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Abstract Building university timetables is a complex process that considers varying types of con-

straints and objectives from one institution to another. The problem solved in this paper is a real

one featuring a number of hard and soft constraints that are not very conventional. The pursued

objective is also novel and considers maximizing resource utilization. This paper introduces a

genetic algorithm that uses some heuristics to generate an initial population of feasible good quality

timetables. The algorithm uses a simple weighted sum formula to respect professors’ preferences

and handle conflicts. In order to reduce waste, a crossover type focusing on the utilization rates

of learning spaces is introduced. A targeted mutation operator that uses a local search heuristic

is also employed. The algorithm applies a composite fitness function that considers space utiliza-

tion, gaps between events and a maximum number of lectures per day. A large dataset with real

data from the Faculty of Commerce, Alexandria University in Egypt was used to test the con-

tributed algorithm. The algorithm was also tested against two difficult benchmark problems from

the literature. Testing proved that the developed algorithm is an effective tool for managing timeta-

bles and resources in universities. It performed remarkedly well on the large datasets of the two

benchmark problems and it also respected more constraints than those stated in the initial problem

statement of the two benchmark datasets.
� 2016 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Timetabling is an NP-hard optimization problem [1–3], for

which a good solution needs to be found among a set of com-
plex variables and constraints. The problem is to assign a fea-
sible tuple of variables which optimizes a set of metrics and
indicators such as minimizing time gaps, maximizing space uti-
lization, and minimizing cost relevant to the use of resources
[4]. Finding an efficient algorithm for such problems is hard

and complex especially when the problem gets larger. Accord-
ing to Tovey [5], good solutions can be provided when the
problem is better understood in terms of its hardness or sim-

plicity. Organizations such as educational institutions use
timetables to schedule classes and/or lectures by assigning
times and places to future events in a way that makes optimal

use of the available resources [6–10]. Universities increasingly
deal with a large number of courses, groups and professors.
Poorly designed timetables are not only inconvenient, but

https://core.ac.uk/display/82524622?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aej.2016.02.017&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.aej.2016.02.017
http://dx.doi.org/10.1016/j.aej.2016.02.017
http://www.sciencedirect.com/science/journal/11100168
http://dx.doi.org/10.1016/j.aej.2016.02.017
http://creativecommons.org/licenses/by-nc-nd/4.0/


1396 E.A. Abdelhalim, G.A. El Khayat
also result in significant losses in terms of time, effort and
money.

Allocation of spaces inside university campuses is growing

more and more important. Spaces inside universities include
rooms, halls, amphitheatres, offices, parking lots. The increas-
ing number of students flowing every year increases the need

for managing and utilizing these spaces. Space allocation prob-
lems are also NP-Hard as timetabling problems. There exists
PE ways of allocating E events to P places when searching

for an optimal solution [11]. This implies that no efficient algo-
rithm exists to solve large instances of these problems in a rea-
sonable time [12]. Variations in the size of the problem, its
constraints and objectives will also affect the time required

to perform space allocation while guaranteeing good utiliza-
tion levels of spaces [13].

In her report ‘‘The black holes of space economics”, Shove

[14] has pointed out the interdependent and conflicting inter-
ests of students, lecturers, timetablers and administrators.
She highlighted that each has his own interest in utilizing

spaces and his own definition of what effective space manage-
ment means. Shove explained that overestimating the need for
more spaces is a rational response to uncertainty. She con-

firmed that this is the case when space is being viewed as a free
good in the absence of a proper plan and vision to target good
utilization levels. Poor space allocation can force the decision
maker to provision unneeded resources. When solving the

space allocation problem in higher education, the different
spaces available, the different uses of each space, the timeslots
in which it is available and all other constraints need to be

identified. In academic institutions, manual approaches to
solve resource allocation problems may result in wasting a
large number of resources that could be better managed and

utilized.
A key aspect that motivated this research is that previous

studies focused much on the computational time of the algo-

rithms proposed [15–20], even when considering a small prob-
lem instance and few constraints. In contrast, the reality of the
Egyptian public universities, with the limited resources avail-
able and the large numbers of students and professors they

have, forces us to assign priority to the real problems together
with their relevant constraints. In fact, the computational time
and power should no longer be the focus for this type of prob-

lems, where solutions are not instantly needed. Even if the
developed algorithms take relatively longer time, they would
at least be capable of the following: (i) responding to a real

problem with its constraints, (ii) addressing big size problem
instances and (iii) taking less time than the manual process
because constructing timetables starts a long time before they
are actually needed [21,22].

This paper presents a genetic algorithm for solving a uni-
versity course-timetabling problem. The studied case is of the
Faculty of Commerce, Alexandria University, Egypt, where

building undergraduate semester timetables start six weeks
before the academic semester begins.

This paper is organized as follows: Section 2 reviews the

related work on the timetabling and space allocation problems.
Section 3 describes the contributed solution methodology.
Testing and results are presented in Section 4. Section 5

includes the conclusion and future work and an acknowledg-
ment is made in last section.
2. Related work

University course timetabling problems are defined by Carter
and Laporte [23] as multi-dimensional problems, in which a

number of students and professors are assigned to lectures
and events. An event is a pair of a suitable room and timeslot
[24]. In [25], the author stated that rooms and space allocation

decisions are problems associated with the timetabling proce-
dures inside institutions. Burke and Varley [26] also agreed
that space allocation and timetabling problems in academic
institutions are strongly correlated. Schaerf [27] conducted a

survey to collect necessary information to understand the dif-
ferent timetabling problems and the different methods and
approaches used to solve them. He claimed that the basic con-

cept behind all the approaches used relies on ‘‘scheduling the
most constrained lectures first”, and the thing that differenti-
ates one from another is how the expression ‘‘most con-

strained” is defined in the different problems being solved.
Space allocation in universities and academic institutions is
the assignment of a set of lectures or meetings to a set of rooms

and timeslots [26,28,29].
Burke and Varley [26] made many efforts toward defining

and discovering the different dimensions and requirements of
the space allocation problem inside ninety-six universities

and academic institutions in the United Kingdom. They col-
lected the information from universities using questionnaires.
The questionnaires stressed on three main aspects: the size

and diversity of the space allocation process, the tools used
to automate the space allocation process and the constraints
considered when allocating these spaces. The main purpose

of this survey was to discover whether a generic solution to
the problem could be articulated or the variance among uni-
versities will prohibit such approach. They have concluded

that a generic system for the space allocation must be able to
satisfy all the requirements specified by a university.

Different approaches that were used in solving the space
allocation problems were also used in solving the timetabling

problems. These include simulated annealing [30–32], tabu
search [15,33–35], integer programming [36] and genetic algo-
rithms [37–39]. Some contributions are as follows.

Sutar and Bichkar [16] introduced a genetic algorithm to
solve a real university timetabling problem in India. An initial
population is randomly generated and parents are selected for

crossover based on their fitness values. All the produced off-
springs from crossover are subject to mutation; however, the
crossover and mutation operators’ implementation applied
were not clear in their work. In the set of hard and soft con-

straints, learning space capacities were not mentioned. Lec-
tures’ timeslot availabilities were not prioritized but
minimum and maximum limits of weekly working hours for

each were set.
Rakesh and Gupta [40] built a university course timetable

using a hybrid algorithm. They used the genetic algorithm

and iterated local search to avoid getting trapped in local
optima. The objective of their approach was to satisfy the set
of hard constraints and minimize the violation of the soft con-

straints. The hard constraints include having students attend
one event at any timeslot, assigning all events to suitable
spaces with adequate number of seats, and assigning only
one event to any one room in any timeslot. The soft constraints
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were about avoiding scheduling events in the last day slots,
avoiding scheduling more than two consecutive events in a
day for students, and ensuring scheduling more than one event

in a day for all students. Their hybrid algorithm did not take
into account the utilization rate in the proposed objective
function.

El-Sherbiny et al. [41] proposed a combination of a hill
climbing optimization and genetic algorithm to build a univer-
sity course timetable. The objective of the authors was to min-

imize violating any of the soft constraints. The set of the hard
constraints respects that teachers or professors must not be
assigned to more than one class in any timeslot, a class could
not be assigned to more than one teacher in a timeslot, and the

room cannot be allocated more than once at any given times-
lot. Additionally, the algorithm should respect a certain num-
ber of timeslots per week and a class should attend a certain

number of lectures per week. The utilization of spaces was con-
sidered in the set of soft constraints represented in a cost func-
tion. The cost function aims to minimize the difference

between the number of students attending and the capacity
of the learning space.

Socha et al. [42] proposed two ant systems for solving uni-

versity course timetabling: the ant colony system (ACS) and
the MAX–MIN ant system. Their objective was to minimize
the number of soft constraint violations in feasible timetables.
These constraints included the following: minimizing the num-

ber of classes students can take in end of day slots and minimiz-
ing the probability of a student having more than one class per
day. Both algorithms start with a population of ants, where

each ant starts building a timetable by assigning all the events
to timeslots. Ants choose timeslots probabilistically based on
heuristic information and a matrix of pheromone values. How-

ever, the two proposed algorithms differ in their ways of updat-
ing pheromone values. The MAX–MIN ant system uses a
global update rule that sets upper and lower bounds to control

the maximum difference between the highest and lowest phero-
mone levels. On the other hand, the ACS adds to the global
update rule a special local update rule. This local update is
applied to the selected element in the pheromone matrix, corre-

sponding to a certain timeslot (t) for an event (e), to decrease
the probability of other ants to choose the same timeslot for
the same event and to encourage them to choose other times-

lots. After assigning all events to timeslots, rooms are assigned
and a hill climbing local search heuristic is applied to improve
the solution produced. Space capacities and the numbers of stu-

dents attending were taken into account as hard constraints.
Lü and Hao [15], developed an adaptive tabu search, in

which an initial timetable was constructed using a greedy
search heuristic. This greedy search starts with an empty

schedule and starts assigning lectures by selecting an unas-
signed lecture and a suitable period-room event. However,
greedy search heuristics tend to work efficiently at the begin-

ning of the timetable construction process while causing con-
flicts in assigning later events [32]. The objective of the
method was to minimize the number of soft constraint viola-

tions in a feasible timetable. Although teachers’ timeslot avail-
abilities were considered a main hard constraint, no
prioritization approaches were incorporated to handle this

issue if the number of available slots for more than one teacher
is the same.

Sabar et al. [18], introduced a honeybee mating optimiza-
tion algorithm (HBMO) to solve examination and course time-
tabling problems. The objective was to satisfy the set of hard
constraints and to minimize the number of students affected
when a soft constraint is violated. Sabar et al. [18] used the

least saturation degree first (SD), the largest degree first
(LD) and largest enrollment first (LE) heuristics with the
honeybee algorithm to create initial feasible timetables. The

crossover employed is done through selecting two random
genes (timeslots) from the queen and a drone and moving all
the events from timeslot1 (T1), for example, in the queen to

timeslot2 (T2) in the drone. A successful move takes place if
an event does not conflict with the events in the new timeslot
or if it does not already exist in that new timeslot. A mutation
operator that swaps a subset of events between two timeslots is

applied for preventing a drone’s sperm from being used again
in another mating flight. The authors show that the honeybee
mating optimization algorithm is a promising approach in

solving educational timetabling problems. The set of hard con-
straints is very much similar to those of previous contributions.
This set includes allocating events according to room capaci-

ties. Professors’ availability timeslots and preferences are nei-
ther considered hard nor soft constraints.

Chen and Shih [20] used two Particle Swarm Optimization

(PSO) types: the inertia weight and constriction versions to
construct university timetables. The objective was to respect
as much soft constraints as possible to increase teachers’ and
classes’ satisfaction. In the set of soft constraints, teachers’

preferences as well as students were respected. Teachers’ pref-
erences were collected through questionnaires that ranked
timeslots in numbers from 1 to 5 from the least favorable to

the most favorable timeslot by a teacher and number �10
for impossible-to-schedule timeslots. However, no hard or soft
constraint mentioned the importance of respecting room

capacities. Chen and Shih concluded that prioritizing teachers
is an effective factor with significant effect on timetables qual-
ity [20]. This aspect is considered in the research presented in

this paper.
Genetic algorithms were chosen to solve the problem of this

paper because they are known for their robustness [43,44] in
solving complex combinatorial problems. Genetic algorithms

are characterized by their flexibility and ability to search in
complex, large spaces [45]. They are considered one of the most
powerful tools in solving course and exam timetabling prob-

lems [46–48]. Moreover, genetic algorithms have the advantage
of being adaptive search algorithms [49].
3. Methodology

Developments made in the area of timetabling resulted in
launching the Practice and Theory of Automated Timetabling

(PATAT) series of conferences, which sponsors the Interna-
tional Timetabling Competition (ITC) [50]. This competition
aims at encouraging research in the area of timetabling to
bridge the gap between theory and practice in real-world appli-

cations. This paper proposes a novel approach to tackle a real
world big size timetabling problem. Due to the complexity of
the timetabling problems, a wide range of heuristics is used

to find feasible solutions [4,18,50]. This paper contributes to
a genetic algorithm approach that allocates teaching events
to spaces and timeslots. It uses a number of heuristics to find

initial feasible solutions and it considers the following set of
hard and soft constraints:
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� Hard constraints

1. Professors are assigned timeslots of their preferences
according to a certain priority measure.

2. Number of students is compatible with room capacities.

3. Professors are not assigned to different rooms at the
same timeslot.

4. Student groups are not assigned to different rooms at the
same timeslot.

5. Fridays and end of day slots are not permitted (weeks
start Saturday and end Wednesday).

6. All timetables should include all the lectures.

Figure 1 Example of chromosome representation.

Table 1 Factors based on which weights are calculated.

Factor Weight

Part-timer 0.5

Academic rank 0.3

No. of groups taught per professor 0.2

Age (50–75 years old) 0.1
� Soft constraints

1. No more than two lectures per day for every professor.
2. No more than two lectures per day for every group.
3. No gaps between lectures for a group.
4. No gaps between lectures for a professor

5. Occupancy rate of each event either is not less than 75%
or equals to 0%.

Most of the studies conducted to construct university
timetables did not consider timeslot availability for each

professor as a hard constraint [51–56]. Some others did not
consider it even as a soft constraint [18]. The main focus is
often directed toward avoiding the infeasibility of having two

lectures at the same time; for a professor or a group, the capac-
ity of rooms is considered based on a predicted number of
attendees [57,29,58,9] without encompassing more real life
hard constraints such as professors’ preferences and their

timeslot availabilities. Few contributions considered profes-
sors’ preferences as a soft constraint [60,61,52,16]. Badri [60]
constructed a departmental timetable that considered profes-

sors’ preferences in two phases: first, a matrix that maximizes
the faculty member’s preference for courses; and second, he
maximizes the faculty member’s preferences for timings of

the lectures at the University of United Arab Emirates. Some
researchers suggested the introduction of utility functions for
professors’ preferences that can help in building timetables
[62–65]. Schniederjans and Kim [66] argued that building such

functions requires a lot of effort and time that can practically
be an obstacle. Aljarah et al. [55] considered professors’
preferences and adopted a mining technique only to substitute

the process of collecting information from every professor at
the beginning of every semester. To avoid using complex func-
tions and mining algorithms, this paper considers a simple to

implement and a practical weighted sum formula to prioritize
professors’ preferences. Respecting professors’ preferences
aims at reducing the effort needed to reallocate assignments

in later stages and to make major timetable modifications more
than once over few days.

In the following subsections, the authors introduce a
genetic algorithm by examining its representation, the selection

process of chromosomes, its fitness function and the crossover
and mutation operators.

3.1. Representation

Representations play a role in the performance of the algo-
rithm during the search process [67]. Different chromosome
representations are used to represent course timetables
[68,53,69,56]. Montana et al. [45] suggested that the best repre-
sentation of a chromosome differs from a problem to another

depending heavily on the constraints and requirements of each
problem. For simplicity purposes, some researchers represent
timetables in the form of binary strings [43]. Dhande et al.

[48] stressed that this simple representation is not an ideal
approach and that there is no clear alternative to it.

The authors introduce a generic two-dimensional chromo-

some representation that can easily fit with different university
course timetabling problems (see Fig. 1). A list of all the rooms
is presented in the first column. The first row of the chromo-

some represents all the timeslots. Timeslots consist of two
main parts: the day and the timeslot order in that day repre-
sented in the form of two numeric values. For example, Satur-
days are assigned number ‘‘1” because it is the first day in the

week. Events are scheduled over only 10 h. Lecture durations
can be of two or three hours. Each day consists of a maximum
of five timeslots in case only two hours lectures are scheduled

and a maximum of three slots in case only three hours lectures
are scheduled. The two-hour duration lectures are assigned to
a subset of the large rooms. Smaller rooms are dedicated to the

three-hour duration lectures. This is because large rooms at the
Faculty of Commerce are few and frequently needed. Each
timeslot is given an ID. If a slot ID is ‘‘11”, this means it is
the first timeslot (from 8.00 AM to 11.00 AM) on ‘‘Saturday”;

an ID of ‘‘12” refers to the second timeslot (11.00 AM–
2.00 PM) on Saturday and so on. The numbering system also
continues to represent the two hour duration slots.

In Fig. 1, intersections between rooms and timeslots repre-
sent the potential combinations where events can be assigned.
Intersections are filled with the event ID. Event IDs are com-

posite attributes that represent three aspects at a time: the
group ID to be assigned, the professor ID involved in teaching
this group and the course ID the professor teaches to this

group. For example, event ID ‘‘294”, in the intersecting cell
between room ‘‘201” and timeslot ‘‘12” represents professor
ID ‘‘7” who teaches group ID ‘‘33” the course ID ‘‘66”.



Table 2 UGA Pseudo-code.

1. Input: A problem instance I

2. Set the maximum number of iterations (Iter) as a stopping

criteria, Iter = T

3. Set the maximum population size (Y)

4. Set the maximum number of crossover iterations (C), C =

Y/2(Y/2-1)

5. The number of mutation iterations (Iter_M) = the number of

underutilized rooms (U) in the chromosome on hand. Iter_M

= U

6. Generate initial population of chromosomes = Y using LD

and LE heuristic

7. Evaluate the fitness value of each individual

8. Sort individuals descending based on their fitness values

9. Select the best individual as the best solution so far

10. While (Iter <= T)

11. Select (Y/2) number of the first best individuals from the

previous population

12. For i = 1 to C

13. Perform utilization crossover among the best-chosen

chromosomes and add the produced chromosomes to the

(Y/2) individuals

14. Evaluate fitness value of the new population

chromosomes

15. Select the best (Y) number of chromosomes as parents

for the next generation and discard the rest

16. Select the one best chromosome so far from the (Y)

chromosomes

17. Compare its fitness value with the best chromosome so

far on hand

18. If (new best individual fitness > on hand old best

individual fitness)

19. Replace the old best chromosome with the new one

20. End if

21. End for

22. While (Iter_M <= U)

23. Apply targeted mutation using (Simple Descent) to

improve the best chromosome on hand

24. Evaluate fitness value of the new child

25. If (new best individual fitness from mutation > old

best individual fitness)

26. Replace the old best chromosome by the new one

produced from the current mutation

27. End if

28. End while

29. End while

30. Output: The best chromosome achieved for the problem

instance I
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Having more than one event ID in a cell like the intersecting
cell of room ‘‘503” and timeslot ‘‘11” means that a number
of event IDs share the same course and professor and should

be scheduled together. In reality, this corresponds to two or
more groups, maybe from different departments, who attend
the same lecture. Room capacity constraints are respected in

this case.

3.2. Selection

Genetic algorithms are population-based metaheuristics that
start with a pool of solutions to select from [9]. Creating an ini-
tial population starts with an empty timetable. Most of the

solutions proposed in the literature rely on random assignment
of events to create an initial population [10]. However,
[71,58,72,55] suggested that random generation methods do
not, in many cases, guarantee producing good quality or even

feasible solutions. A set of feasible as well as infeasible solu-
tions are obtained when randomly generating an initial popu-
lation. In some cases, the set of infeasible solutions is discarded

and the remaining set of feasible solutions is used to produce
upcoming generations [24]. In other cases, the set of infeasible
solutions is not discarded but repaired to turn them to feasible

solutions using some heuristics [42], which requires more com-
putational time. An advantage of starting with good initial fea-
sible solutions is increasing the probability of directing the
search toward better regions of the search space to help further

convergence toward better solutions [18]. In this work, the
authors use some heuristics to generate initial good quality fea-
sible timetables that do not violate any of the hard constraints.

A combination of some heuristics suggested by [18] is applied
with the objective of narrowing the search space and reducing
the probability of getting infeasible solutions [73]. These

heuristics are presented in Sections 3.2.1 and 3.2.2.

3.2.1. Largest degree first (LD) heuristic

Sabar et al. [18] recommended creating initial solutions by

assigning the most conflicting events first. Conflicting events
differ from institution to another as the set of hard and soft
constraints differs. In this paper’s problem, professors’ prefer-

ences are considered when constructing timetables. The most
conflicting events are the events for which professors have very
few numbers of available suitable timeslots. This means that if
a professor has only one available timeslot to deliver the lec-

ture, it will be infeasible to assign him/her to any other times-
lot. In the ‘‘Largest Degree First” (LD) heuristic, events are
ordered, in a decreasing order by the number of conflicts they

have with all other events. The authors use this heuristic to
order the list of events in an ascending order by their profes-
sors’ availability timeslots to start the assignment of professors

with least availabilities.
The studied problem size is large. The number of professors

involved is 131 and there can be more than two professors with

similar few numbers of available timeslots. As a result, priori-
tization among professors is considered in order to determine
which event is to be assigned first and to avoid conflicts. This
is achieved by implementing a weighted sum approach that

assigns weights to professors according to the factors in
Table 1.

The table shows the factors and the weights of each factor

based on which a weighted sum is calculated for every profes-
sor. The first factor is whether the professor is a part-timer,
who comes to campus only for teaching the course at the fac-

ulty but not a member of the Faculty of Commerce staff. This
factor is assigned the highest weight (0.5), due to the inflexibil-
ity of finding alternative timeslots for part-timers. Secondly,

the number of groups each professor teaches is examined. In
year 2012–2013 in the first semester at the Faculty of Com-
merce, the minimum number of groups a professor was

assigned to was one group and the maximum number was nine
groups. Taking the average of both, gives us a number of five
groups. Thus, if the number of groups a professor will teach is
five or greater, he/she is given priority relative to a professor

with a less number of groups and a weight of 0.3 is assigned.
Thirdly, the academic rank of a professor is considered. If



Table 3 Weights assigned to each factor used to calculate the

fitness function.

Factor Weight

assigned

No of events with best occupancy rates (P75% or

zero)

4

No of rooms with best frequency rates (P75%) 3

Any gap between two lectures per day for a Prof. or

a Group

2 (penalty)

Assigning more than two lectures per day for a Prof.

or a Group

1 (penalty)
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the professor is an associate professor or higher, a weight of
0.2 is given. The age of the professor is another important fac-

tor where elder professors’ preferences are a priority. If the age
of the professor is between 50 and 75 years old, a weight of 0.1
is added. Since, no weighted sum approaches for prioritization

were proposed in the literature, the weights assigned to the fac-
tors in this work are proposed based on their level of signifi-
cance as concluded by the authors from the practices

followed in building timetables at the Faculty of Commerce,
Alexandria University. These weights are thus adjustable
according to the problem under study. It is also possible in fol-
lowing semesters that weights change in their level of signifi-

cance for the same faculty.
In the proposed methodology, professors whose summed

weights were 0.4 or greater are referred to as ‘‘high weight”.

Population initialization starts with this list of high weight pro-
fessors, who require priority assignments. This list is then
sorted in a descending order based on the weights. If two pro-

fessors have the same weight, the number of their available
timeslots is compared so that the professor with less availabil-
ity is selected first. If the number of available timeslots for both
is the same, their academic ranks are then compared. If the

academic rank of one professor is greater than the other, his
preference is considered first. If both ranks are the same, the
number of groups each professor teaches are then compared

using the ‘‘Largest Enrollment First” (LE) heuristic [18]. In
the case where both share the same number of groups, the
age is checked so that the oldest is selected.

This assignment process is repeated until all high weight
professors are assigned. Afterward, the rest of professors with
weights less than 0.4 and more available timeslots are assigned.

3.2.2. Largest enrollment first (LE) heuristic

The largest enrollment first (LE) heuristic deals with the num-
ber of groups each professor teaches. Accordingly, professors

with the greatest number of groups are given priority in assign-
ment. By applying this, the authors are able to narrow the
search space and deal with the assignments that might increase

the chance of getting an infeasible solution.
When scheduling an event, the search process starts with a

list of suggested rooms identified by their capacities so that
best fit room capacities are suggested. For example; if the num-

ber of attendees in a group is 300, the list of suggested rooms
will be those with capacities between 300 and 400 maximum,
while, greater capacities (500–600) will not be proposed to

ensure efficient resource utilization. When a suitable room is
found, the search space is then explored for a timeslot that
matches the professor’s preference. If none of the suggested
rooms is available at any suitable timeslot, greater room

capacities can then be proposed. The genetic algorithm pro-
posed is illustrated by the pseudo-code in Table 2.

In line (6), the algorithm uses the largest enrollment (LE)

and the largest degree (LD) heuristics to generate a predeter-
mined number of chromosomes (Y) to form the population.
In line (7), fitness values of the chromosomes produced are cal-

culated and the best half of the chromosomes (Y/2) are
selected for crossover, while discarding low fitness value chro-
mosomes. In line (13), crossover takes place between two chro-
mosomes to produce new two offsprings. The old parents are

also added to the new population. Then, their fitness values
are sorted in a descending order to choose the first chromo-
somes with highest fitness values and exclude the rest. The

new generation of chromosomes becomes the input for creat-
ing the next population following the same steps.

After each crossover, a mutation operator is applied to the

best solution found so far to obtain a better fitness value. The
number of mutations in a chromosome depends on the number
of the underutilized events in the solution. This process is

repeated until the maximum number of iterations (Iter) is
reached.

3.3. Fitness function

Fitness functions are functions calculated for every candidate
solution to measure how ‘‘fit” or ‘‘good” it is [74,43,75]. This
function is problem-specific and does not have a standard for-

mula of calculation [58]. In university timetabling problems,
common fitness functions are based on calculating the number
of unscheduled events [76,59]. This calculation is too simplistic

and involves that some events may remain unscheduled which
violates the hard constraints. In this paper, a feasible solution
is one that does not include any unscheduled event. Erben and

Kepplar [37] calculated the fitness value based on the violation
of soft constraints assuming that they accept only feasible solu-
tions with zero unscheduled events. This was also done by
[16,70]. In [18], the objective was to satisfy all the hard con-

straints and to minimize the number of students affected by
the violation of any soft constraint. Lewis and Paechter [58]
created a function that calculates the number of extra timeslots

used than the number planned to be used, in addition to, the
number of events contained inside each extra timeslot. Accord-
ing to [77,35], the fitness function is a weighted sum calculated

based on the violation of soft constraints.
Space utilization rate measures are used to calculate the fit-

ness function of the problem studied in this paper. Space uti-
lization rates are used to measure the efficiency in using a

certain space relative to its capacity as well as its availability.
Utilization rates (see Eq. (1)) are the product of two other rates
called the frequency rate and the occupancy rate [78]. Fre-

quency rates are rates that measure how often a room is used
relative to the total number of hours during which it is avail-
able (see Eq. (2)) [28,79,28]. On the other hand, occupancy

rates are rates that measure the extent to which a room is fully
occupied relative to its total capacity (see Eq. (3)) [80].

Utilization rate/room

ðFreq: Rate=RoomÞ � ðOccup: Rate=RoomÞ ð1Þ



Figure 2 Chromosomes’ snapshots to illustrate utilization crossover logic.
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Frequency rate/room

Total hours used=Total No: of hours the room is available

ð2Þ
Occupancy rate/room

No: of occupied seats=Total capacity of the room ð3Þ
According to the Higher Education benchmark standards

used by the universities of Wisconsin; Singapore; New Zeal-

and; Australia and Hong Kong, a percentage of 56 or higher
is the benchmark used to represent good utilization rates of
a space and a percentage of 75 or higher is used for represent-

ing good frequency and occupancy rates for rooms. In this
paper, the authors followed the same standard rates as the pre-
viously mentioned universities.

To get the utilization rate of a room in a day, the averages

of both the frequency and occupancy rates of that day are mul-
tiplied. Similarly, when calculating the utilization rate of a
room in a week, the averages of the frequency and occupancy

rates of that week are multiplied. In this work, the fitness func-
tion is a composite function that calculates the fitness of a cer-
tain chromosome based on a number of important factors.

These factors are as follows:

1. No of events with best occupancy rates.
2. No of rooms with best frequency rates.

3. Any gap between two lectures per day for a professor or a
group.
4. Assigning more than two lectures per day for a professor or
a group.

During the algorithm-testing phase, the authors discovered
that the fitness values of some of the generated timetables were

the same while the table structure of one could be better than
the other. Then, the authors decided to assign weights to the
factors they consider more significant and to calculate a corre-

sponding weighted sum. The weights assigned to the factors
are shown in Table 3.

From Table 3, both occupancy rates and frequency rates

are included in the calculation of the fitness function because
they are used to calculate utilization rates. However, the
weight assigned to the events with best occupancy rates (equals
to 4) is greater than the frequency rates (equals to 3), because

the efficient utilization of spaces is more important than the
frequent usage of rooms. Finding gaps between two lectures
for a professor or a group is given a penalty of two. Finally,

assigning more than two lectures per day for a professor or a
group is given a penalty of 1. The factors and the weights
can be changed if the level of significance of any of the factors

changes. This is calculated by the equation mentioned below:

Fitness ðCÞ ¼
X4

i¼1

wiki ð4Þ

where (C) refers to a chromosome (candidate solution), and
(w) refers to the weight assigned to the factor (k), where (k)
refers to any of the factors from 1 to 4 in Table 3. The weight



Figure 3 Offspring snapshot before mutation.

Figure 4 New offspring snapshot after mutation.

Table 4 Description of the actual problem instance in 2012–

2013 at faculty of commerce.

Item Data

No. of lecturers 131

No. of courses 150

No. of departments 7

No. of students Between 10 and 2650

No. of groups 57

No. of rooms 32

No. of events 337

No. of days 7

No. of hrs to schedule/day 12
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(w) takes a positive value for factors 1 and 2 and takes a neg-
ative value (penalty) for factors 3 and 4.

3.4. Crossover

There is no one unified standard method of crossover. It has
various types and forms [53,81,16,70]. Some population-

based algorithms do not employ the crossover operator
[82,83]. The reason behind this may be due to the complexity
of its application while keeping the solution feasible [18]. Sim-

ply, crossover means; recombining parts from two parent chro-
mosomes in order to form new offsprings that may have better
fitness values than the two parents [35]. A common crossover
strategy followed by many researchers is the point crossover

method [43,45,48]. In point crossover, a chromosome is split
at a point (gene), that is usually randomly selected [8,10] and
exchanged by the same split part of the second chromosome

to swap the two parts together [84]. Crossover techniques also
differ according to the representation of the chromosome
itself.

The authors introduce a crossover type that they named
‘‘utilization crossover”. This crossover focuses on the utiliza-
tion rates of teaching spaces. Observations from running the

algorithm revealed that, in many cases, chromosomes hold
close utilization rates of some events although they differ in
their placements in the timetable from a chromosome to
another. Utilization crossover aims at reducing the number

of the under/over-utilized events (with occupancy rates less
than 75% and greater than 100%, respectively) as much as
possible to increase the number of well-utilized events in a

chromosome. This is achieved through obtaining a list of all
the underutilized and over-utilized events from one chromo-
some and randomly selecting 50 percent of the events from this

list to be assigned to other random rooms, within the same
timeslot, in the other chromosome. When selecting any event,
its utilization rate, in the other chromosome, is obtained so
that an accepted move takes place if the utilization rate of

the moved event is improved in the new place without violating
any hard constraint. If a successful move takes place, the event
is then removed from its old place in the new chromosome to

avoid duplication (see Fig. 2).
From Fig. 2, three underutilized events with the IDs (4, 40

and 300) were detected in chromosome one. In the second

chromosome, these events’ occupancy rates were found to be
underutilized as well. Thus, random suggested rooms were
introduced aiming at achieving improved rates without violat-

ing the event’s professor timeslot preference. Successful moves
took place for event ID (40) from room 201 with 36% occu-
pancy rate to 85% in room 302. Similarly, this happened for
event IDs (4 and 300) where occupancy rates have improved

from 53% in room 302 to 66% in room 503 for ID (4) and
from 55% in room 403 to 77% in room 507 for event ID (300).

3.5. Mutation

Mutation is the last step of improving a chromosome
[43,50,16]. Mutation is similar to crossover except that it

makes changes in a chromosome itself. Most of the mutation
strategies follow a random selection approach (e.g. roulette
wheel) to make modifications in a chromosome [10], in which

it randomly selects a timeslot and a room for a certain course
or lecture to be assigned to.

The mutation operator used is ‘‘targeted mutation” [67]
which focuses on targeted parts of the chromosome and not

on random selections. Therefore, to reach more efficient uti-
lization rates of spaces, the targeted parts for the mutation
process are the events with low occupancy rates. A simple des-

cent search heuristic is applied as a local search to improve the
chromosome. A list of the underutilized events (with occu-
pancy rates less than 75%) is obtained. In order to improve



Table 5 Manual avg. occupancy room rates per day in

semester one for year 2012–2013.

Room/day Sat

(%)

Sun

(%)

Mon

(%)

Tue

(%)

Wed

(%)

Thu

(%)

Fri

(%)

201 33 0 17 0 67 3 0

202 87 8 33 42 4 2 0

203 83 0 0 0 89 0 0

301 11 0 20 31 22 14 0

302 127 87 67 50 53 33 0

303 8 0 2 3 12 1 0

401 27 35 40 13 0 0 0

403 32 40 40 8 13 35 0

405 48 40 21 27 27 48 0

407 33 6 13 2 18 6 0

501 1 60 2 0 47 93 0

503 47 0 0 0 80 0 0

506 1 0 2 1 0 0 0

507 12 73 7 13 0 13 0

601 6 15 27 167 3 87 0

603 4 0 27 0 6 12 0

605 7 3 7 33 0 0 0

705 27 3 17 0 87 0 0

707 0 0 0 0 0 0 0

91 0 0 0 0 0 0 0

92 0 0 0 0 0 0 0

93 0 0 0 0 0 0 0

94 0 0 0 0 0 0 0

95 0 0 0 0 0 0 0

1 7 0 0 13 0 0 0

2 24 17 11 7 16 13 0

3 32 30 43 0 30 0 0

4 190 404 0 7 404 9 0

5 1 64 3 0 43 0 0

6 90 150 120 83 74 65 30

7 88 45 128 0 95 139 32

8 7 333 0 0 40 27 0
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the best solution obtained, random events are chosen from the
list and the simple descent examines their neighborhoods. A

neighborhood is obtained by moving one event from its cur-
rent room to another randomly selected room within the same
timeslot in order to respect professors’ preferences while

improving utilization. This is unlike [18,85], where the neigh-
borhood of a solution is obtained by moving an event from
one slot to another random slot within the same room. A suc-

cessful move takes place when no hard constraint is violated
and the new solution replaces the old if its fitness value is bet-
ter; otherwise things are left unchanged (see Offspring snap-
shot before mutation Figs. 3 and 4). The algorithmic

parameters used in the proposed approach are presented in
Appendix A.

From the figures aforesaid, it is clear that three events made

successful movements out of four. The reason behind leaving
the event ID (282) unchanged is either due to violating any
of the hard constraints or due to resulting in an unchanged

or worse occupancy rate.

4. Testing and results

This section investigates the proposed methodology. It is
divided into four subsections. The first is on the description
and the evaluation of the case of the Faculty of Commerce
in Alexandria University, which is an important real complex
problem rich with constraints that motivated the work pre-

sented in this paper. The second subsection demonstrates the
solution of the problem using the UGA contributed in this
paper. The third subsection discusses the applicability of the

UGA to other problems including other soft and hard con-
straints. Lastly, testing UGA against benchmark problems,
to prove its generality and capability to deal with the hardest

timetabling problems, is presented in the last subsection.

4.1. Current case evaluation

The studied case is of the Faculty of Commerce-Alexandria
University, Egypt, where building undergraduate semester
timetables starts six weeks before the academic semester
begins. Personnel build the timetable based on a semester

course plan communicated by the academic departments.
There are four main divisions at the bachelor level inside the
faculty: the Arabic (AR) division, the Affiliated Arabic divi-

sion (AA), where students are evaluated using different meth-
ods, the English (E) division and the French (F) division. Each
division can study in seven specialties starting from the third

academic year in a four-year based education system where
the academic year consists of two semesters. In the first seme-
ster for year 2012–2013, the number of professors involved in
teaching was 131 and the number of courses taught was 150

(including courses taught in the three different languages).
Thirty-two learning spaces were available and 337 events were
considered to construct a timetable over a seven-day week. The

academic week starts on Saturdays and the number of lectur-
ing hours per day is 12 from 8:00 a.m to 8:00 p.m. The faculty
builds the timetable centrally for the seven departments and all

the student groups. The Faculty of Commerce is one with a
very large number of students (between 10 and 2650 per group
in year 2012–2013) and a total of 57 groups (see Table 4). Hard

constraints include assigning professors to timeslots of their
preferences, respecting room capacities, avoiding lectures’ con-
flicts for professors and groups, excluding Fridays and end of
day timeslots, and assigning all the lectures to the timetable.

Professors’ preferences are collected from professors before
the semester begins. The set of soft constraints includes
respecting a maximum number of lectures per professor and

per group in one day, decreasing gaps between lectures for a
professor and for a group and targeting either no less than
75% or 0% occupancy rate for each allocated event. The

objective pursued in the paper is reflected in the fitness func-
tion that considers the soft constraints together with the best
frequency rates for a room per day. Occupancy and frequency
rates are defined in Section 3.3.

The described case was selected for a number of reasons:

1. The faculty does not follow any automated approach when

constructing timetables. Thus, it was a fresh ground to test
the contributed approach.

2. The problem size is very large and complex in terms of the

following: the number of students enrolled each year, the
number of groups, the number of departments, the number
of professors, and the limited number of teaching spaces.

3. The large number of common lectures among student
groups from different departments.



Table 6 Summary results of Table 5.

No. of room days with

avg_occ_rates <75% per day

No. of room days with avg_occ_rates

between 75% and 100%

No. of room days with

avg_occ_rates = 0%

No. of room days with

avg_occ_rates >100%

Total

99 12 103 10 224

Table 7 Description of the solved problem instance in 2012–

2013 at faculty of commerce.

Item Data

No. of lecturers 131

No. of courses 150

No. of departments 7

No. of students Between 10 and 2650

No. of groups 57

No. of rooms 32

No. of events 337

No. of days 5

No. of hrs to schedule/day 10

Table 8 Avg. occupancy room rates per days using UGA on

the faculty of commerce dataset.

Room/day Sat (%) Sun (%) Mon (%) Tue (%) Wed (%)

201 0 0 0 0 0

202 0 0 71 76 0

203 0 0 0 0 0

301 0 0 83 83 0

302 0 0 0 58 0

303 0 0 0 0 0

401 0 0 0 0 0

403 0 0 0 0 0

405 0 0 0 0 0

407 91 0 89 91 93

501 0 0 0 0 0

503 0 0 0 0 0

506 0 0 0 0 0

507 50 0 0 0 67

601 92 83 76 86 83

603 0 0 100 79 0

605 83 75 80 79 75

705 0 0 0 0 0

707 0 0 0 0 0

91 91 93 96 93 93

92 0 0 0 0 0

93 100 88 93 96 85

94 0 0 0 0 0

95 100 80 100 80 100

1 88 61 80 66 0

2 50 0 100 56 0

3 0 0 0 56 0

4 0 0 0 80 0

5 89 98 100 98 97

6 83 83 83 83 83

7 97 96 97 100 100

8 72 53 56 46 59
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4. The faculty works seven days a week including Fridays to

be able to find a room to assign events.
5. Lectures’ time durations are not standardized; some are

three-hour and others are two-hour duration. This makes
it harder to assign events while avoiding intersections.

Starting with the manual solution applied by the university,
in 2012–2013 timetables, a number of events were inefficiently

scheduled to incompatible rooms in the faculty. The actual
problem description of the Faculty of Commerce in semester
one for year 2012–2013 is illustrated in Table 4.

Average occupancy rates for rooms per day in year 2012–
2013 determined by the manually developed timetable are
shown in Tables 5 and 6.

It is obvious from Table 6 that the number of events with
poor occupancy rates (less than 75%) is 99 events compared
to the number of events with good occupancy rates that are
12 only. There are 10 events with occupancy rates that

exceeded 100%. This means that the corresponding rooms
were overutilized. The number of events left idle and unoccu-
pied is 103 events.

4.2. Testing using UGA

The data for the case tested using UGA are presented in

Table 7. The same parameters of the manual case were used.
However, a five days week was considered as well as shorter
working day. The solution obtained used less rooms.

From Table 7, it is clear that the number of working days
was reduced to five instead of seven. This does not contradict
the professors’ preferences as professors may have Thursdays
off or use them in other activities. This also means that there

are still two more working days to assign more lectures if
needed. After applying and running UGA, the utilization rates
obtained (see Tables 8 and 9).

A comparison between the change in rates between the old
timetable constructed in year 2012–2013 and the timetable
constructed using UGA algorithm is summarized in Table 10.
According to Table 11, it is obvious that approximately
41% of the rooms available were saved instead of 19% in

the old approach. Forty percent (40%) of the total working
hours available weekly to build the schedule were saved as
well. Applying UGA also excluded two days for a weekend

(Thursdays and Fridays) when building timetables and
reduced the number of potential lecture periods per days to
five instead of six.

4.3. Testing UGA on other problems

The UGA contributed in this paper is intended to solve univer-
sity course timetabling problems where the objective is space

utilization optimization. It was applied on the Faculty of Com-
merce dataset where the real problem under study was identi-



Table 9 Summary results of Table 8.

No. of room days with

avg_occ_rates <75% per day

No. of room days with avg_occ_rates

between 75% and 100%

No. of room days with

avg_occ_rates = 0%

No. of room days with

avg_occ_rates >100%

Total

16 60 148 0 224

Table 10 Old and new timetable occupancy rates comparison.

Rate Range Manual

Approach

UGA

No. of rooms with avg. Occ_Rates

<75%

99 18

No. of rooms with avg. Occ_Rates

P75%

12 61

No. of rooms with avg.

Occ_Rates = 0%

103 145

No. of rooms with avg. Occ_Rates

>100%

10 0

Table 11 No. of resources saved by applying UGA.

Item Old

approach

New

approach

Total no. of rooms saved out of 32 rooms 6 13

Total working hours available weekly to

build the schedule

84 50

Total no. of hours saved relevant to the

max. timeslots allowed

0 34

No. of days worked 7 5

No. of days saved relevant to the max.

days allowed

0 2

Max. no. of lecture periods/day 6 5

Table 12 Problem description of faculty of commerce, in year

2012–2013 and datasets 1 and 2.

Item Case dataset (faculty of

commerce)

Dataset

1

Dataset

2

No. of lecturers 131 47 95

No. of courses 150 54 121

Max. no. of

students

600 600 600

No. of rooms 32 9 19

No. of events 337 152 390

No. of days 5 6 5

Max. no. of

periods/day

5 6 5

Table 13 Avg. occupancy room rates per days using UGA

(dataset 1).

Room/day Sat

(%)

Sun

(%)

Mon

(%)

Tue

(%)

Wed

(%)

Thus

(%)

201 0 0 0 0 0 0

202 83 70 76 83 74 0

203 0 0 0 0 0 0

301 0 0 0 0 0 0

302 0 0 0 0 0 0

303 0 0 0 0 0 0

401 0 0 0 0 0 0

403 0 0 0 0 0 0

405 0 0 0 0 0 0

407 0 0 93 89 90 89

501 0 0 0 0 0 0

503 0 0 0 0 0 0

506 0 0 0 0 0 0

507 72 33 50 67 67 83

601 83 83 100 91 94 83

603 0 0 0 0 0 0

605 0 0 0 0 0 0

705 0 0 0 0 0 0

707 0 0 0 0 0 0

91 91 93 96 93 93 93

92 0 0 0 0 0 0

93 93 95 96 100 100 100

94 0 0 0 0 0 0

95 0 0 0 0 0 0

1 100 83 100 75 100 0

2 0 0 0 0 0 0

3 0 0 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

6 83 83 83 83 83 0

7 100 100 100 100 100 100

8 0 0 0 0 0 0
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fied and motivated this work. Although the developed algo-
rithm was used to solve a complex case study compared to
those reported in the literature, it is important to demonstrate
how generic and robust the proposed algorithm is in solving

other university course timetabling problems. Other tests were
done on two benchmark datasets selected from the third track
of the International Timetabling Competition (ITC) 2007,

which is the curriculum-timetabling track, that considers the
course timetabling problem and applies to the University of
Udine in Italy [73,86].

In the original formulation of the two chosen datasets some
constraints of the problem studied in this paper were not
included. These are as follows:

1. Rooms might not be available in certain periods, and they
must not be suitable for specific lectures. In comparison

with the studied case, these are considered hard constraints.
2. Rooms have the same capacities. In comparison with the

studied case, rooms had different capacities and they have
to be matched against the number of attendees in a lecture.

3. Teacher preferences on periods and rooms are only
included as soft constraints. In comparison with the studied
case, preferences for periods are considered hard

constraints.



Table 14 Summary results of Table 13.

No. of room days with

avg_occ_rates <75% per day

No. of room days with avg_occ_rates

between 75% and 100%

No. of room days with

avg_occ_rates = 0%

No. of room days with

avg_occ_rates >100%

Total

7 42 175 0 224

Table 15 Avg. occupancy room rates per days using UGA

(dataset 2).

Room/day Sat (%) Sun (%) Mon (%) Tue (%) Wed (%)

201 0 0 0 0 0

202 75 75 78 83 65

203 0 0 0 0 0

301 0 0 0 0 0

302 80 78 77 78 83

303 0 0 0 0 0

401 97 97 97 83 100

403 0 0 0 0 0

405 0 0 0 0 0

407 80 93 76 80 56

501 0 0 0 0 0

503 0 0 0 0 0

506 0 0 0 0 0

507 45 0 50 63 58

601 83 83 83 81 83

603 0 0 0 91 91

605 0 0 0 0 0

705 0 0 0 0 0

707 0 0 0 0 0

91 91 93 96 93 93

92 0 0 0 0 0

93 99 96 95 88 91

94 0 0 0 0 0

95 96 88 92 96 84

1 68 61 80 65 80

2 65 66 66 76 60

3 90 98 59 98 75

4 100 97 96 98 96

5 90 98 97 93 99

6 77 81 74 82 80

7 98 100 100 100 100

8 59 46 54 63 51

Table 17 Computational time comparison (in hours) between

UGA and the BWAS and BWACS.

Algorithmndataset Dataset 1 Dataset 2

UGA 4.5 11.1

BWAS 3.9 13

BWACS 3.4 12.2
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In order to maintain the same level of problem complexity
when testing the algorithm, the authors added these removed

features as hard constraints. Additionally, they assumed that
all rooms are available in all the allowed time periods. The
maximum number of students in a lecture was set to be 600

when testing with these datasets because nothing was men-
tioned about the number of students in the original formula-
tion of the benchmark problems. The authors did not
assume that rooms are of similar capacities, but rather used

the different capacities of the Faculty of Commerce’s spaces,
Table 16 Summary results of Table 15.

No. of room days with

avg_occ_rates <75% per day

No. of room days with avg_occ_rates

between 75% and 100%

20 66
which makes the problem harder to solve and requires more
computational time. The proposed composite fitness function

that focuses on the utilization rates of spaces was used to eval-
uate the solution quality. Details about solving the two-
benchmark datasets are shown in Tables 12–16.

Additionally, a comparison has been made between the
computational time required to run the two datasets using
UGA and the BWAS and BWACS algorithms developed in

[73] including LS1 and LS2. For a fair comparison, the number
of iterations considered was 45 iterations with 20 solutions
produced in each iteration to eventually get 900 solutions.
However, it was noticed that after the fourth or the fifth iter-

ation no improvement to the solution takes place. This means
that increasing the number of iterations might not be useful in
all cases, but only consumes additional computational time. A

stopping criterion was then used when the solution does not
change after a number of iterations. The performance compar-
ison is better illustrated in Table 17.

All the previously presented tests were done on a personal
computer Core i5 2.40 GHz CPU and 6 GB RAM using Java
6 as a programming language and PostgresSQL 9.3 as a data-
base management system. It is obvious from testing the algo-

rithm on different datasets, that UGA algorithm is a robust
generic algorithm that generates good utilization rates for
the allocated spaces. However, the computational time

required by UGA algorithm to test dataset 1 was slightly
longer than BWAS and BAWCS, and it consumed less time
in dataset 2. This is still acceptable because constructing

timetables is not a problem solved every day. It is a process
that takes place long before academic semesters begin. Addi-
tionally, the authors have tested the benchmarks based on con-

straints that are more complex and with a more elaborate
objective that were not taken into consideration in their origi-
nal problem formulation.
No. of room days with

avg_occ_rates = 0%

No. of room days with

avg_occ_rates >100%

Total

138 0 224
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5. Conclusion and future work

University timetabling is a hard to solve problem, especially, in
large universities. Constructing timetables is an important task

that consumes time and effort of the involved personnel. This
paper reviewed some of the work related to timetabling and
space allocation problems. It was obvious that different evolu-

tionary algorithms were developed aiming at reducing the
computational time required to solve these problems without
considering much of the real-world constraints. It was also
reported that genetic algorithms have proven success in solving

many timetabling problems. In this work, a utilization-based
genetic algorithm is proposed to solve a real course timetabling
problem with a number of soft and hard constraints including

professors’ preferences, which is considered a novel contribu-
tion overlooked by the previous literature. A simple weighted
sum formula is used to prioritize professors according to their

availabilities. The authors developed a new utilization-based
crossover type that aims at reducing the number of
underutilized/over-utilized events in a timetable. Moreover, a

mutation operator that targets under/over-utilized events was
integrated with a simple descent local search heuristic to
improve the solution. The fitness function developed in this
work considers utilization rates along with other factors to

evaluate the fitness of chromosomes. Weights are assigned to
each of the factors used in calculating the fitness value based
on each factor’s level of significance to the institution con-

structing the timetable.
The case study used to test the algorithm was of the Faculty

of Commerce, Alexandria University in Egypt. This case study

was chosen because of its big problem size and the limited
resources available. A comparison between the timetable gen-
erated by the old manual approach and the timetable gener-

ated using UGA was made to highlight the number of
resources saved. The results showed that applying UGA
enhanced the occupancy rates of the allocated events and
saved many resources. Moreover, to prove the robustness of

the developed algorithm, it was tested against two medium
and big size benchmark datasets. Results of the testing showed
that UGA took less computational time for solving the big size

problem and slightly more time was required with the medium
sized benchmark dataset. However, testing the two datasets
was not on their original simplified formulations since the con-

straints defined in the Faculty of Commerce case study were
incorporated. This shows that UGA outperforms the previ-
ously contributed approaches to solve these problems even
with slightly more computational time for the medium sized

dataset. The overall performance of UGA with the constraints
elaborated in the paper and the objective proposed prove that
it is an effective tool for generating timetables in big

universities.
Future research will focus on applying UGA with flow opti-

mization considerations inside campuses. This means that it is

better to allocate consecutive events for a group to the same
room or to rooms that are close to each other to avoid logisti-
cal problems inside academic institutions. Another avenue of

research that seems very promising is the use of emerging tech-
nologies in order to be able to report actual numbers of stu-
dents attending lectures and to avoid predicted numbers in
calculating utilization rates. Attendance patterns vary a lot
in Egyptian public universities and the number of attendees
needs to be tracked in order to be able to calculate accurate
utilization rates. Revealing such information will help dynam-

ically improving the initially constructed timetables and free-
ing unneeded resources.
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Appendix A

UGA algorithmic parameters.
Parameter
 Value/name
Chromosome generation

method
Generated by (LD+ LE)
Population size
 20
Crossover type
 Utilization crossover
Mutation type

Local search used with

mutation
Targeted Mutation (targeting

utilization rates)

Simple descent
Fitness function
 Composite function (incorporating

utilization rates)
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