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Abstract

We prove the upper semicontinuity of the global attractor corresponding to a class of lattice nonclassical parabolic equations.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In this letter, we discuss the limiting behavior of the following lattice nonclassical parabolic equations as ν → 0:

u̇i + (2ui − ui+1 − ui−1) + ν(2u̇i − u̇i+1 − u̇i−1) + λi ui + fi (ui ) = gi , i ∈ Z, t > 0, (1.1)

where ν ∈ [0, 1/8]. Lattice systems (1.1) can be regarded as a discrete analogue in spatial variables to the following
nonclassical parabolic equation on R:

ut − 1u − ν1ut + λ(x)u + f (u, x) = g. (1.2)

When ν = 0, (1.1) reduces to the following lattice systems:

u̇i + (2ui − ui+1 − ui−1) + λi ui + fi (ui ) = gi , i ∈ Z, t > 0, (1.3)

which can be regarded as a discrete analogue to the following parabolic equation on R:

ut − 1u + λ(x)u + f (u, x) = g. (1.4)

For t = 0, we specify the initial data

ui (0) = ui,0, i ∈ Z. (1.5)
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When λi and fi are independent of i , Bates et al. [1] studied the existence and upper semicontinuity of the global
attractor for lattice systems (1.3) and (1.5). Later, Zhou [4] generalized the results of [1] to general lattice systems.

The main goal of this letter is to prove that Aν → A0 in the sense of the Hausdorff semidistance in `2 as
ν → 0, where Aν and A0 are the global attractors corresponding to lattice systems (1.1) and (1.5), (1.3) and (1.5),
respectively. For related research, one can refer to [3] for the singular limiting behavior of the global attractor for
lattice FitzHugh–Nagumo systems.

2. Setting of the problem and preliminaries

Set

`2
=

{
u = (ui )i∈Z| ui ∈ R,

∑
i∈Z

u2
i < +∞

}
, (2.1)

and equip it with the following inner product and norm:

(u, v) =

∑
i∈Z

uivi , ‖u‖
2

= (u, u), ∀u = (ui )i∈Z, v = (vi )i∈Z ∈ `2.

Obviously, `2
= (`2, (·, ·), ‖ · ‖) is a Hilbert space. Define some linear operators on `2 as follows:

(Au)i = 2ui − ui+1 − ui−1, (Bu)i = ui+1 − ui , (B∗u)i = ui−1 − ui , u = (ui )i∈Z ∈ `2.

Then B∗ is the adjoint operator of B, and

A = B∗ B = B B∗, A∗
= A, (2.2)

where A∗ is the adjoint operator of A.
We now make some assumptions on functions fi , λi (see also in [4]).

(A1) fi (0) = 0, fi (ui )ui ≥ 0, ∀ i ∈ Z, ∀ ui ∈ R.
(A2) There exists a continuous function α(r) : R+ 7−→ R+ such that

sup
i∈Z

max
ui ∈[−r,r ]

| f ′

i (ui )| ≤ α(r), ∀r ∈ R+.

(A3) There exist two positive constants λ0 and λ̂0 such that

0 < λ0 ≤ λi ≤ λ̂0 < +∞, ∀i ∈ Z.

With assumptions (A1)–(A2), [4] showed that f is locally Lipschitz continuous from `2 to `2:

‖ f (u) − f (v)‖2
≤ α2(r)‖u − v‖

2, ∀u, v ∈ `2 with ‖u‖, ‖v‖ ≤ r. (2.3)

Problem (1.3) and (1.5) can be expressed as the following first-order lattice system with initial data:

u̇ + Au + λu + f (u) = g, t > 0, u(0) = (ui,0)i∈Z = u0, (2.4)

where u = (ui )i∈Z, Au = ((Au)i )i∈Z, λu = (λi ui )i∈Z, f (u) = ( fi (ui ))i∈Z, g = (gi )i∈Z.

Proposition 2.1 ([4]). If (A1)–(A3) hold and g ∈ `2, then problem (2.4) possesses a unique solution u ∈

C([0, +∞), `2) ∩ C1((0, +∞), `2) and the solution operators

S0(t) : u0 ∈ `2
7−→ S0(t)u0 = u(t) ∈ `2, t ≥ 0, (2.5)

form a continuous semigroup {S0(t)}t≥0 on `2. Moreover, {S0(t)}t≥0 has a global attractor A0 in `2.



C. Zhao, S. Zhou / Applied Mathematics Letters 20 (2007) 829–834 831

3. Existence of a global attractor

In this section, we verify the existence of a global attractor for the semigroup {Sν(t)}t≥0 corresponding to problem
(1.1) and (1.5).

Lemma 3.1. There exists (I + ν A)−1
∈ L(`2) such that (I + ν A)−1(I + ν A) = I , where I is the identity operator

on `2 and L(`2) is the set of bounded linear operators from `2 to `2. Moreover, (I + ν A) and (I + ν A)−1 are both
positive and self-adjoint operators on `2.

Proof. By the definition of A,

‖Au‖
2

=

∑
i∈Z

|2ui − ui+1 − ui−1|
2

≤ 16‖u‖
2, ∀u ∈ `2.

Hence ‖A‖ ≤ 4, where ‖A‖ is the norm of the operator in the set of linear operators from `2 to `2, i.e., A ∈ L(`2).
Thus I + ν A ∈ L(`2). At the same time, one can easily check that I + ν A : `2

7−→ `2 is one-to-one and onto. By
Banach’s theorem, there exists (I + ν A)−1

∈ L(`2) such that (I + ν A)−1(I + ν A) = (I + ν A)(I + ν A)−1
= I . Now

by (2.2), for any u ∈ `2, we have

(I + ν A)∗ = I ∗
+ ν A∗

= I + ν A, ((I + ν A)u, u) = ‖u‖
2
+ ν‖Bu‖

2
≥ 0, ∀u ∈ `2.

Thus, I + ν A is a positive and self-adjoint operator on `2. Clearly, (I + ν A)−1 is also a positive and self-adjoint
operator on `2. The proof is completed. �

By Lemma 3.1 and classical theory of Functional Analysis (see, e.g., [2]), there exists a unique positive and self-
adjoint operator D ∈ L(`2) such that

D2
= (I + ν A)−1. (3.1)

Moreover, we have

‖D‖
2

≥ ‖D2
‖ = ‖(I + ν A)−1

‖ =
1

‖I + ν A‖
≥

1
1 + ν‖A‖

≥
1

1 + 4ν
, (3.2)

‖Du‖
2

= (D2u, u) = ((I + ν A)−1u, u) ≤ ‖(I + ν A)−1
‖‖u‖

2
≤

‖u‖
2

1 − 4ν
, ∀u ∈ `2. (3.3)

(3.2) and (3.3) imply that D is invertible and its inverse operator D−1 satisfies ‖D−1
‖

2
=

1
‖D‖2 ≤ 1 + 4ν and thus we

have

‖Du‖
2

≥
‖u‖

2

‖D−1‖2 ≥
‖u‖

2

1 + 4ν
, ∀ u ∈ `2. (3.4)

Since ν ∈ [0, 1/8], we conclude from (3.3) and (3.4) that

2
3
‖u‖

2
≤

1
1 + 4ν

‖u‖
2

≤ ‖Du‖
2

≤
1

1 − 4ν
‖u‖

2
≤ 2‖u‖

2, ∀ u ∈ `2. (3.5)

We now make another assumption on the function f .

(A4) (D f (u), Du) ≥ 0, ∀ u ∈ `2, where D is the operator defined by (3.1).

Using Lemma 3.1, we can put problem (1.1) and (1.5) into the following first-order lattice system with initial
condition:

u̇ + (I + ν A)−1 Au + (I + ν A)−1λu + (I + ν A)−1 f (u) = (I + ν A)−1g, t > 0, (3.6)
u(0) = (ui,0)i∈Z = u0. (3.7)



832 C. Zhao, S. Zhou / Applied Mathematics Letters 20 (2007) 829–834

Lemma 3.2. If (A1)–(A4) hold and g ∈ `2, then for any ν ∈ [0, 1
8 ], problem (3.6) and (3.7) possesses a unique

solution u ∈ C([0, +∞), `2) ∩ C1((0, +∞), `2) and the solution operators

Sν(t) : u0 ∈ `2
7−→ Sν(t)u0 = u(t) ∈ `2, t ≥ 0, (3.8)

form a continuous semigroup {Sν(t)}t≥0 on `2. Moreover, {Sν(t)}t≥0 has a uniform (with respect to ν) bounded
absorbing set B0 and a global attractor Aν ⊂ B0 ⊂ `2.

Proof. Here we only verify the existence of a uniform (with respect to ν) bounded absorbing set. The rest of the proof
is similar to that in [4].

Let u(t) ∈ `2 be a solution of (3.6) and (3.7). Taking the inner product (·, ·) of (3.6) with u, we obtain

1
2

d
dt

‖u‖
2
+ ((I + ν A)−1 Au, u) + ((I + ν A)−1λu, u) + ((I + ν A)−1 f (u), u) = ((I + ν A)−1g, u). (3.9)

By (2.2) and (3.1) and (A4),

((I + ν A)−1 Au, u) = ‖DBu‖
2

≥ 0, (3.10)

((I + ν A)−1λu, u) = (λDu, Du) =

∑
i∈Z

λi (Du)i (Du)i ≥ λ0‖Du‖
2, (3.11)

((I + ν A)−1 f (u), u) = (D f (u), Du) ≥ 0, (3.12)

((I + ν A)−1g, u) = (Dg, Du) ≤
1

2λ0
‖Dg‖

2
+

λ0

2
‖Du‖

2. (3.13)

Taking (3.5) and (3.9)–(3.13) into account, we have

d
dt

‖u‖
2
+

2λ0

3
‖u‖

2
≤

2
λ0

‖g‖
2. (3.14)

Applying Gronwall’s inequality to (3.14), we obtain

‖u(t)‖2
≤ ‖u0‖

2e−
2
3 λ0t

+
3
λ2

0
‖g‖

2, ∀ t ≥ 0, (3.15)

which implies that {Sν(t)}t≥0 possesses a uniform (with respect to ν) bounded absorbing set B0 in `2, where B0 is a
ball centered at 0 with radius r0 =

2
λ0

‖g‖. �

4. Upper semicontinuity of the global attractor

To study the limiting behavior of lattice systems (1.1) and (1.5) as ν → 0, one important step is to consider the
continuous dependence of solutions as ν → 0, which also makes independent sense.

Lemma 4.1. Let (A1)–(A4) hold and g ∈ `2; then for any ν ∈ [0, 1/8] and any R, T > 0 given, there exists a
positive constant C = C(R, T, λ0, λ̂0, ‖g‖) such that

‖Sν(t)u0 − S0(t)u0‖ ≤ Cν, ∀ t ∈ [0, T ] and ‖u0‖ ≤ R.

Proof. Let u0 ∈ `2 with ‖u0‖ ≤ R. Set u = Sν(t)u0 and v = S0(t)u0. Then w = u − v = Sν(t)u0 − S0(t)u0 is a
solution of the following problem:

ẇ + Aw + ν Au̇ + λw + f (u) − f (v) = 0, t > 0, (4.1)
w(0) = 0. (4.2)

Taking the inner product (·, ·) of (4.1) with ẇ, we obtain

‖ẇ‖
2
+

1
2

d
dt

‖Bw‖
2
+ ν(Bu̇, Bẇ) +

1
2

d
dt

∑
i∈Z

λiw
2
i + ( f (u) − f (v), ẇ) = 0. (4.3)
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Clearly, we have ‖B‖ ≤ 2 and thus

ν(Bu̇, Bẇ) ≤ ν‖Bu̇‖ ‖Bẇ‖ ≤ 4ν‖u̇‖ ‖ẇ‖ ≤
1
2
‖ẇ‖

2
+ 8ν2

‖u̇‖
2. (4.4)

By (2.3), (3.5), (3.6) and (3.15),

‖u̇‖ = ‖(I + ν A)−1(Au + λu + f (u) − g)‖ ≤ 2(‖Au‖ + ‖λu‖ + ‖ f (u)‖ + ‖g‖)

≤ 2(4‖u‖ + λ̂0‖u‖ + α(R)‖u‖ + ‖g‖) ≤ 2(4 + λ̂0 + α(R))‖u‖ + 2‖g‖

≤ 2(4 + λ̂0 + α(R))

(
R2

+
3
λ2

0
‖g‖

2

) 1
2

+ 2‖g‖

.
= C1(R, λ0, λ̂0, ‖g‖), ∀ t ≥ 0. (4.5)

Also by (2.3),

( f (u) − f (v), ẇ) ≤ ‖ f (u) − f (v)‖ ‖ẇ‖ ≤
1
2
‖ẇ‖

2
+

1
2
‖ f (u) − f (v)‖2

≤
1
2
‖ẇ‖

2
+

α2(R)

2
‖w‖

2. (4.6)

It then follows from (4.3)–(4.6) that

1
2

d
dt

(
‖Bw‖

2
+

∑
i∈Z

λiw
2
i

)
≤

α2(R)

2λ0

(∑
i∈Z

λiw
2
i + ‖Bw‖

2

)
+ 8C2

1(R, λ0, λ̂0, ‖g‖)ν2. (4.7)

Applying Gronwall’s inequality to (4.7), we obtain

‖Bw‖
2
+

∑
i∈Z

λiw
2
i ≤

(
‖Bw(0)‖2

+

∑
i∈Z

λiw
2
i (0)

)
e

α2(R)
2λ0

t
+ 8C2

1ν2
∫ t

0
e

α2(R)
2λ0

(t−s)ds

= 8C2
1(R, λ0, λ̂0, ‖g‖)ν2

∫ t

0
e

α2(R)
2λ0

(t−s)ds

.
= C2(R, T, λ0, λ̂0, ‖g‖)ν2, ∀ t ∈ [0, T ],

from which we get ‖w‖ ≤

√
C2(R,T,λ0,λ̂0,‖g‖)

λ0
ν

.
= C(R, T, λ0, λ̂0, ‖g‖)ν. �

Theorem 4.1. Let (A1)–(A4) hold and g ∈ `2; then the global attractor Aν of {Sν(t)}t≥0 corresponding to lattice
systems (1.1) and (1.5) is upper semicontinuous at ν = 0 in the following sense:

d`2(Aν,A0) = 0 as ν → 0, (4.8)

where d`2(X, Y ) = supx∈X infy∈Y ‖x − y‖ is the Hausdorff semidistance from X ⊂ `2 to Y ⊂ `2.

Proof. On the one hand, for any ν ∈ [0, 1/8], Aν is uniform (w.r.t. ν) bounded in `2. On the other hand, A0 attracts
any bounded set of `2. Thus for any ε > 0, there exists some T > 0 such that

d`2(S0(T )Aν,A0) <
ε

2
, ∀ ν ∈ [0, 1/8]. (4.9)

At the same time, for above T > 0, Lemma 3.2 and Lemma 4.1 show that there exists some C = C(r0, T, λ0, λ̂0, ‖g‖)

such that

d`2(Aν, S0(T )Aν) = d`2(Sν(T )Aν, S0(T )Aν) < Cν, ∀ ν ∈ [0, 1/8]. (4.10)

It then follows from (4.9) and (4.10) that

d`2(Aν,A0) ≤ d`2(Aν, S0(T )Aν) + d`2(S0(T )Aν,A0)
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< d`2(Sν(T )Aν, S0(T )Aν) +
ε

2

< Cν +
ε

2
, ∀ ν ∈ [0, 1/8].

Choose ν0 = min{ε/2C, 1/8} and we get

d`2(Aν,A0) < ε, ∀ ν ∈ [0, ν0].

The proof is completed. �
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