

Available online at www.sciencedirect.com

Applied Mathematics Letters

Applied Mathematics Letters 20 (2007) 829-834

www.elsevier.com/locate/aml

Limiting behavior of a global attractor for lattice nonclassical parabolic equations[‡]

Caidi Zhao^{a,*}, Shengfan Zhou^b

^a College of Mathematics and Information Science, Wenzhou University, 325035, PR China ^b Department of Applied Mathematics, Shanghai Normal University, Shanghai 200234, PR China

Received 6 April 2006; accepted 28 June 2006

Abstract

We prove the upper semicontinuity of the global attractor corresponding to a class of lattice nonclassical parabolic equations. © 2006 Elsevier Ltd. All rights reserved.

Keywords: Lattice systems; Nonclassical parabolic equations; Global attractor; Upper semicontinuity

1. Introduction

In this letter, we discuss the limiting behavior of the following lattice nonclassical parabolic equations as $\nu \rightarrow 0$:

$$\dot{u}_i + (2u_i - u_{i+1} - u_{i-1}) + \nu(2\dot{u}_i - \dot{u}_{i+1} - \dot{u}_{i-1}) + \lambda_i u_i + f_i(u_i) = g_i, \quad i \in \mathbf{Z}, \ t > 0,$$

$$(1.1)$$

where $\nu \in [0, 1/8]$. Lattice systems (1.1) can be regarded as a discrete analogue in spatial variables to the following nonclassical parabolic equation on **R**:

$$u_t - \Delta u - v \Delta u_t + \lambda(x)u + f(u, x) = g.$$

$$(1.2)$$

When $\nu = 0$, (1.1) reduces to the following lattice systems:

$$\dot{u}_i + (2u_i - u_{i+1} - u_{i-1}) + \lambda_i u_i + f_i(u_i) = g_i, \quad i \in \mathbf{Z}, \ t > 0,$$

$$(1.3)$$

which can be regarded as a discrete analogue to the following parabolic equation on **R**:

$$u_t - \Delta u + \lambda(x)u + f(u, x) = g. \tag{1.4}$$

For t = 0, we specify the initial data

$$u_i(0) = u_{i,0}, \quad i \in \mathbf{Z}. \tag{1.5}$$

* Corresponding author.

 $[\]stackrel{\propto}{\sim}$ This work was supported by the National Natural Science Foundation of China under Grants 10171072 and 10471086, and was supported by ZheJiang Province Natural Science Foundation under Grant M103043.

E-mail address: zhaocaidi@yahoo.com.cn (C. Zhao).

^{0893-9659/\$ -} see front matter © 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.aml.2006.06.019

When λ_i and f_i are independent of *i*, Bates et al. [1] studied the existence and upper semicontinuity of the global attractor for lattice systems (1.3) and (1.5). Later, Zhou [4] generalized the results of [1] to general lattice systems.

The main goal of this letter is to prove that $A_{\nu} \rightarrow A_0$ in the sense of the Hausdorff semidistance in ℓ^2 as $\nu \rightarrow 0$, where A_{ν} and A_0 are the global attractors corresponding to lattice systems (1.1) and (1.5), (1.3) and (1.5), respectively. For related research, one can refer to [3] for the singular limiting behavior of the global attractor for lattice FitzHugh–Nagumo systems.

2. Setting of the problem and preliminaries

Set

$$\ell^2 = \left\{ u = (u_i)_{i \in \mathbb{Z}} | u_i \in \mathbb{R}, \ \sum_{i \in \mathbb{Z}} u_i^2 < +\infty \right\},\tag{2.1}$$

and equip it with the following inner product and norm:

$$(u, v) = \sum_{i \in \mathbf{Z}} u_i v_i, \quad ||u||^2 = (u, u), \; \forall u = (u_i)_{i \in \mathbf{Z}}, \; v = (v_i)_{i \in \mathbf{Z}} \in \ell^2.$$

Obviously, $\ell^2 = (\ell^2, (\cdot, \cdot), \|\cdot\|)$ is a Hilbert space. Define some linear operators on ℓ^2 as follows:

$$(Au)_i = 2u_i - u_{i+1} - u_{i-1}, \qquad (Bu)_i = u_{i+1} - u_i, \qquad (B^*u)_i = u_{i-1} - u_i, \quad u = (u_i)_{i \in \mathbb{Z}} \in \ell^2$$

Then B^* is the adjoint operator of B, and

$$A = B^* B = B B^*, \qquad A^* = A,$$
(2.2)

where A^* is the adjoint operator of A.

We now make some assumptions on functions f_i , λ_i (see also in [4]).

(A₁) $f_i(0) = 0, f_i(u_i)u_i \ge 0, \forall i \in \mathbb{Z}, \forall u_i \in \mathbb{R}.$ (A₂) There exists a continuous function $\alpha(r) : \mathbb{R}_+ \longmapsto \mathbb{R}_+$ such that

$$\sup_{i\in\mathbb{Z}}\max_{u_i\in[-r,r]}|f_i'(u_i)|\leq\alpha(r),\quad\forall r\in\mathbb{R}_+.$$

(A₃) There exist two positive constants λ_0 and $\hat{\lambda}_0$ such that

$$0 < \lambda_0 \leq \lambda_i \leq \hat{\lambda}_0 < +\infty, \quad \forall i \in \mathbf{Z}.$$

With assumptions (A₁)–(A₂), [4] showed that f is locally Lipschitz continuous from ℓ^2 to ℓ^2 :

$$\|f(u) - f(v)\|^{2} \le \alpha^{2}(r) \|u - v\|^{2}, \quad \forall u, v \in \ell^{2} \text{ with } \|u\|, \|v\| \le r.$$
(2.3)

Problem (1.3) and (1.5) can be expressed as the following first-order lattice system with initial data:

$$\dot{u} + Au + \lambda u + f(u) = g, t > 0, \qquad u(0) = (u_{i,0})_{i \in \mathbb{Z}} = u_0,$$
(2.4)

where $u = (u_i)_{i \in \mathbb{Z}}$, $Au = ((Au)_i)_{i \in \mathbb{Z}}$, $\lambda u = (\lambda_i u_i)_{i \in \mathbb{Z}}$, $f(u) = (f_i(u_i))_{i \in \mathbb{Z}}$, $g = (g_i)_{i \in \mathbb{Z}}$.

Proposition 2.1 ([4]). If (A₁)–(A₃) hold and $g \in \ell^2$, then problem (2.4) possesses a unique solution $u \in C([0, +\infty), \ell^2) \cap C^1((0, +\infty), \ell^2)$ and the solution operators

$$S_0(t): u_0 \in \ell^2 \longmapsto S_0(t)u_0 = u(t) \in \ell^2, \quad t \ge 0,$$
(2.5)

form a continuous semigroup $\{S_0(t)\}_{t\geq 0}$ on ℓ^2 . Moreover, $\{S_0(t)\}_{t\geq 0}$ has a global attractor \mathcal{A}_0 in ℓ^2 .

3. Existence of a global attractor

In this section, we verify the existence of a global attractor for the semigroup $\{S_{\nu}(t)\}_{t\geq 0}$ corresponding to problem (1.1) and (1.5).

Lemma 3.1. There exists $(I + \nu A)^{-1} \in \mathcal{L}(\ell^2)$ such that $(I + \nu A)^{-1}(I + \nu A) = I$, where *I* is the identity operator on ℓ^2 and $\mathcal{L}(\ell^2)$ is the set of bounded linear operators from ℓ^2 to ℓ^2 . Moreover, $(I + \nu A)$ and $(I + \nu A)^{-1}$ are both positive and self-adjoint operators on ℓ^2 .

Proof. By the definition of *A*,

$$||Au||^2 = \sum_{i \in \mathbb{Z}} |2u_i - u_{i+1} - u_{i-1}|^2 \le 16 ||u||^2, \quad \forall u \in \ell^2.$$

Hence $||A|| \le 4$, where ||A|| is the norm of the operator in the set of linear operators from ℓ^2 to ℓ^2 , i.e., $A \in \mathcal{L}(\ell^2)$. Thus $I + \nu A \in \mathcal{L}(\ell^2)$. At the same time, one can easily check that $I + \nu A : \ell^2 \mapsto \ell^2$ is one-to-one and onto. By Banach's theorem, there exists $(I + \nu A)^{-1} \in \mathcal{L}(\ell^2)$ such that $(I + \nu A)^{-1}(I + \nu A) = (I + \nu A)(I + \nu A)^{-1} = I$. Now by (2.2), for any $u \in \ell^2$, we have

$$(I + \nu A)^* = I^* + \nu A^* = I + \nu A, \qquad ((I + \nu A)u, u) = ||u||^2 + \nu ||Bu||^2 \ge 0, \quad \forall u \in \ell^2$$

Thus, $I + \nu A$ is a positive and self-adjoint operator on ℓ^2 . Clearly, $(I + \nu A)^{-1}$ is also a positive and self-adjoint operator on ℓ^2 . The proof is completed. \Box

By Lemma 3.1 and classical theory of Functional Analysis (see, e.g., [2]), there exists a unique positive and selfadjoint operator $D \in \mathcal{L}(\ell^2)$ such that

$$D^2 = (I + \nu A)^{-1}.$$
(3.1)

Moreover, we have

$$\|D\|^{2} \ge \|D^{2}\| = \|(I + \nu A)^{-1}\| = \frac{1}{\|I + \nu A\|} \ge \frac{1}{1 + \nu \|A\|} \ge \frac{1}{1 + 4\nu},$$
(3.2)

$$\|Du\|^{2} = (D^{2}u, u) = ((I + vA)^{-1}u, u) \le \|(I + vA)^{-1}\|\|u\|^{2} \le \frac{\|u\|^{2}}{1 - 4v}, \quad \forall u \in \ell^{2}.$$
(3.3)

(3.2) and (3.3) imply that D is invertible and its inverse operator D^{-1} satisfies $||D^{-1}||^2 = \frac{1}{||D||^2} \le 1 + 4\nu$ and thus we have

$$\|Du\|^{2} \ge \frac{\|u\|^{2}}{\|D^{-1}\|^{2}} \ge \frac{\|u\|^{2}}{1+4\nu}, \quad \forall u \in \ell^{2}.$$
(3.4)

Since $\nu \in [0, 1/8]$, we conclude from (3.3) and (3.4) that

$$\frac{2}{3}\|u\|^{2} \leq \frac{1}{1+4\nu}\|u\|^{2} \leq \|Du\|^{2} \leq \frac{1}{1-4\nu}\|u\|^{2} \leq 2\|u\|^{2}, \quad \forall u \in \ell^{2}.$$
(3.5)

We now make another assumption on the function f.

(A₄) $(Df(u), Du) \ge 0, \forall u \in \ell^2$, where D is the operator defined by (3.1).

Using Lemma 3.1, we can put problem (1.1) and (1.5) into the following first-order lattice system with initial condition:

$$\dot{u} + (I + \nu A)^{-1}Au + (I + \nu A)^{-1}\lambda u + (I + \nu A)^{-1}f(u) = (I + \nu A)^{-1}g, \quad t > 0,$$

$$u(0) = (u_{i,0})_{i \in \mathbf{Z}} = u_0.$$
(3.6)
(3.7)

Lemma 3.2. If $(\mathbf{A_1})$ – $(\mathbf{A_4})$ hold and $g \in \ell^2$, then for any $\nu \in [0, \frac{1}{8}]$, problem (3.6) and (3.7) possesses a unique solution $u \in C([0, +\infty), \ell^2) \cap C^1((0, +\infty), \ell^2)$ and the solution operators

$$S_{\nu}(t): u_0 \in \ell^2 \longmapsto S_{\nu}(t)u_0 = u(t) \in \ell^2, \quad t \ge 0,$$
(3.8)

form a continuous semigroup $\{S_{\nu}(t)\}_{t\geq 0}$ on ℓ^2 . Moreover, $\{S_{\nu}(t)\}_{t\geq 0}$ has a uniform (with respect to ν) bounded absorbing set B_0 and a global attractor $\mathcal{A}_{\nu} \subset B_0 \subset \ell^2$.

Proof. Here we only verify the existence of a uniform (with respect to ν) bounded absorbing set. The rest of the proof is similar to that in [4].

Let $u(t) \in \ell^2$ be a solution of (3.6) and (3.7). Taking the inner product (\cdot, \cdot) of (3.6) with u, we obtain

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|u\|^2 + ((I+\nu A)^{-1}Au, u) + ((I+\nu A)^{-1}\lambda u, u) + ((I+\nu A)^{-1}f(u), u) = ((I+\nu A)^{-1}g, u).$$
(3.9)

By (2.2) and (3.1) and (A₄),

$$((I + \nu A)^{-1}Au, u) = \|DBu\|^2 \ge 0,$$
(3.10)

$$((I + \nu A)^{-1}\lambda u, u) = (\lambda Du, Du) = \sum_{i \in \mathbb{Z}} \lambda_i (Du)_i (Du)_i \ge \lambda_0 \|Du\|^2,$$
(3.11)

$$((I + \nu A)^{-1} f(u), u) = (Df(u), Du) \ge 0,$$
(3.12)

$$((I + \nu A)^{-1}g, u) = (Dg, Du) \le \frac{1}{2\lambda_0} \|Dg\|^2 + \frac{\lambda_0}{2} \|Du\|^2.$$
(3.13)

Taking (3.5) and (3.9)–(3.13) into account, we have

$$\frac{\mathrm{d}}{\mathrm{d}t} \|u\|^2 + \frac{2\lambda_0}{3} \|u\|^2 \le \frac{2}{\lambda_0} \|g\|^2.$$
(3.14)

Applying Gronwall's inequality to (3.14), we obtain

$$\|u(t)\|^{2} \leq \|u_{0}\|^{2} e^{-\frac{2}{3}\lambda_{0}t} + \frac{3}{\lambda_{0}^{2}} \|g\|^{2}, \quad \forall t \geq 0,$$
(3.15)

which implies that $\{S_{\nu}(t)\}_{t\geq 0}$ possesses a uniform (with respect to ν) bounded absorbing set B_0 in ℓ^2 , where B_0 is a ball centered at 0 with radius $r_0 = \frac{2}{\lambda_0} ||g||$. \Box

4. Upper semicontinuity of the global attractor

To study the limiting behavior of lattice systems (1.1) and (1.5) as $\nu \to 0$, one important step is to consider the continuous dependence of solutions as $\nu \to 0$, which also makes independent sense.

Lemma 4.1. Let (\mathbf{A}_1) - (\mathbf{A}_4) hold and $g \in \ell^2$; then for any $\nu \in [0, 1/8]$ and any R, T > 0 given, there exists a positive constant $C = C(R, T, \lambda_0, \hat{\lambda}_0, \|g\|)$ such that

$$||S_{\nu}(t)u_0 - S_0(t)u_0|| \le C\nu, \quad \forall t \in [0, T] \text{ and } ||u_0|| \le R.$$

Proof. Let $u_0 \in \ell^2$ with $||u_0|| \leq R$. Set $u = S_v(t)u_0$ and $v = S_0(t)u_0$. Then $w = u - v = S_v(t)u_0 - S_0(t)u_0$ is a solution of the following problem:

$$\dot{w} + Aw + vA\dot{u} + \lambda w + f(u) - f(v) = 0, \quad t > 0,$$
(4.1)

$$w(0) = 0.$$
 (4.2)

Taking the inner product (\cdot, \cdot) of (4.1) with \dot{w} , we obtain

$$\|\dot{w}\|^{2} + \frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|Bw\|^{2} + \nu(B\dot{u}, B\dot{w}) + \frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\sum_{i\in\mathbf{Z}}\lambda_{i}w_{i}^{2} + (f(u) - f(v), \dot{w}) = 0.$$
(4.3)

Clearly, we have $||B|| \le 2$ and thus

$$\nu(B\dot{u}, B\dot{w}) \le \nu \|B\dot{u}\| \|B\dot{w}\| \le 4\nu \|\dot{u}\| \|\dot{w}\| \le \frac{1}{2} \|\dot{w}\|^2 + 8\nu^2 \|\dot{u}\|^2.$$
(4.4)

By (2.3), (3.5), (3.6) and (3.15),

$$\begin{aligned} \|\dot{u}\| &= \|(I + vA)^{-1}(Au + \lambda u + f(u) - g)\| \le 2(\|Au\| + \|\lambda u\| + \|f(u)\| + \|g\|) \\ &\le 2(4\|u\| + \hat{\lambda}_0\|u\| + \alpha(R)\|u\| + \|g\|) \le 2(4 + \hat{\lambda}_0 + \alpha(R))\|u\| + 2\|g\| \\ &\le 2(4 + \hat{\lambda}_0 + \alpha(R)) \left(R^2 + \frac{3}{\lambda_0^2}\|g\|^2\right)^{\frac{1}{2}} + 2\|g\| \\ &\doteq C_1(R, \lambda_0, \hat{\lambda}_0, \|g\|), \quad \forall t \ge 0. \end{aligned}$$

$$(4.5)$$

Also by (2.3),

$$(f(u) - f(v), \dot{w}) \leq \|f(u) - f(v)\| \|\dot{w}\| \leq \frac{1}{2} \|\dot{w}\|^2 + \frac{1}{2} \|f(u) - f(v)\|^2$$

$$\leq \frac{1}{2} \|\dot{w}\|^2 + \frac{\alpha^2(R)}{2} \|w\|^2.$$
(4.6)

It then follows from (4.3)–(4.6) that

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\left(\|Bw\|^{2} + \sum_{i\in\mathbb{Z}}\lambda_{i}w_{i}^{2}\right) \leq \frac{\alpha^{2}(R)}{2\lambda_{0}}\left(\sum_{i\in\mathbb{Z}}\lambda_{i}w_{i}^{2} + \|Bw\|^{2}\right) + 8C_{1}^{2}(R,\lambda_{0},\hat{\lambda}_{0},\|g\|)\nu^{2}.$$
(4.7)

Applying Gronwall's inequality to (4.7), we obtain

$$\begin{split} \|Bw\|^{2} + \sum_{i \in \mathbb{Z}} \lambda_{i} w_{i}^{2} &\leq \left(\|Bw(0)\|^{2} + \sum_{i \in \mathbb{Z}} \lambda_{i} w_{i}^{2}(0) \right) e^{\frac{a^{2}(R)}{2\lambda_{0}}t} + 8C_{1}^{2} v^{2} \int_{0}^{t} e^{\frac{a^{2}(R)}{2\lambda_{0}}(t-s)} ds \\ &= 8C_{1}^{2}(R, \lambda_{0}, \hat{\lambda}_{0}, \|g\|) v^{2} \int_{0}^{t} e^{\frac{a^{2}(R)}{2\lambda_{0}}(t-s)} ds \\ &\doteq C_{2}(R, T, \lambda_{0}, \hat{\lambda}_{0}, \|g\|) v^{2}, \quad \forall t \in [0, T], \end{split}$$
from which we get $\|w\| \leq \sqrt{\frac{C_{2}(R, T, \lambda_{0}, \hat{\lambda}_{0}, \|g\|)}{\lambda_{0}}} v \doteq C(R, T, \lambda_{0}, \hat{\lambda}_{0}, \|g\|) v. \quad \Box$

Theorem 4.1. Let (\mathbf{A}_1) - (\mathbf{A}_4) hold and $g \in \ell^2$; then the global attractor \mathcal{A}_{ν} of $\{S_{\nu}(t)\}_{t\geq 0}$ corresponding to lattice

$$d_{\ell^2}(\mathcal{A}_{\nu}, \mathcal{A}_0) = 0 \quad as \ \nu \to 0, \tag{4.8}$$

where $d_{\ell^2}(X, Y) = \sup_{x \in X} \inf_{y \in Y} ||x - y||$ is the Hausdorff semidistance from $X \subset \ell^2$ to $Y \subset \ell^2$.

systems (1.1) and (1.5) is upper semicontinuous at v = 0 in the following sense:

Proof. On the one hand, for any $\nu \in [0, 1/8]$, A_{ν} is uniform (w.r.t. ν) bounded in ℓ^2 . On the other hand, A_0 attracts any bounded set of ℓ^2 . Thus for any $\varepsilon > 0$, there exists some T > 0 such that

$$d_{\ell^2}(S_0(T)\mathcal{A}_{\nu},\mathcal{A}_0) < \frac{\varepsilon}{2}, \quad \forall \nu \in [0, 1/8].$$

$$(4.9)$$

At the same time, for above T > 0, Lemma 3.2 and Lemma 4.1 show that there exists some $C = C(r_0, T, \lambda_0, \hat{\lambda}_0, ||g||)$ such that

$$d_{\ell^2}(\mathcal{A}_{\nu}, S_0(T)\mathcal{A}_{\nu}) = d_{\ell^2}(S_{\nu}(T)\mathcal{A}_{\nu}, S_0(T)\mathcal{A}_{\nu}) < C\nu, \quad \forall \nu \in [0, 1/8].$$
(4.10)

It then follows from (4.9) and (4.10) that

$$d_{\ell^2}(\mathcal{A}_{\nu}, \mathcal{A}_0) \le d_{\ell^2}(\mathcal{A}_{\nu}, S_0(T)\mathcal{A}_{\nu}) + d_{\ell^2}(S_0(T)\mathcal{A}_{\nu}, \mathcal{A}_0)$$

833

$$< d_{\ell^2}(S_{\nu}(T)\mathcal{A}_{\nu}, S_0(T)\mathcal{A}_{\nu}) + \frac{\varepsilon}{2}$$
$$< C\nu + \frac{\varepsilon}{2}, \quad \forall \nu \in [0, 1/8].$$

Choose $v_0 = \min\{\varepsilon/2C, 1/8\}$ and we get

$$d_{\ell^2}(\mathcal{A}_{\nu}, \mathcal{A}_0) < \varepsilon, \quad \forall \, \nu \in [0, \nu_0].$$

The proof is completed. \Box

References

- [1] P.W. Bates, K. Lu, B. Wang, Attractors for lattice dynamical systems, Internat. J. Bifur. Choas 11 (1) (2001) 143–153.
- [2] W. Rudin, Functional Analysis, 2nd ed., McGraw-Hill Company, 1991.
- [3] E.V. Vlecka, B. Wang, Attractors for lattice FitzHugh-Nagumo systems, Physica D 212 (2005) 317-336.
- [4] S. Zhou, Attractors for first order dissipative lattice dynamical systems, Physica D 178 (2003) 51-61.