wk) - pk&vE (Wk))T VE (Wk) = 0. 

solving for pk, we have 
(VE (Wk))T VE (wk) 

pk = (VE (wk))T QVE (W/c)’ 

substituting into equation (29), we finally have the explicit scheme: 

wk+l = wk - 
(VE(WdT VE (wk) 

(VE (wk))T QVE (wk) VE (wk) 

(36) 

(37) 

Now, we turn to consider the learning algorithm of the forward neural network with two-input 
one-output. From Section 4, the relation between the input and output of the network is as 
follows: 

F (2, Y) = 2 2 .fi (x) Sj (Y) ‘Wj. (38) 
i=l j=1 

Substituting the following into the above equation, given a group of training samples: 

{(bk,Yk),tk) ik=l,%...,p), (39) 

we obtain the following system of linear equations with wij (i = 1,2, . , n, j = 1,2,. . . , m) as 
unknowns: n m 

CCfi(Zk)gj(Yk)Wij=Zkr I~=~T~T...,P. 
i=l j=l 

(40) 
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Let okij = fi(xk)gj(yk). Then above equation can be rewritten as 

akijwij = Zk, k = 1,2 ,..., p. 
i=l j=l 

To simplify the triple subscripts of above equation, let 

l=(i-l)m+j. 

1873 

(41) 

(42) 

Then equation (41) takes the following form: 

aklwl = tk, k=1,2 ,..., p, (43) 
l=l 

where Q = nm. Furthermore, if we let A = (akl)pxg, Z = (zr, ~2,. . . , .z*)~, and W = (WI, ‘~2,. . , 
w~)~, then equation (43) becomes the following matrix equation: 

AW=X, (44) 

which is similar to equation (25). Thus, the learning algorithm of equation (44) should be similar 
to that of equation (25). 

6. FEEDFORWARD NEURAL NETWORK WITH MULTI-INPUT 
MULTI-OUTPUT AND ITS LEARNING ALGORITHM 

The three-layer feedforward neural network with two inputs and one output (see Figure 12) 
can be extended easily to a network with two inputs and two outputs. Let the two output nodes 
be represented by h01 and h02 with the weight vectors between the hiding layer and these output 
nodes as w1 and w2, respectively, the relation between the input and the output of this network 
can be obtained in a similar fashion as that shown in Section 4. This input-output relationship 
is 

F(x,y) = (l&v) = 
( 
2 gf&Jsj(Y)Wp, f: ~fi(49j(Y)w!;) 7 

) 
(45) 

i=l j=l i=l j=l 

where u and u are the two outputs from the two output nodes. The above input-output relation 
is a vector-valued interpolation function. 

Following Section 4, we can obtain a third conclusion: given any multivariate vector-value 
continuous finction f(zr,zs,. . . ,5,) = (yr, ~2,. . . , ym), there exists a three-layer feedforward 
neural network such that the network can approximate this function f (x1, x2,. . . ,xn) to any 
given degree of precision. 

To consider the learning algorithm of this network, let us assume that we have the following 
given group of samples: 

{((xk,Yk),(Uk,Vk)) ik=l,2,...,P). (46) 

Substituting this group of samples into equation (45), we obtain the following two systems of 
linear equations: 

CCfi(xk)gj(yk)W~~‘=2Lk, k=1,2 ,..., P, 
i=l j=l 

(47) 

CCf~(Tk)Sj(Yk)W~~‘=Uk, k=l,2,...,P. 
i=l j=l 

(48) 
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Let akij = fi(zk)&(&), 1 = (i - 1)m i- j, and q = nm, then above two equations become 

aklwl (l) = I&. , lc=1,2 ,..., p, 
I=1 

C2) aklW[ = ‘uk , k=1,2 ,..., p. 

Let 

A = (akdpxq, 

w, = ( wy, wy, . . . ) w;l))T ) 
w, = ( wy,wp,. . . ,wrqT ) 
U=(w,‘112,...,Up)T, 
V=(w2,...,qJT, 

then equations (49) and (50) can be written in the following matrix forms: 

AW, = U, AW2 = V, 

(49) 

(50) 

(51) 

which is similar to equation (25). 

7. CONCLUSION 
We have discussed the feedforward neural networks from the mathematical point of view. First, 

the interpolative representations and structures of the various feedforward neural networks are 
given and discussed in detail. Then some approximation properties are summarized. Finally, 
the learning algorithms of the feedforward neural networks are analyzed. We also obtained the 
explicit form from the usually implicit learning algorithm of the neural network. 
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