
Of course, these interesting specula-

tions about the functions of extended,

nonlocal reactivations are just that: spec-

ulations. After many years, it has still not

been demonstrated that the sleep reacti-

vation is involved in memory consolida-

tion; it has not been shown that reverse

replay is involved in the credit assignment

problem; it has not been shown that the

extended sweeps at choice points are

involved in VTE behavior. It is possible

that these results are all epiphenomena

of hippocampal circuitry and plasticity

mechanisms, which may be necessary

for proper functioning during active loco-

motion but which have no well-defined

functions during sleep, restfulness, or

pauses. Proving that these phenomena

serve specific functional roles in cognition

will be a difficult task that requires clever

behavioral tasks and neuronal activity

markers that may be beyond current

technological limitations. For example,

it would be interesting to see if one

could train the rat to produce specific

nonlocal representations during pauses

and SW-Rs, which would suggest that

these events are under the control of the

rat. Further, the increasing development

of sophisticated imaging tools and molec-

ular-genetic techniques may someday

allow the manipulation of the specific

neural circuits that generate these events.

Future research may ultimately expand on

these results to decipher the neural mech-

anisms underlying internally generated,

conscious thought that is removed from

external sensory stimulation. Imagine the

possibilities!

REFERENCES

Buzsaki, G. (1986). Brain Res. 398, 242–252.

Davidson, T.J., Kloosterman, F., and Wilson, M.A.
(2009). Neuron 63, this issue, 497–507.

Diba, K., and Buzsaki, G. (2007). Nat. Neurosci. 10,
1241–1242.

Foster, D.J., and Wilson, M.A. (2006). Nature 440,
680–683.

Hassabis, D., Kumaran, D., Vann, S.D., and
Maguire, E.A. (2007). Proc. Natl. Acad. Sci. USA
104, 1726–1731.

Jackson, J.C., Johnson, A., and Redish, A.D.
(2006). J. Neurosci. 26, 12415–12426.

Johnson, A., and Redish, A.D. (2007). J. Neurosci.
27, 12176–12189.

Lee, A.K., and Wilson, M.A. (2002). Neuron 36,
1183–1194.

Louie, K., and Wilson, M.A. (2001). Neuron 29,
145–156.

O’Neill, J., Senior, T., and Csicsvari, J. (2006).
Neuron 49, 143–155.

Skaggs, W.E., and McNaughton, B.L. (1996).
Science 271, 1870–1873.

Wilson, M.A., and McNaughton, B.L. (1994).
Science 265, 676–679.

Neuron

Previews
Harnessing Chaos in Recurrent Neural Networks

Dean V. Buonomano1,2,3,*
1Department of Neurobiology
2Department of Psychology
3Brain Research Institute
University of California, Los Angeles, Los Angeles, CA 90095, USA
*Correspondence: dbuono@ucla.edu
DOI 10.1016/j.neuron.2009.08.003

In this issue of Neuron, Sussillo and Abbott describe a new learning rule that helps harness the computational
power of recurrent neural networks.

One of the ironies of the human condition

is that while many of our cognitive abilities

derive from the complex dynamics of

recurrent networks of neurons, we are

quite inept at understanding neural dy-

namics in these same networks. The

challenge of understanding the behavior

of complex systems is, of course, not

unique to neuroscience. Scientists have

long struggled with how macroscopic

properties emerge from interactions

between a large number of simple ele-

ments, such as how complex social struc-

tures emerge from the interaction of indi-

vidual members of insect colonies, or

how biomolecules give rise to life itself.

However, the problem seems particularly

perverse in neuroscience, since no one

would describe a neuron as a simple

element, and the synaptic strengths—

which ultimately determine the nature of

the interactions—continuously vary as

a result of short- and long-term forms of

plasticity.

Over the past 3 decades, neuroscien-

tists have sought to understand the rules

governing synaptic weights and have

examined how computations can be

achieved by appropriately adjusting these

weights. These studies have resulted

in experimentally derived learning rules,

such as spike-timing-dependent plas-

ticity (Dan and Poo, 2004), and biologi-

cally implausible but computationally

powerful algorithms, such as backpropa-

gation (Rumelhart et al., 1986). The

computational potential of these rules

has focused primarily on feedforward

networks, largely because they are not

burdened with the complexities that can

result in chaotic dynamics or epileptic-

like ‘‘runaway excitation.’’

Despite some progress with artificial

(Hopfield, 1982) and experimentally

derived (Izhikevich, 2006; Legenstein
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et al., 2008) learning rules,

figuring out how to reliably adjust

synaptic weights in recurrently

connected networks has proven

elusive. The good news is that

such networks are able to

perform useful computations

even with weights set at

random—as long as they are

not too weak or strong. Specifi-

cally, when all units in a randomly

connected recurrent network are

in turn connected to an output

(‘‘readout’’) neuron, it is possible

to adjust the weights from the

neurons onto the output neuron

(WOut) so that it will generate

selective responses to complex

stimuli, such as spoken words.

This setup—referred to as

a state-dependent network or

a liquid-state machine (Buono-

mano and Maass, 2009)—relies

on regimes in which recurrent

connectivity is strong enough to

influence the behavior of the

network, but not so strong that

network behavior is governed

by internal dynamics or is

capable of generating self-

perpetuating patterns of activity.

Because of this, state-dependent

networks are better suited to discriminate

input patterns than generate complex

output patterns.

In this issue, Sussillo and Abbott (2009)

extend a related framework and demon-

strate that their new approach has an

impressive ability to learn complex output

patterns and input-output transforma-

tions. Imagine a network of 500 units,

each connected to 50 others, and that

we set the weights according to a

Gaussian distribution with a mean of

0 scaled by an internal gain g (we will

pretend that the ‘‘neurons’’ take on analog

values between �1 and 1 and that

synapses can be positive or negative). It

is easy to see that, in response to a brief

input, if all the synaptic strengths are

very weak (g close to 0), activity quickly

fades away. On the other hand, if the

synapses are strong (g is large), with

the same input the network might

generate complex ongoing patterns of

activity. Indeed, different g values can

produce a range of dynamic regimes;

generally values below 1 do not generate

self-sustaining activity, and above 1,

they generate increasingly complex and

chaotic activity (Figure 1A) (Sompolinsky

et al., 1988).

Let’s assume that we want our network

of 500 neurons (E units) to do something

useful: generate a 10 Hz sinusoid output.

First we will add a single output unit

receiving input from all 500 E units. We

want to achieve a behavior in which the

output is steady, but will generate a

continuous sinusoidal pattern in response

to a brief input stimulus. How do we set

the weights between the neurons in the

recurrent network (WEE) and those onto

the output unit (WOut)? Clearly if the WEE

weights are too weak, activity will die

out, making it impossible to generate

a periodic output. One way to solve this

problem is to add an input to the network

that just happens to generate precisely

our desired target: a sine function. Now

each E unit will receive a sinusoidal input

as well as input from other units in the

network. If the input weights are stronger

than the recurrent weights, most of the

E units will oscillate with the same period

as the input. Given this scenario

it is easy to find a set of WOut

weights that produces a sinu-

soidal output in the readout

unit. So now we have our desired

sinusoidal output; of course, we

are cheating because we are

feeding in the precise input that

we wanted as an output! But we

can solve this by simply using

the output as the input—in other

words, using feedback. This

approach, first described in the

context of artificial neural net-

works by Jaeger and Haas

(2004), has been termed an

echo-state network. During

training the feedback is clamped

to the desired output and only

the weights of the WOut synapses

are adjusted so that the output

matches the desired target—

afterwards, the feedback can

be unclamped and run autono-

mously.

The challenge in changing

weights in a network with feed-

back is instability: changing the

weights onto the readout /

alters feedback from the read-

out / which modifies the

dynamics of the recurrent network /

requiring further changes in WOut. In the

echo-state network this problem was

avoided by clamping the output to the

desired target during training. Here, the

authors describe a novel, more powerful

technique to train these feedback recur-

rent networks (inset of Figure 1B)—even

when internal weights are strong enough

to generate complex spontaneous

activity. In this method, referred to as

FORCE (first-order reduced and

controlled error) learning, the feedback

loop is always operational, but the error

(the difference between target and output)

is kept very small by rapid changes in

WOut. As shown in Figure 1B, FORCE

generates a sinusoid output from a

network that exhibits complex patterns

of spontaneous activity in the absence of

feedback (g = 1.5). But the FORCE

learning rule goes far beyond generating

arbitrary waveforms. Indeed, as shown in

the paper, multiple input and output units

can be incorporated into the circuit to

generate networks that can operate in

different modes, governed by different

Figure 1. Dynamics of Randomly Connected Recurrent
Neural Networks
(A) Complex self-maintaining activity patterns are observed in
response to a brief stimulus (gray) in a recurrent network (ellipse on
left, with blue circles representing neurons, and arrows, synapses) in
which the weights are randomly assigned strong values (g = 1.5).
Each line represents the activity of a single unit of a large recurrent
network. The dashed lines represent the same simulation in which
the activity of a single unit was altered at t = 20 ms. The divergence
indicates a high sensitivity to noise, suggestive of chaotic behavior.
(B) FORCE learning rule applied to a network with g = 1.5 and trained
to generate a 10 Hz sinusoid at the onset of a brief input (gray; there
was also an offset signal at t = 1 s). Dashed lines represent the
same simulation when the activity of a single units was altered at t =
�750 ms. This network includes an external feedback unit that
receives inputs (red) from the recurrent network. Only the WOut (red)
were modified during training.
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input ‘‘switches.’’ In one compelling

example the authors simulate human

locomotion using a set of 95 different

outputs (each representing a joint). De-

pending on the input pattern, the network

was capable of generating either walking

or running behavior. These results are

fundamental in that the same recurrent

network can operate in different ‘‘modes.’’

While the operational principles

described are the same as in the echo-

state network, FORCE learning seems

significantly more powerful in finding

optimal sets of WOut weights and in

tapping into the computational power of

networks exhibiting chaotic behavior.

Indeed, up to a point, the presence

of chaotic behavior (higher g values)

improved the ability of the network to

learn to generate a complex periodic

output. It is suggested that this result

supports the notion that networks oper-

ating on ‘‘the edge of chaos’’ are optimally

suited for some computations. Networks

with higher g values are likely more effec-

tive because they generate a richer set of

activity patterns and a longer lasting

internal ‘‘memory.’’

Perhaps the most exciting contribution

is the demonstration that the learning

rule can be applied to the synapses within

the recurrent network. One previous

report (Maass et al., 2007) has taken

a related approach, but Sussillo and

Abbott show that all synapses can be

modified using FORCE and that the

learned component reflects the desired

target pattern. In these simulations all

units were updated according to the

same rule, but interestingly, the same

global error signal, based on the output

unit, was used for all cells. The applica-

bility of FORCE to all synapses in a recur-

rent network is biologically important

since it is well established that recurrent

synapses between pyramidal neurons

are plastic. Intuitively, it might seem that

plasticity within the recurrent network

should offer computational advantages;

surprisingly, performance did not appear

to be significantly better than when plas-

ticity was limited to the WOut synapses. It

is possible that future studies will reveal

situations in which this is not the case;
however, it is also possible that since

the feedback from the readout neuron is

a particular case of a recurrent network

(imagine the readout unit being dragged

into the recurrent network), these archi-

tectures are related.

FORCE provides a powerful algorithm

for training recurrent networks, but it is

far from clear whether it should be thought

of as a biologically plausible model. First,

all simulations used a firing rate model as

opposed to spiking neurons. Maass et al.

(2007), however, have implemented

related feedback principles using spiking

neurons, thus FORCE may generalize to

more realistic neural simulations. Second,

the authors focus primarily on a weight

update algorithm termed recursive least-

squares (Haykin, 2002). This rule relies

on a running estimate of the correlation

matrix of the inputs onto a postsynaptic

neuron (and requires that each synapse

‘‘know’’ the input to other synapses),

and while powerful, it is not biologically

plausible. However, the authors also

show that FORCE works with the more

biologically plausible, yet less powerful,

delta rule (coupled with a variable learning

rate). Third, to maintain the small error in

the feedback loop, the change in the

synaptic weights has to be in real time

and very quick. Given the speed require-

ments and complexity of the rule, it

seems likely that future research aimed

at adapting FORCE to the biology may

prove more fruitful than searching for bio-

logical mechanisms that fit FORCE.

As the authors acknowledge, FORCE

might best be viewed as a valuable

technique for building and, perhaps

more importantly, understanding recur-

rent networks. For example, in Figure 1B

it is instructive to ask where the sinusoid

is stored. Clearly the modified WOut

weights are critical, but so are the random

weights within the recurrent network

(shuffling WEE produces an entirely

different behavior). It is rather illuminating

to realize that having the complete con-

nectome of the recurrent network (in the

absence of the nature of the input and

feedback signals) would not provide any

insight into the fact that it was involved

in generating a sinusoid or in explaining
Neuron 6
where the sine wave was ‘‘stored.’’ One

potential lesson is that perhaps much of

the synaptic plasticity occurring within

recurrent cortical networks is not aimed

at learning specific stimuli, but at ensuring

that networks are in an optimal regime.

Homeostatic forms of plasticity would

appear likely candidates; however, exper-

imentally derived forms of homeostatic

plasticity, such as synaptic scaling (Turri-

giano, 2007), are unstable in recurrent

networks (Buonomano, 2005; Houweling

et al., 2005). Yet, it is possible that homeo-

static plasticity in combination with corre-

lation-based forms of plasticity may play

an important role in tuning cortical

networks ‘‘off-line’’ to ensure that they

operate in a receptive regime—one equiv-

alent to the optimal g values reported

in Sussillo and Abbott (2009).
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