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Abstract

We discuss the AdS3/CFT2 duality of a heterotic three-charge model with (0,4) target space supersym-
metry. The worldsheet theory for heterotic strings on the AdS3 × S3/ZN × T 4 near-horizon geometry was
constructed by Kutasov et al. [D. Kutasov, F. Larsen, R.G. Leigh, String theory in magnetic monopole back-
grounds, Nucl. Phys. B 550 (1999) 183, hep-th/9812027]. We propose that the dual conformal field theory
is given by a two-dimensional (0,4) sigma model arising on the Higgs branch of an orbifolded ADHM
model. As a non-trivial consistency check of the correspondence, we find that the left- and right-moving
central charges of the infrared conformal field theory agree with those predicted by the worldsheet model.
Moreover, using the entropy function formalism, we show that to next-to-leading order the central charge
can also be obtained from an α′-corrected supergravity theory.
© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Recently, several authors [1–7] have studied the possibility of an AdS3/CFT2 duality for the
fundamental heterotic string. Heterotic strings are dual to type I D1-branes whose low-energy
effective field theory is expected to be conformally invariant. The dual near-horizon geometry
of the heterotic string should therefore contain an AdS3 factor. This was confirmed in [8] (see
also [9]) in which an AdS3 × S2 factor was found in a N = 2, d = 5 R2-corrected supergravity
solution corresponding to heterotic strings in five dimensions.
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In general, heterotic string setups may contain additional charged objects such as NS5-branes
and Kaluza–Klein monopoles. Such setups generically have (0,4) target space supersymmetry.
Recently, it has been found that in the absence of some or all of these additional charges the target
space supersymmetry is enhanced to (0,8) [2,4–6] (see also [10]). Such theories are expected to
be very different from those with only (0,4) supersymmetry. For one thing, there are no linear
superconformal algebras with more than four supercurrents. Indeed, it has been argued in [5,6]
that the global supergroup of the boundary CFT is Osp(4∗|4), whose affine extension is given by
a nonlinear N = 8, d = 2 superconformal algebra. For another, it is not clear if these theories
possess unitary representations.

In this paper we take a step back and address the construction of a heterotic AdS/CFT duality
with only (0,4) target space supersymmetry. For this we revisit a heterotic three-charge model
previously studied by Kutasov, Larsen and Leigh (KLL) in [11]. The setup consists of p fun-
damental strings embedded in the worldvolume of N ′ NS5 branes and N Kaluza–Klein (KK)
monopoles. In [11] KLL work out the worldsheet theory for string theory on the corresponding
near-horizon geometry AdS3 × S3/ZN × T 4. The worldsheet CFT turns out to be essentially
the product of an SL(2) WZW model and a “twisted” SU(2) WZW model corresponding to
the asymmetric orbifold S3/ZN . In contrast, not much is known about the dual conformal field
theory on the boundary of the AdS3 space.

The first part of this paper is therefore devoted to the construction of the dual two-dimensional
boundary conformal field theory. We first apply heterotic/type I duality to map the three-charge
configuration to an intersection of p D1-branes and N ′ D5-branes plus N KK monopoles in type I
string theory. In the absence of any KK monopoles the low-energy effective theory corresponds
to Witten’s ADHM sigma model of Yang–Mills instantons [12], as shown by Douglas in [13]. To
also include KK monopoles, which have a C

2/ZN near-core geometry, it is natural to construct
a ZN orbifold theory of the massive ADHM sigma model. (Refs. [14,15] also use an orbifold
construction to obtain the boundary CFT dual to type II string theory on AdS3 × S3/ZN × T 4.)

Our proposal is that the sought-after boundary conformal field theory arises on the Higgs
branch of the orbifolded ADHM model, which corresponds to the bound state phase of the
D-brane setup. We will perform a consistency check for the proposal by the following line of
reasoning. Lambert has shown in [16] that, even though the ADHM model is classically not
conformal, it is ultraviolet finite to all orders in perturbation theory. There is no renormalisa-
tion group flow, and anomalous conformal dimensions are absent [16]. The conformal Higgs
branch theory can therefore be obtained by integrating out the massive degrees of freedom in the
ADHM model [17]. Moreover, the central charges of the Higgs branch theory can be determined
by counting the massless degrees of freedom of the ultraviolet theory. In other words, they are
given by the dimension of the instanton moduli space of the ADHM model. Repeating these steps
for the orbifold version of the ADHM model, we determine the central charges of the low-energy
theory of the three-charge model and match them to those predicted by the worldsheet theory.

The second part of the paper is devoted to the construction of a higher-derivative correction
of the near-horizon supergravity solution of the KLL setup. In fact, for a dual setup a full so-
lution of the N = 2 off-shell completion of four-derivative supergravity in five dimensions was
constructed already in [8]. Here we will use six-dimensional corrections to the heterotic string
action [18,19] and employ the entropy function formalism [20,21] to find the corrected near-
horizon geometry. To first order, the latter correctly reproduces the expected central charges of
the boundary CFT via the Brown–Henneaux formula [22].
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2. Heterotic AdS3/CFT2 duality

In this section we review the supergravity solution of the heterotic three-charge model of [11]
and the corresponding worldsheet model. Readers familiar with Ref. [11] may wish to proceed
directly to the discussion of the boundary conformal field theory in Section 3.

2.1. Three-charge model for heterotic strings

We consider heterotic string theory compactified on S1 × T 4 which we take along the direc-
tions {x5} and {x6, x7, x8, x9} respectively. In particular, following [11], we study the following
brane setup:

• p fundamental strings F1 infinitely stretched in the x1 direction,
• N ′ NS5-branes wrapped around the T 4 and infinitely stretched along x1,
• N KK monopoles wrapped around T 4 and extended in x1.

We can depict this configuration schematically in the following table:

0 1 2 3 4 5 6 7 8 9

p F1 • •
N ′ NS5 • • • • • •
N KKM • • • • • •

From a 5-dimensional spacetime point of view this configuration looks like an infinitely
stretched string in the x1 direction, which preserves (0,4) supersymmetry, i.e. it is non-
supersymmetric in the left sector and contains four supercharges in the right sector. Let us recall
the classical solution as given in [11]. The metric is given by

ds2 = F−1(−dt2 + dx2
1

) + H5
[
H−1

K

(
dx5 + PK(1 − cos θ) dϕ

)2

(2.1)+ HK

(
dr2 + r2(dθ2 + sin2 θ dϕ2))] +

9∑
i=6

dx2
i ,

with the following harmonic functions

(2.2)H5 = 1 + P5

r
, HK = 1 + PK

r
, F = 1 + Q

r
.

Here we use spherical coordinates (r, θ,ϕ) for the directions (x2, x3, x4). The corresponding
gauge fields and the dilaton read

(2.3)Bt1 = F, Bϕ5 = P5(1 − cos θ), e−2[Φ10(r)−Φ10(∞)] = F

H5
.

The quantities P5,PK,Q are related to N ′,N,p by

(2.4)P5 = α′

2R
N ′, PK = R

2
N, Q = α′3e2Φ10(∞)

2RV
p,

where R is the asymptotic radius of the S1, V the volume of the torus and Φ10(∞) the asymptotic
value of the dilaton.
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In the near-horizon limit r → 0, the metric (2.1) reduces to

ds2 = r ′2

4P5PK

(−dt2 + dx2
1

) + P5

PK

(
dx5 + PK(1 − cos θ) dϕ

)2

(2.5)+ P5PK

(
4dr ′2 + (

dθ2 + sin2 θ dϕ2)) +
9∑

i=6

dx2
i ,

where we have defined r ′ by

(2.6)r = 4P5PKr ′2

Q
.

In [11] this metric was interpreted as describing the space

(2.7)AdS3 × S3/ZN × T 4,

with AdS radius and six-dimensional string coupling

(2.8)R2
AdS,uncorr = α′NN ′, g2

6 = e2Φhor
6 = N ′

p
.

Obviously, string theory on this background is weakly-coupled for N ′ � p. Note that so far we
have only discussed an uncorrected supergravity solution, i.e. a solution to an action at the two
derivative level. In Section 4 we will address the question of how to modify (2.5) in the presence
of higher derivative interactions.

2.2. Lift to M-theory

In order to understand why the supergravity solution (2.5) is expected to receive α′ correc-
tions, we now determine the central charges of the boundary CFT. We begin by mapping the
heterotic setup to M-theory compactified on CY3 = K3×T 2. For this, we first dualize to type IIA
theory, from where (after additional S and T dualities) we may lift to M-theory—see Appendix A
for details. We obtain the following setup of M5 branes:

0 1 2 3 4 5 6 7 8 9 10

p M5 • • • • • •
N ′ M5 • • • • • •
N M5 • • • • • •

Our convention will be that the internal T 2 is spanned by the directions {x5, x10} while the
K3 resides in {x6, x7, x8, x9}.

A general method for determining the central charges of the low-energy effective theory on
M5-branes wrapping a 4-cycle in a Calabi–Yau three-fold CY3 is given in [23]. The low-energy
effective field theory is given by a two-dimensional (heterotic) sigma model with the M5-brane
moduli space as target space. The left- and right-moving central charges cL,R of this sigma model
are given by

cL = 6D + c2 · p, cR = 6D + 1

2
c2 · p,

(2.9)D = 1

6
cIJKpIpJ pK,
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where cIJK are the intersection numbers of CY3, and pI is the (magnetic) charge of the M5-
brane wrapping the I th 4-cycle [23]. The product c2 ·p contains the second Chern class of CY3.1

Let us apply these formulae to the present case2 and identify

(2.10)p1 = p, p2 = N, p3 = N ′.

Denoting the single modulus of the T 2 by p1, the only non-vanishing intersection numbers are
c1ij = cij , where cij is the intersection matrix for K3. For p M5-branes wrapping K3, c2 · p =
c2(K3)p = 24p [8], and (2.9) provides the central charges

(2.11)cL = 6NN ′p + 24p, cR = 6NN ′p + 12p.

Since D �= 0, this three-charge model preserves only (0,4) supersymmetry [23]. For N = N ′ = 0,
we have D = 0 and (cL, cR) = (24p,12p). These are the central charges of the (0,8) low-energy
effective field theory describing a stack of p heterotic strings.

Let us compare the central charges cL,R with that obtained from the supergravity solution by
applying the Brown–Henneaux formula [22],

(2.12)c = 3RAdS

2G
(3)
N

,

where G
(3)
N is Newton’s constant in three dimensions. Substituting the AdS radius (2.8) of the

uncorrected supergravity solution into (2.12), we get

(2.13)c = 6NN ′p,

as was already found in [11]. We notice that (2.13) agrees with (2.11) only to leading order
in the charges. The reason for the absence of the subleading term in (2.13) is the fact that it is
computed from an uncorrected supergravity solution. Taking into account higher derivative terms
in the action as well, one recovers the full expression (2.11), as was recently shown for a dual
setup [8]. We will reproduce this result with somewhat different methods in Section 4.

2.3. N = (0,2) worldsheet theory

We now discuss heterotic string theory on the AdS3 × S3/ZN × T 4 near-horizon geometry of
the F1-NS5-KKM three-charge model introduced in Section 2.1. The corresponding worldsheet
theory has been constructed in [11], and we will only review some of its features relevant for the
construction of the boundary conformal field theory.

The worldsheet theory is expected to be the product of a heterotic SL(2) WZW model, a con-
formal field theory on S3/ZN and a free U(1)4 CFT on the four-torus T 4. As a heterotic model,
the product theory is bosonic in the left-moving sector and supersymmetric in the right-moving
sector. The heterotic SL(2) WZW model therefore has a bosonic affine SL(2) algebra of level
kb in the left-moving sector and a supersymmetric one of level ks = kb − 2 in the right-moving
sector. Accordingly, the right-moving sector is generated by three bosonic and three fermionic
currents, J̄ A and ψ̄A (A = 1,2,3), while the left-moving sector contains only JA. Similarly,

1 For an exact definition of the product c2 · p see [23].
2 In contrast to what is assumed in [23] for the four-cycle inside the CY3, K3 is not a very ample divisor in K3 × T 2.

Nevertheless, we may still use (2.9), since b1(K3) = 0, even though b1(K3 × T 2) �= 0.
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the right-moving CFT on T 4 is constructed from four bosonic fields Ȳ i and four fermions λ̄i

(i = 1,2,3,4). The left-moving sector contains only the bosonic currents Y i .
In the unorbifolded case, the S3 factor of the geometry would be described by an SU(2) WZW

model with levels k′
b and k′

s = k′
b + 2 in the left- and right-moving sector, respectively. The right-

moving sector of the SU(2) model contains three bosonic currents, K̄a , and three fermions χ̄a

(a = 1,2,3). The left-moving sector has the same bosonic currents Ka (a = 1,2,3), but again
no fermions.

Let us now implement the ZN orbifold. We start from the SU(2) WZW model in which we
parameterise the SU(2) group manifold in terms of the Euler angles

(2.14)0 � θ � π, 0 � φ � 2π, 0 � ξ � 4π,

where ξ parameterises the fibre, and θ,φ are the base coordinates. As in [11], we consider an
SU(2) model at level

(2.15)k′
b = NN ′

and identify

(2.16)ξ ∼ ξ + 4π

N
.

The orbifold acts asymmetrically in the near-horizon geometry. We therefore turn the SU(2)

WZW model into a coset model of the type

(2.17)
SU(2)L × SU(2)R

(ZN)L
,

where the orbifold is embedded in SU(2)L: ZN acts on the currents as

K± → e± 4πi
N K±, K3 → K3,

(2.18)K̄±,3 → K̄±,3, χ̄±,3 → χ̄±,3.

For N > 2, the effect of the asymmetric orbifold is to break the SU(2) of the left-moving sector
down to U(1), whose current K3 is invariant under the orbifold action.3

The consistency of the theory requires that the worldsheet central charges are (cws
L , cws

R ) =
(26,15). The central charges in the right-moving sector are

(2.19)cws
R (AdS3) = 3

2
+ 3kb

kb − 2
, cws

R

(
S3/ZN

) = 3

2
+ 3k′

b

k′
b + 2

, cws
R

(
T 4) = 6,

which adds up to cws
R = 15 provided that

(2.20)kb = k′
b + 4.

Similarly, for the left-moving sector we have

(2.21)cws
L (AdS3) = 3kb

kb − 2
, cws

L

(
S3/ZN

) = 3k′
b

k′
b + 2

, cws
L

(
T 4) = 4,

3 In the related S2 theory of [24] the orbifold is embedded in the supersymmetric (right) sector, and (0,2) worldsheet
supersymmetry relates N and N ′. In the present case N and N ′ are independent since the orbifold is embedded in the
non-supersymmetric (left) sector.



S. Hohenegger et al. / Nuclear Physics B 804 (2008) 193–222 199
which adds up to ten. Heterotic string theory also contains 32 left-moving current algebra
fermions, i.e. 16 for each E8. We thus get cws

L = 10 + 16 = 26, as required.
The worldsheet theory also provides some information on the boundary conformal field the-

ory. As shown in [25], the left- and right-moving (super)Virasoro algebras of the boundary CFT
can be constructed from the worldsheet affine SL(2) Lie algebra. Their central charges are

(2.22)(cL, cR) = (6kbp,6ksp),

where, as before, kb and ks = kb − 2 are the levels of left- and right-moving SL(2) algebras, and
p is the number of heterotic strings. Substituting (2.15) and (2.20) in (2.22), we find the central
charges

(2.23)(cL, cR) = (24p + 6NN ′p,12p + 6NN ′p)

which agree with (2.11) and satisfy the constraint cL − cR = 12p as also found in [6,11].
Let us finally consider the amount of worldsheet and target space supersymmetry. From the

geometry we expect that the worldsheet model preserves a (0,4) target space supersymmetry.
Since T 4 is Kähler, the heterotic worldsheet CFT on T 4 has (0,2) supersymmetry. The Kähler
structure also ensures that the (0,2) worldsheet supersymmetry leads to (0,4) spacetime super-
symmetry. The heterotic SL(2) model and the “twisted” SU(2) model separately preserve only
(0,1) supersymmetry. Only the product of both models has a chance to have (0,2) worldsheet
supersymmetry. In order to enhance N = 1 to N = 2 supersymmetry in the right sector, one
must find a U(1)R current JN=2, which is part of the N = 2 algebra. The existence of such
a current is guaranteed by the fact that the orbifold is embedded in SU(2)L such that the right
sector remains unaffected by it. The N = 2 U(1)R current therefore has the same structure as in
the (unorbifolded) type II case, see [25].

3. Two-dimensional boundary sigma model

3.1. General remarks

In this section we discuss the two-dimensional (0,4) conformal field theory living on the
boundary of the AdS3 space. Our starting point is the heterotic brane setup introduced in the
previous section. We first T-dualize in x5 to go from E8 × E8 to SO(32) heterotic string theory
and then use heterotic/type I duality in order to obtain the following type I brane configuration:

0 1 2 3 4 5 6 7 8 9

p D1 • •
N ′ D5 • • • • • •
N KKM • • • • • •
32 D9 • • • • • • • • • •

Let us consider the type I setup in detail. Since the heterotic/type I duality involves a strong-
coupling transition, the heterotic F1 and NS5-branes naturally map to D1 and D5-branes. More-
over, since we are dealing with a type I string theory we are also required to introduce 32
D9-branes and perform an orientifold projection. In order to understand the contribution of the
KK monopoles, we recall that the approximation of the near-core region of N KK monopoles
is a C

2/ZN orbifold. This instructs us to study a ZN orbifold in the directions x2,3,4,5 of the
D1–D5–D9-brane theory.
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In order to set up our notation we remark that the D1–D5–D9 brane configuration breaks
ten-dimensional Lorentz symmetry to SO(1,1) × SO(4)E × SO(4)I , where SO(4)E and SO(4)I
rotate x2,3,4,5 and x6,7,8,9, respectively. We will use the standard decomposition

SO(4)E × SO(4)I 	 SU(2)A × SU(2)Y × SU(2)A′ × SU(2)
Ã′

to label the appearing representations in terms of doublet representations with (A′, Ã′, A,Y = ±).
The orbifold is embedded in SU(2)Y .

We will start out our construction by reviewing the low-energy effective theory of the type I
D1–D5–D9 intersection. In the absence of any KK monopoles this theory was shown in [13] (for
p = 1) to be equivalent to Witten’s ADHM model of Yang–Mills instantons. In Section 3.2 we
will review the model for p > 1 as constructed in [26]. In Section 3.3 we will include the effect
of the KK monopoles by orbifolding the ADHM model. Subsequently, in Section 3.4 we discuss
its instanton moduli space and determine the central charges of the Higgs branch theory.

3.2. Spectrum of D1–D5–D9 and the ADHM model

Let us briefly recall some basic facts. Spacetime fermions arise in the Ramond sector, and
spacetime bosons in the Neveu–Schwarz sector. If the boundary conditions on both ends of the
string are the same, then the worldsheet fermions of the R sector have integral modes, and those
in the NS sector half-integers. If the boundary conditions are different, the additional signs in-
troduced exchange the moddings, which also changes the ground state energy of the sector. In
particular, the NS ground state energy in the case of NDN mixed boundary conditions is given
by

(3.1)−1

2
+ NDN

8
,

whereas the ground state energy in the R sector is always zero.
Let us now discuss the strings stretching between the various types of branes.

1–1 strings
In the NS-sector, the massless modes form a ten-dimensional vector A

μ
ab , the Chan–Paton

indices running over a, b = 1, . . . , p. Considered as an object on the D1, it splits into a 2d vector
A

μ
ab and 8 scalars bi

ab . The orientifold projection Ω maps A
μ
ab 
→ −A

μ
ba . We are thus left with

the gauge bosons A
μ
[ab] in the adjoint of the gauge group SO(p). On the other hand, the vertex

operator of b picks up no sign under Ω , as it contains no derivative along the boundary. This
leaves 8 bosons bi

(ab) in the symmetric representation of SO(p) which we group in a pair of 4

bosons, bAY
(ab) and bA′Ã′

(ab)
.

In the R-sector, the GSO projection restricts to modes which are invariant under Γ̄ :=
Γ 0 · · ·Γ 9, where Γ μ denotes the fermionic zero modes. To obtain the action of Ω , note that
the fermionic modes ψ2, . . . ,ψ9 reflect from the boundary with an extra minus sign, so that they
pick up an additional minus sign under exchange of right and left movers. Ω thus acts on mass-
less fermions as Ω = −Γ 2Γ 3 · · ·Γ 9. The massless spinors thus must satisfy the two conditions

(3.2)ψab = Γ̄ ψab = −Γ 2 · · ·Γ 9ψba.

The first condition simply states that ψ is in the 16 of SO(1,9). To obtain the worldsheet be-
haviour of ψ , we need to decompose 16 into representations of SO(1,1) × SO(8), which gives
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16 = 8′+ ⊕ 8′′−, where 8′, 8′′ are the two spinor representations of SO(8) and ± denotes the chi-
rality with respect to SO(1,1). The second condition in (3.2) then states that ψ(ab) transforms as
8′′−, and ψ[ab] as 8′+. The ψ(ab) are the right-moving superpartners of the b(ab). Due to the D5-
branes each 8 decomposes into a pair of 4’s of the SO(4)’s. Following [13], these will be denoted
by ψA′Y−(ab),ψ

AÃ′
−(ab) and ψA′A+[ab], ψYÃ′

+[ab]. The left-moving fermions ψ+[ab] are antisymmetric and
therefore do not appear in the case of a single D1-brane.

1–5 strings
The analysis of this sector has been performed in [27]. Since NDN = 4, the ground state

energy is also zero in the NS-sector, so that there appear both bosons and fermions. In total,
we obtain bosons φA′m

a in the (p,2N ′,1) of SO(p) × Sp(2N ′) × SO(32), and their right- and
left-moving fermionic superpartners χAm−a and χYm+a . The index m runs over m = 1, . . . ,2N ′.

1–9 strings
Since NDN = 8, the ground state energy of the NS-sector is strictly positive, so that there are

no bosons. In the R-sector there are two massless modes Γ 0,Γ 1. The GSO projection eliminates
one of them, leaving only the left moving mode. We thus obtain 32p left-moving fermions λM+a ,
where M = 1, . . . ,32 is the Chan–Paton index of SO(32).

5–5 strings, 5–9 strings
The analysis of the remaining sectors has been performed in [13]. Since their field content is

not very important in what follows, we only cite the results. The 5-brane fields form a Sp(2N ′)
gauge theory, a hypermultiplet in the antisymmetric representation with scalar component XAY[mn],
and “half-hypermultiplets” in (1,2N ′,32) with scalar component hAm

M .
We summarise the results by listing the relevant fields in Table 3.1 (see also [26]). We have

not listed fields coming from 5–5 and 5–9 strings, since here we are only interested in the case
of vanishing instanton size which corresponds to setting the 5–9 fields to zero (see [17,28]).
Moreover, the 5–5 fields XAY

mn denote the position of the D5-branes in the transversal space,
which we treat as parameters of the low energy theory.4

The Lagrangian describing the low-energy physics of the type I D1–D5–D9 intersection can
now be written in terms of the fields of Table 3.1. For p � 1, it is convenient to divide the
Lagrangian into three parts,

(3.3)L = Lkin +Lpot +Lint,

Table 3.1
Summary of fields in the ADHM model

Strings Bosons Fermions SO(p) rep.

1–1 A
μ
[ab] ψA′A+[ab], ψYÃ′

+[ab] adj.=anti-sym.

bAY
(ab)

ψA′Y−(ab)
sym.

bA′Ã′
(ab)

ψAÃ′
−(ab)

sym.

1–5 φA′m
a χAm−a fund.

χYm+a fund.

1–9 λM+a fund.

4 As we will explain in more detail when discussing the orbifolded theory in Section 3.3, the D5-branes will all be

clustered at the orbifold fixed point (x2 = x3 = x4 = x5 = 0), which instructs us to set XAY
mn = 0.
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where Lkin contains the kinetic terms for all fields in Table 3.1, and Lpot describes their potential.
In general, Lpot contains Yukawa couplings of the type bψ+ψ− and D-terms for the scalars b.
For details, see Ref. [26].

The Lagrangian Lint describes the interaction of 1–1 with 1–5 string modes and is given by
[13,26]

Lint = Tr

(
im

2

(
ψA′Y− χ+Ym + ψAA′

+ χ−Am

)
φA′m + im

2
χ+Ym

(
XAY

mn − bAY δmn

)
χAn−

(3.4)+ m2

8

(
XAY

mn − bAY δmn

)2
φA′mφA′n

)
+ c.c.,

where the trace is taken over the SO(p) indices. As first found in [13] for p = 1, this Lagrangian
corresponds to Witten’s ADHM model [12] describing an Sp(2N ′) instanton with instanton num-
ber one. It is believed that for p � 1 the ADHM model describes the moduli space of Sp(2N ′)
instantons with instanton number p.

3.3. ADHM orbifold theory

3.3.1. Field content of the orbifold theory
Let us now include the effect of the KK monopoles in the ADHM model. This requires

us to consider the D1–D5–D9 intersection at the origin of a C
2/ZN orbifold acting along

x2,3,4,5. Following Refs. [29–31], we start with pN D1-branes intersecting 2N ′N D5-branes
and 32N D9-branes in flat space and take the corresponding ADHM Lagrangian with gauge
group U(Np) × U(2NN ′) × U(32N) as the parent theory.5 The ADHM orbifold theory is then
obtained by projecting out the degrees of freedom which are not invariant under the ZN orbifold
group.

The C
2/ZN orbifold is realized as follows. Denote the matrix bAY by

(3.5)b = (
bAY

) =
(

b1 −b̄2

b2 b̄1

)
,

where b1 = x2 + ix3 and b2 = x4 + ix5. Then the action of (gA,gY ) ∈ SO(4)E = SU(2)A ×
SU(2)Y along x2,3,4,5 is realized by

(3.6)b 
→ gY bgA.

We now embed the ZN action in SU(2)Y by choosing gY = diag(ω,ω−1) with ω = e2πi/N . Then,

(3.7)b1 
→ ωb1, b2 
→ ω−1b2,

or, alternatively, bAY 
→ ωY bAY . The scalars bA′Ã′
(along x6,7,8,9) remain unaffected by the

orbifold. The origin of x2,3,4,5 is the only fixed point of the orbifold.

5 Formally, we begin with the type IIB version of the ADHM model [13] and perform the orientifold projection in the
next subsection. The overall factor 2 in U(2NN ′) reflects the pairing of the D5-branes for invariance under Ω .
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The orbifold therefore acts on the fields of the ADHM model as follows (gauge indices sup-
pressed):

(3.8)

1–1: bAY → ωY g1(ω)bAY g
†
1(ω), ψA′Y− → ωY g1(ω)ψA′Y− g

†
1(ω),

ψYÃ′
+ → ωY g1(ω)ψYÃ′

+ g
†
1(ω),

bA′Ã′ → g1(ω)bA′Ã′
g

†
1(ω), ψAÃ′

− → g1(ω)ψAÃ′
− g

†
1(ω),

ψA′A+ → g1(ω)ψA′A+ g
†
1(ω),

1–5: φA′ → g1(ω)φA′
g

†
5(ω), χA− → g1(ω)χA−g

†
5(ω),

χY+ → ωY g1(ω)χY+g
†
5(ω),

1–9: λ+ → g1(ω)λ+g
†
9(ω).

Here g1(ω), g5(ω), g9(ω) denote the usual embeddings of the ZN orbifold group in the gauge
groups U(Np), U(2NN ′) and U(32N), respectively. We choose a basis such that the embedding
matrices have the block-diagonal form gi(ω) = diag(1,ω1,ω21, . . . ,ωN−11), where 1 denotes a
p×p, 2N ′ ×2N ′ and 32×32 unit matrix for i = 1,5,9, respectively. The fields thus decompose
into N orbifold sectors which we denote by j, j ′ = 0, . . . ,N − 1. We observe that all fields
carrying an index Y transform non-trivially under the orbifold group, i.e. the transformation law
contains an additional factor ωY .

Substituting the embeddings gi(ω) into (3.8), we get the following transformation behaviour
in component form:

(3.9)

1–1: bAY
j,j ′ 
→ ωY+j−j ′

bAY
j,j ′ , ψA′Y

−j,j ′ 
→ ωY+j−j ′
ψA′Y

−j,j ′ ,

ψYÃ′
+ j,j ′ 
→ ωY+j−j ′

ψYÃ′
+ j,j ′ ,

bA′Ã′
j,j ′ 
→ ωj−j ′

bA′Ã′
, ψAÃ′

−j,j ′ 
→ ωj−j ′
ψAÃ′

− j,j ′ ,

ψA′A
+j,j ′ 
→ ωj−j ′

ψA′A
+ j,j ′ ,

1–5: φA′m
j,j ′ 
→ ωj−j ′

φA′m
j,j ′ , χAm

−j,j ′ 
→ ωj−j ′
χAm

−j,j ′ ,

χYm
+j,j ′ 
→ ωY+j−j ′

χYm
+j,j ′ ,

1–9: λM
+ j,j ′ 
→ ωj−j ′

λM
+ j,j ′

where Y = ±1.
The fields invariant under the orbifold action (3.9) are thus

• 1–1: (bA′Ã′
j,j ,ψAÃ′

−j,j ,ψ
A′A+j,j ) and (bAY

j,j+Y ,ψA′Y−j,j+Y ,ψYÃ′
+j,j+Y );

• 1–5: (φA′m
j,j , χAm−j,j , χ

Ym+j,j+Y );

• 1–9: λM+ j,j .

Another important question concerns the gauge groups and representations under which these
fields transform. Due to the Ω-projection of type I string theory, this issue is more intricate than
in type II theories and will now be discussed at length.
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3.3.2. Type I effective action
The type I effective theory is obtained by imposing, in addition to the ZN orbifold projec-

tion, the orientifold Ω [29]. Let us denote the embedding of Ω into the gauge groups U(Np),
U(2NN ′) and U(32N) by g1(Ω), g5(Ω) and g9(Ω), respectively. A generic (scalar) field y then
transforms under worldsheet parity according to

(3.10)y 
→ g(Ω)ytg(Ω)−1,

while an element U of one of the above gauge groups satisfies

(3.11)Ug(Ω)Utg(Ω)−1 = 1.

Here t denotes the transpose and g is one of the embeddings g1, g5, g9.
To determine g, we have to solve various consistency conditions [29]. The first condition is

(3.12)g(Ω)ij = χ(ω,Ω)ωi+j g(Ω)ij .

We choose the phase χ(ω,Ω) = 1 which then implies that only g(Ω)i,N−i is non-vanishing.6

A second condition requires

(3.13)g(Ω)i,N−i = χ(Ω)g(Ω)tN−i,i ,

with some phase factor χ(Ω) = ±1. To reproduce the standard type I action, which has an
SO(32) gauge group for the D9-branes, we choose the phases χ(Ω) = +1,−1,+1 for g =
g1, g5, g9, respectively.7 The solutions of (3.13) can be brought into the form

g1,9(Ω)0,0 = 1, g5(Ω)0,0 = ε,

g1,9(Ω)i,N−i = 1, g5(Ω)i,N−i = 1, 0 < i < N/2,

(3.14)g1,9(Ω)N−i,i = 1, g5(Ω)N−i,i = −1, N/2 < i < N,

where 1 is the corresponding p × p, 2N ′ × 2N ′ or 32 × 32 unit matrix. For even orbifolds, we
have in addition

g1,9(Ω)N/2,N/2 = 1, g5(Ω)N/2,N/2 = ε.

Let us now determine the unbroken gauge groups from (3.11). We distinguish between even
and odd orbifolds:

• even N

For g = g1, the gauge group of the D1-branes is

G1
even = {

(U0,U1, . . . ,UN−1): UiU
t
N−i = 1, 0 � i � N

}
(3.15)= SO(p) × U(p)N/2−1 × SO(p),

while for the D5-branes, it is

G5
even = {

(U0,U1, . . . ,UN−1): UiU
t
N−i = 1, 0 � i � N − 1, i �= N/2

}
(3.16)= Sp(2N ′) × U(2N ′)N/2−1 × Sp(2N ′).

6 For even orbifolds one could also choose χ(ω,Ω) = ω, which would not invalidate our final conclusion. We will
therefore not consider this case here.

7 In fact, once we have set χ9(Ω) = +1, which is necessary to get a consistent SO(32) type I string theory, the other
values follow (see [32]).
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• odd N

For g = g1, we get the gauge group

G1
odd = {

(U0,U1, . . . ,UN−1): UiU
t
N−i = 1, 1 � i � N − 1

}
(3.17)= SO(p) × U(p)

N−1
2 ,

while for g = g5, it is

G5
odd = {

(U0,U1, . . . ,UN−1): UiU
t
N−i = 1, 1 � i � N − 1

}
(3.18)= Sp(2N ′) × U(2N ′)

N−1
2 .

The effect on the matter fields is as follows. For the bAY , Eq. (3.10) reads

(3.19)
(
bAY
N−i−Y,N−i

)t = bAY
i,i+Y .

For N even, this relates one half of the fields to the other half, but gives no additional constraints.
The same holds true for the fermions ψYÃ′

+ and ψA′Y− . If N is odd, there is the additional condition

(3.20)
(
bAY
(N−Y)/2,(N+Y)/2

)t = bAY
(N−Y)/2,(N+Y)/2,

so that these particular b transform in the symmetric instead of the bifundamental. The situation
is analogous to the analysis in Section 3.2, so that their fermionic partners ψA′Y

−(N−Y)/2,(N+Y)/2

and ψYÃ′
+(N−Y)/2,(N+Y)/2 transform in the symmetric and antisymmetric, respectively.

The bA′Ã′
are subject to

(3.21)
(
bA′Ã′
i,i

)t = bA′Ã′
N−i,N−i

for all i = 0, . . . , (N − 1)/2 for N odd and i = 0, . . . ,N/2 for N even. Note that the fields bA′Ã′
00

(and also bA′Ã′
N/2,N/2 if N is even) are symmetric. Again, the situation is exactly as described above

such that the corresponding fermionic modes, ψAÃ′
−0,0 and ψA′A+0,0 (and ψAÃ′

−N/2,N/2 and ψA′A+N/2,N/2
for N even), are in the symmetric and anti-symmetric representation, respectively.

We omit the corresponding relations for the φA′m
i,i , as they again only relate half of the fields

to the other half [29].

3.3.3. Quiver theory
So far we have determined the spectrum of fields that survive the orientifold projection along

with the gauge groups of the world-volume theories of the various branes. It remains to determine
the representations under which the matter fields transform. In fact they are given by

bA′Ã′
j,j ,ψAÃ′

−j,j ,ψ
A′A+j,j adjoint rep. if G1

j = U(p),

rep. as in Table 3.1 if G1
j = SO(p),

bAY
j,j+Y ,ψA′Y−j,j+Y ,ψYÃ′

+j,j+Y bifundamentals of G1
j × G1

j+Y ,

φA′m
j,j , χAm

−j,j bifundamentals of G1
j × G5

j ,

χYm
+j,j+Y bifundamentals of G1

j × G5
j+Y .
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Fig. 3.1. Quiver diagrams for odd (Z5) and even (Z6) N . The detail view in the centre shows the notation for the fields.
For simplicity, we have not included the fields λM+ . (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

The gauge groups and matter content of the theory can now be encoded in a quiver diagram, see
Fig. 3.1, for examples.8

Each node in the inner circle corresponds to a gauge group G1
j (D1-branes), while an outer

node represents a gauge group G5
j (D5-branes). In principle, there are also nodes corresponding

to SO(32) gauge groups (D9-branes). The latter are not needed for the interaction Lagrangian
and are therefore not shown in Fig. 3.1. The fields bA′Ã′

j,j ,ψAÃ′
− j,j , ψA′A+ j,j transform under a sin-

gle gauge group and are represented as brown circles. The bifundamentals bAY
j,j+Y ,ψA′Y− j,j+Y ,

ψYÃ′
+ j,j+Y (shown as black lines), φA′m

j,j , χAm− j,j (green lines), and χYm+ j,j+Y (blue lines) connect
different nodes. We have omitted bifundamentals connecting the outer nodes. These are gener-
ated by 5–5 strings which decouple at low-energies, as already discussed earlier.

We may now write down the corresponding quiver Lagrangian which descends from the
ADHM Lagrangian in flat space, Eq. (3.3). Upon projecting out the degrees of freedom which
are not invariant under the orbifold, we obtain

(3.22)L= Lkin,quiv +Lpot,quiv +Lint,quiv

with the quiver interaction

Lint,quiv = Tr

(
im

2
(χ+Ym)j,j+Y

(
φA′m

)
j+Y,j+Y

(
ψA′Y−

)
j+Y,j

+ im

2

(
ψAA′

+
)
j,j

(χ−Am)j,j
(
φA′m

)
j,j

8 A similar quiver diagram was also found in [33] for the (0,4) quiver theory located on a D3/D3′ intersection at a

C
2/ZN orbifold.
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+ im

2
(χ+Ym)j,j+Y

(
χAm−

)
j+Y,j+Y

(
bA

Y
)
j+Y,j

+ m2

8

(
bAY bAY

)
j,j

(
φA′mφA′m

)
j,j

)
+ c.c.,

and, similarly, Lkin,quiv and Lpot,quiv are the projections of Lkin and Lpot in (3.3), respectively.
The range of summation over j and Y is restricted by the Ω projection. For instance, for N

even, consider again the quiver diagram shown in Fig. 3.1. Each Yukawa coupling corresponds
to a triangle in the quiver diagram. The field identifications of the previous section introduce a
kind of reflection axis, which vertically divides the quiver in two parts. The SO(p) gauge groups
at j = 0,N/2 lie on the Z2 reflection axis. Due to constraints such as (3.19), each field on the
right-hand side of the axis is identified with one on the left-hand side. In (3.22) we therefore sum
only over j = 0, . . . ,N/2 and set Y = +1 at j = 0 and Y = −1 at j = N/2, Y = ±1 otherwise.
The gauge groups are chosen as in (3.15) and (3.16). For N odd, the Lagrangian is constructed
in a similar way.

3.4. Higgs branch theory and instanton moduli space

3.4.1. Higgs branch theory
In this section we investigate the infrared fixed point theory of the ADHM quiver model (3.22).

This theory will be interpreted as the boundary conformal field theory dual to the worldsheet
theory described in Section 2.3. For its construction, we first have to choose a vacuum solution
which sets the potential of (3.22) to zero. Inspecting the term m2b2φ2 in (3.22), we find two
different possibilities for the scalars bAY and φA′m and their vacuum expectation values 〈bAY 〉
and 〈φA′m〉 [12]9:

• Coulomb branch: 〈bAY 〉 �= 0 and 〈φA′m〉 = 0
On the Coulomb branch the D1-branes are transversely displaced from the D5-branes with
〈bAY 〉 proportional to the distance. In this case the φA′m become massive.

• Higgs branch: 〈bAY 〉 = 0 and 〈φA′m〉 �= 0
On the Higgs branch the D1-branes and D5-branes form a bound state with 〈φA′m〉 propor-
tional to the binding strength between the two. In this case the bAY become massive.

In the following we are interested in the situation where all branes form stacks located at the
orbifold fixed point. We will therefore consider the Higgs branch of the theory.

In principle, we could now proceed as in [17] and integrate out all massive modes of the quiver
theory. As in [17], this would lead to a (0,4) sigma model whose target space is the instanton
moduli space M of the ultraviolet theory. The actual construction would be along the lines of
[17] and involves a non-trivial gauge field F

pq
mnjj which is defined in terms of the bifundamentals

φA′m
jj . Although straightforward, we will not do this explicitly here. Instead we only determine

the left- and right-moving central charges of the infrared theory and compare them to those
expected from the dual worldsheet model.

As outlined in the introduction, our strategy to find these charges is as follows. The ADHM
quiver model is classically not conformally invariant, but ultraviolet finite such that there is no
renormalisation group flow. This follows from the fact that the one-loop diagrams cancel, and

9 We will not discuss the rather delicate case 〈bAY 〉 = 〈φA′m〉 = 0.
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all higher loop diagrams are finite [16]. The massless fields of the quiver model therefore do not
acquire anomalous conformal dimensions and contribute to the central charges of the infrared
conformal field theory. This allows us to determine the left- and right-moving central charges of
the infrared conformal field theory from the number of massless modes in the ultraviolet quiver
theory.

3.4.2. Number of massless modes for N even
We begin by counting the massless degrees of freedom in the case of even orbifolds: First,

there are the bifundamental fields (φA′m
a )j,j descending from 1–5 strings and their left- and

right-moving fermionic partners (χAm−a )j,j and (χYm+a )j,j+1. These fields are not constrained by
any D-term relations and thus contribute 2 · N · 2N ′ · p = 4NN ′p scalars and an equal number
of left- and right-moving fermions. The 5–1 string modes are related to the 1–5 modes by the Ω

reflection and therefore do not contribute any additional massless modes.
Second, consider the bosons (bAY

ab )j,j+Y which are massive on the Higgs branch. Since the
theory has (0,4)-supersymmetry, we know immediately that an equal number of right-moving
fermions (ψA′Y−ab)j,j+Y has to obtain mass. However, since only non-chiral fermions can be mas-

sive, it follows that also all left-moving (ψAA′
+ab)j,j become massive. The mass terms for the latter

arise due to couplings of the type ψ+χ−φ in (3.22). This sector thus has no massless modes.
Third, consider the scalars (bA′Ã′

ab )j,j . Those fields (bA′Ã′
ab )j,j which are adjoints of a U(p)

gauge group do not contribute to the counting: The 4p2 degrees of freedom of (bA′Ã′
ab )j,j (for

fixed j �= 0,N/2) are removed by 3p2 + p2 conditions coming from the vanishing of the
corresponding D-term and U(p) gauge equivalence. By supersymmetry, the same number of
(ψAÃ′

−ab)j,j are removed, and by the same pairing mechanism as described above also all of the

(ψYÃ′
+ab)j,j+Y . These fields thus give no contribution.
For j = 0 and j = N/2, however, the gauge group is SO(p), and the counting is similar

as in the unorbifolded case [27,34]: the fields (bA′Ã′
(ab)

)0,0 and (bA′Ã′
(ab)

)N/2,N/2 are in the sym-
metric representation of SO(p) and contribute 4p(p + 1)/2 real scalars each. However, there
are also 4p(p − 1)/2 constraints due to D-term relations and gauge equivalences. In total,
(bA′Ã′

(ab) )0,0 and (bA′Ã′
(ab) )N/2,N/2 thus contribute 2(4p(p + 1)/2 − 4p(p − 1)/2) = 8p massless

bosons. Supersymmetry then dictates that of the 8p(p + 1)/2 right-moving fermions (ψA′Ã′
−(ab))0,0

and (ψA′Ã′
−(ab)

)N/2,N/2 only 8p survive. To eliminate the remaining 8p(p − 1)/2, we need to pair

up all of the 8p(p − 1)/2 left-moving fermions (ψA′Ã′
+[ab])0,0 and (ψA′Ã′

+[ab])N/2,N/2. This leaves us
with no left-moving massless fermions.

3.4.3. Number of massless modes for N odd
Much of the above analysis carries over to odd orbifolds. The fields (φA′m

a )j,j again contribute
4NN ′p massless bosonic degrees of freedom and an equal number of left- and right-moving
fermions. For j �= 0, the (bA′Ã′

ab )j,j of the U(p) gauge groups are eliminated by D-terms, and for

j = 0 (bA′Ã′
(ab) )0,0 give 4p degrees of freedom. Note that we only have one SO(p) gauge group and

we therefore get only half as many massless degrees of freedom from these fields as required.
Since we are on the Higgs branch, all the (bAY

ab )j,j+Y become massive, except for the fields
(bA+

ab )(N−1)/2,(N+1)/2 and (bA−
ab )(N+1)/2,(N−1)/2 shown by red arrows in Fig. 3.2. These fields

are special and essentially take on the role played by the second SO(p) gauge group in the even
case. By (3.20) these particular bAY fields and their superpartners ψ− are symmetric fields with
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Fig. 3.2. Inner circle of the quiver diagram for an odd type I orbifold (Z5). The special fields that contribute to the
counting are denoted by red arrows. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

4p(p + 1)/2 components each, while the corresponding left-moving fermions ψ+ are antisym-
metric fields with 4p(p − 1)/2 components. From the type II theory we know that the only other
left-moving fermions, the χ+, remain massless. We can thus only form 4p(p − 1)/2 Yukawa
terms so that of the ψ−, 4p(p + 1)/2 − 4p(p − 1)/2 = 4p remain. By supersymmetry, the same
number of bosons b must remain massless. The total number of bosonic degrees of freedom is
thus again 4NN ′p + 8p (for N > 1), the same as in the even case.

In the degenerate case N = 1 there is one SO(p) gauge group, but no bifundamentals bAY

of the type described above. We therefore get only 4NN ′p + 4p bosonic massless degrees of
freedom, in agreement with the unorbifolded ADHM model.

3.4.4. Central charges of the Higgs branch theory
From the above counting of massless degrees of freedom, we find that the moduli space of the

ultraviolet theory is spanned by the 4NN ′p fields (φA′m
a )j,j and the 8p independent degrees of

freedom provided by (bA′Ã′
(ab) )j,j (j = 0,N/2). Its dimension is therefore given by

(3.23)dimM= 4NN ′p + 8p.

Recalling that the target space of the conformal sigma model on the Higgs branch is the instanton
moduli space of the ADHM quiver model, we may now also determine the central charges of the
infrared theory. For N � 2 we find

(3.24)(cL, cR) = (6NN ′p + 24p,6NN ′p + 12p)

in agreement with (2.11) and (2.22). The leading term, 6NN ′p, is given by the ADHM instanton
fields φA′m

jj and their fermionic partners (1–5 strings). The subleading term in the right sector,
12p, is given by the conformal charges of the 8p independent degrees of freedom of the scalars
bA′Ã′

and their fermionic superpartners (1–1 strings). One contribution to the term 24p in the
jj
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left-moving sector is given by the 8p bosonic fields descending from the bA′Ã′
jj . The remaining

16p are given by the 32 fermions λM+a (1–9 strings).
In conclusion, we propose the (0,4) sigma model on the Higgs branch of the type I quiver

model (3.22) as the appropriate candidate for the boundary conformal field theory of heterotic
string theory on AdS3 × S3/ZN × T 4 (N � 2).

4. Entropy function formalism in 5-dimensional heterotic string theory

4.1. Outline

In this section we return to the construction of the near-horizon geometry of the heterotic
three-charge model. The corresponding classical supergravity solution has been reviewed in
Section 2.1. We now wish to go beyond classical supergravity by introducing additional higher-
derivative operators in the heterotic string action. Our calculations are valid only for large values
of the charges N,N ′, q . In particular, we shall only calculate the first subleading correction to
the classical solution.

Similar computations in a dual setup have already been performed in [8] which exploit the
recently discovered N = 2 off-shell completion of the R2-terms in the 5-dimensional supergrav-
ity action [35]. Here, we will study the modification of the near-horizon solution (2.5) in the
presence of the four derivative corrections to the heterotic string effective action at the string tree
level [18,19].

We will make use of the entropy function formalism; for an introduction see e.g. [20,21] or
the recent review [36]. It was originally developed for 4-dimensional AdS2 × S2 black holes, but
it can also be generalised to geometries containing AdSp-factors with p > 2 (see e.g. [37]). We
will first use the formalism to rederive the classical contribution to the central charge. In a second
step we then apply it to the α′ corrected action to obtain corrections to the central charge.

Generically, the 5-dimensional action will also contain Chern–Simons like contributions
which contain the gauge fields in a non-covariant way (i.e. terms which contain the gauge poten-
tials rather than the field strengths). We therefore cannot use the entropy function formalism in a
straightforward way. Fortunately, following [38], we can circumvent this problem by considering
the theory in 6 dimensions, from where we can get the 5-dimensional theory by Kaluza–Klein
reduction. This approach has not only the advantage that we can reformulate the gauge Chern–
Simons term in a covariant way, but it also allows us to think of the 5-dimensional 2- and 3-form
field strengths as coming from the Kaluza–Klein reduction of a single 6-dimensional three-form.
Since the latter is in fact self-dual, this provides us with a very compact way of dealing with the
5-dimensional fields. We will see however that the action still contains a gravitational Chern–
Simons term which will require special treatment.

Throughout this section we will use the convention α′ = 16.

4.2. Uncorrected solution

We begin by lifting the heterotic theory to 6 dimensions, where we have the following mass-
less bosonic fields

• 6-dimensional metric G
(6)
MN :

This reduces to the 5-dimensional metric as well as to a vector field under which the black
string can be electrically and magnetically charged.
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• Anti-symmetric tensor B
(6)
MN :

This reduces to a 5-dimensional 2-form potential and to a dual vector field. The black string
can be electrically and magnetically charged under B

(6)
MN .

• 6-dimensional dilaton:
This reduces to the 5-dimensional dilaton.

In the following the convention for the indices will be

M,N ∈ 0,1, . . . ,5, and μ,ν ∈ 0,1, . . . ,4.

The 6-dimensional Lagrangian obtained from heterotic string theory is given by

(4.1)L(6) = 1

32π
e−2Φ(6)

[
R(6) + 4∂MΦ(6)∂MΦ(6) − 1

12
H

(6)
MNP H(6),MNP

]
.

The 3-form field strength is given by

H
(6)
MNP = ∂MB

(6)
NP + ∂NB

(6)
PM + ∂P B

(6)
MN + κΩ

(6)
MNP ,

where Ω
(6)
MNP is the gravitational Chern–Simons 3-form. The parameter κ can be fixed as in [38],

which gives the value κ = 192 for our setup. To covariantise the action, we introduce a new field
C

(6)
MN together with its field strength

(4.2)K(6)
MNP = ∂MC

(6)
NP + ∂NC

(6)
PM + ∂P C

(6)
MN .

Consider the new Lagrangian

L(6)
[1] =

√−detG(6)

32π
e−2Φ(6)

[
R(6) + 4∂MΦ(6)∂MΦ(6) − 1

12
H

(6)
MNP H(6),MNP

]

(4.3)+ ζ εMNPQRSK(6)
MNP H

(6)
QRS − ζκεMNPQRSK(6)

MNP Ω
(6)
QRS,

where ζ is some constant which will cancel out in all physical quantities. Upon exploiting the
equations of motion for the auxiliary field C(6),

ζ εMNPQRS∂P

(
H

(6)
QRS − κΩ

(6)
QRS

) = 0,

this reduces (4.3) to the old Lagrangian (4.1). On the other hand we can use the equation of
motion for H

(6)
MNP to get

(4.4)H(6),MNP = − 192πe2Φ(6)

√−detG(6)
ζ εMNPQRSK(6)

QRS,

which we use to eliminate H(6),MNP from the original Lagrangian (4.1). We have thus replaced
the 3-form field strength of the 6-dimensional Lagrangian by the (auxiliary-)field C

(6)
MN , which

only appears through its field strength K(6)
MNP .

Let us comment briefly on the gravitational Chern–Simons term

(4.5)−ζκεMNPQRSK(6)
MNP Ω

(6)
QRS.

Although it is not of a manifestly covariant form, we will argue below that in our specific setup
the term is actually covariant. This means that after replacing H(6),MNP by K(6)

MNP , (4.3) is
covariant, so that we can apply the entropy function formalism.
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Although it will be more convenient to stay in the 6-dimensional setup, let us spell out the
ansatz with which we can reduce this Lagrangian back to 5 dimensions:

(4.6)

Ĝ55 = G
(6)
55 , Ĉ55 = C

(6)
55 = 0,

Ĝ55 = (
Ĝ−1

)55
, Gμν = G

(6)
μν − Ĝ55G

(6)
5μG

(6)
5ν ,

A
(1)
μ = 1

2
Ĝ55G

(6)
5μ, A

(2)
μ = 1

2
C5μ,

Cμν = C
(6)
μν − 2

(
A

(1)
μ A

(2)
ν − A

(1)
ν A

(2)
μ

)
, Φ = Φ(6) − 1

2
lnV,

where V is the volume of the compactified x5-direction. The field strengths of the various forms
are then given by

F (i)
μν = ∂μA(i)

ν − ∂νA
(i)
μ , i = 1,2,

(4.7)Kμνρ = (
∂μCνρ + 2A(1)

μ F (2)
νρ + 2A(2)

μ F (1)
νρ

) + cyclic permutation of (μ, ν,ρ).

Note that after compactifying to 5 dimensions, Kμνρ is no longer covariant, as it contains A
(1,2)
μ

explicitly. In principle, one would therefore have to introduce new auxiliary fields and repeat the
steps performed above (see [38]). It turns out however that this gives the same result as when we
use the reduced version of (4.3) directly.

We are now in a position to compute the entropy function, which is given by

E0 = 2π

r

{
qieir −

∫
θ,ϕ,x5

[√−detG(6)e−2Φ(6)

32π

(
R(6) + 4∂MΦ(6)∂MΦ(6)

− 1

12
H

(6)
MNP H(6),MNP

)

(4.8)+ ζ εMNPQRSK(6)
MNP H

(6)
QRS − ζκεMNPQRSK(6)

MNP Ω
(6)
QRS

]}
,

where H(6),MNP is to be replaced by K(6)
MNP using (4.4). In order to evaluate (4.8) we make

the following ansatz for the near-horizon form of all the 5-dimensional fields involved

ds2 = gμν dxμ dxν = v1

(
−r2 dt2 + r2 dz2 + dr2

r2

)
+ v2

(
dθ2 + sin2 θ dϕ2),

Ĝ55 = u2, F
(1)
θϕ = p1 sin θ

4π
, F

(2)
θϕ = −p2 sin θ

4π
,

(4.9)F
(1)
tr = e1, e−2Φ = λ,

where we interpret p1 and p2 as magnetic and e1 as the Legendre transform of an electric charge.
Using (4.6), this corresponds to the 6-dimensional configuration.

G
(6)
MN =

(
gμν + u2AμAν u2Aμ

u2Aν u2

)
, with Aμ =

{
−p2 cos θ

2π
μ = ϕ,

0 else,

C
(6)
tz = 2e1r, C

(6)
5ϕ = p1

4π
cos θ,

(4.10)e−2Φ(6) = λ

u
.
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Let us now turn to the gravitational Chern–Simons term (4.5). We will argue that in our setup
it is already covariant. First note that the 6-dimensional space factorizes into two 3-dimensional
spaces, which we label in the following way

α,β, γ = t, r, z, and a, b, c = θ,ϕ, x5,

where the metrics of the two subspaces read

Gα,β = v1

⎛
⎝−r2 0 0

0 1
r2 0

0 0 r2

⎞
⎠ ,

(4.11)Gα,β =
⎛
⎜⎝

v2 0 0

0 v2 sin2 θ + p2
2u2 cos2 θ

4π2 −p2u
2 cos θ
2π

0 −p2u
2 cos θ
2π

u2

⎞
⎟⎠ .

The situation is now almost exactly as in [38]. There, the setup was reduced to a two-dimensional
geometry in t, r , since all other directions were periodic and could thus be considered as com-
pactified. In our case although the z direction is non-compact, it does not appear explicitly
in any of the expressions, so that the argument carries over. The conclusion is then that (up
to total derivative terms which give no contribution) (4.5) is already covariant, as was shown
in [38].

We can thus directly plug the expression for Ω(6),

(4.12)Ω
(6)
MNP = 1

2
Γ R

MS∂NΓ S
PR + 1

3
Γ R

MSΓ S
NT Γ T

PR,

into (4.5) to obtain the contribution

(4.13)�ECS = −6e1p2u
2(p2

2u
2 − 4π2v2)ζκ

πv2
2

with κ = 192. A direct calculation shows however that �ECS only gives subleading corrections
to the classical geometry. We will thus omit the Chern–Simons term as long as we consider the
classical solution.

Inserting the ansatz (4.10) into the entropy function (4.8), we obtain the result

E0 = 2e1πq1 − 1

2
πv

3/2
1 λ + 3

2
π

√
v1v2λ + p2

2v
3/2
1 λu2

32πv2

(4.14)− 663552e2
1π

3v2ζ
2u2

v
3/2
1 λ

+ 10368p2
1πv

3/2
1 ζ 2

v2λ
.

In order to find the entropy of the black hole, we have to extremise this expression. Under the
assumption q1 > 0, p1 > 0 and p2 > 0, the only physically acceptable extremum is

v1 = q1p2

144π2ζ
, v2 = q1p2

576π2ζ
,

(4.15)λ = 6912p1πζ
3
2√

q1p2
, u =

√
q1

12
√

p2ζ
.
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Note in particular that we find the relation

(4.16)v1 = 4v2.

We note, however, that the quantities p1,p2, q1 are not yet physically normalised expressions.
The unphysical quantity ζ still enters into the solution. We will determine the correct normalisa-
tion at the end of the next subsection.

4.3. Corrected solution

We now wish to consider corrections to the classical supergravity theory. This means that we
have to include the contribution (4.13) of the Chern–Simons term. Moreover, the α′-corrected
supergravity Lagrangian also contains higher order derivative terms which we have to take into
account. We follow [38] and write down the action containing the four derivative corrections to
the heterotic string effective action as

L(6) = e−2Φ(6)√−detG(6)

32π

[
R(6) + 4∂MΦ(6)∂MΦ(6) − 1

12
H

(6)
MNP H(6),MNP

+ 2R
(6)
KLMNR(6),KLMN − R

(6)
KLMNH

(6)KL
P H(6),PMN

(4.17)

− 1

4
H

(6),MN
K H

(6)
LMNH(6),KPQH

(6),L
PQ + 1

12
H

(6)
KLMH

(6),K
PQ H

(6),LP
R H(6),RMQ

]
.

As in the classical case, we introduce the new field C
(6)
MN with field strength K(6)

MNP , as defined
in (4.2). As before, we modify the action

L(6)
[1] = e−2Φ(6)√−detG(6)

32π

[
R(6) + 4∂MΦ(6)∂MΦ(6) − 1

12
H

(6)
MNP H(6),MNP

+ 2R
(6)
KLMNR(6),KLMN − R

(6)
KLMNH

(6)KL
P H(6),PMN

− 1

4
H

(6),MN
K H

(6)
LMNH(6),KPQH

(6),L
PQ + 1

12
H

(6)
KLMH

(6),K
PQ H

(6),LP
R H(6),RMQ

]

(4.18)+ ζ εMNPQRSK(6)
MNP H

(6)
QRS − ζκεMNPQRSK(6)

MNP Ω
(6)
QRS.

Reducing this Lagrangian to L(6) by using the equations of motion for C
(6)
MN is essentially the

same as in the classical case. However, elimination of H
(6)
MNP is now modified due to the presence

of the higher derivative terms. Indeed, the equation of motion for H
(6)
MNP now reads

√−detG(6)

32π

[
−1

6
H(6),MNP − 2H(6),M

KLR(6),KLNP − 1

4

(
H

(6),NP
L H(6),MQRH

(6),L
QR

+ H
(6),NP
K H(6),KQRH

(6),M
QR + H(6),MQRH

(6)
LQRH(6),NPL

+ H
(6),QR
K H(6),P

QRH(6),KMN
) + 1

12

(
H

(6),M
QR H

(6),NQ
K H(6),KPR

+ H(6),P
LKH

(6),LM
R H(6),RKN + H

(6),N
K LH(6),P

Q
KH(6),MLQ

(4.19)+ H
(6),N
KL H

(6),PK
R H(6),MLR

)] + ζ εMNPQRSK(6)
QRS = 0.
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Following the classical example, we would now have to invert this equation to express H
(6)
MNP in

terms of K(6)
MNP . Since this is in general very hard, we will solve (4.19) only to first subleading

order. To this end we make the ansatz

(4.20)H(6),MNP = H
(6),MNP
0 + H

(6),MNP
1 ,

where H
(6),MNP
0 is the solution from the classical equations of motion (see (4.4)). H

(6),MNP
1

is then a correction to the classical solution, which is subleading in the charges. Inserting this
ansatz into (4.19) and keeping only the first subleading terms, we find the approximated solution

H
(6),MNP
1 = −12H

(6),M
0 KLR(6),KLNP

− 3

2

(
3H

(6),MQR
0 H

(6)
0,QRLH

(6),LNP
0 + H

(6),MNK
0 H

(6)
0,KQRH

(6),QRP
0

)
(4.21)+ 2H

(6),MLQ
0 H

(6),N
0 KLH

(6),PK
0 Q,

where the right-hand side is suitably antisymmetrised in M,N,P . Indeed, we can justify our
ansatz by plugging the classical solution into our results, to find

H
(6),MNP
0 ∼O

(
charges−4) and H

(6),MNP
1 ∼O

(
charges−6).

This analysis makes it also clear that we only need to consider the correction terms H
(6),MNP
1 in

the classical terms, and not in the higher derivative terms, where they only give sub-subleading
contributions. The remaining steps of the preparation of the action follow in exactly the same
manner as for the classical case and can therefore be literally carried over.

Now we are ready to compute the entropy function. Using (4.10), (4.21), and (4.12), we find
the following entropy function

E = 2e1πq1 − 1

2
πv

3/2
1 λ + 3

2
π

√
v1v2λ + p2

2v
3/2
1 λu2

32πv2
− 663552e2

1π
3v2ζ

2u2

v
3/2
1 λ

+ 10368p2
1πv

3/2
1 ζ 2

v2λ
− 1152e1p

3
2ζu4

πv2
2

− 11p4
2v

3/2
1 λu4

128π3v3
2

− 331776e2
1p

2
2πζ 2u4

v
3/2
1 v2λ

+ 17612050268160e4
1π

5v2ζ
4u4

v
9/2
1 λ3

+ 4608e1p2πζu2

v2
+ 3p2

2v
3/2
1 λu2

4πv2
2

+ 5308416e2
1π

3ζ 2u2

v
3/2
1 λ

− 6πv2λ√
v1

− 2πv
3/2
1 λ

v2
+ 248832p2

1π
√

v1ζ
2

v2λ

(4.22)+ 4299816960p4
1πv

3/2
1 ζ 4

v3
2λ3

.

Since we are only interested in the first subleading correction, we linearise around the uncor-
rected solution (4.15) using the ansatz

v1 = q1p2

144π2ζ
+ x1, v2 = q1p2

576π2ζ
+ x2, λ = 6912p1πζ 3/2

√
q1p2

+ xλ,

(4.23)u =
√

q1

12
√

p2ζ
+ xu, e1 = p1p2

2π2
+ xe1 .
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Extremising E with respect to (x1, x2, xλ, xu, xe1 ) gives the first subleading terms as

x1 = 0, x2 = 0, xλ = 31850496
π3p1ζ

5/2

p
3/2
2 q

3/2
1

,

(4.24)xu = 576
π2ζ 1/2

q
1/2
1 p

3/2
2

, xe1 = 0.

Let us finally normalise the charges q1,p1,p2 and relate them to the physical quantities N ′,p,N .
Following [38] we are led to identify

(4.25)q1 = 576πζN ′, p1 = p

144ζ
, p2 = 4πN.

To first order, the solution is then given by (α′ = 16)

v1 = 16NN ′, v2 = 4NN ′, λ = (NN ′)−1/2p

(
1 + 2

NN ′

)
,

(4.26)u =
√

N ′
N

(
1 + 3

NN ′

)
.

Note that the corrected solution still obeys v1 = 4v2.
In summary, the corrected ten-dimensional near-horizon geometry is still AdS3 ×S3/ZN ×T 4,

but now with AdS radius and six-dimensional string-coupling given by

R2
AdS,corr = α′NN ′ +O

(
1

NN ′

)
,

(4.27)g2
6, corr = u

λ
= N ′

p

(
1 + 1

NN ′ +O
(

1

(NN ′)2

))
,

where it is understood that the sub-subleading terms can also be suppressed by powers of p. The
Brown–Henneaux formula

(4.28)c = 3

8

√
v1v2λ,

gives in the uncorrected case

(4.29)cclass = 6NN ′p,

while for the corrected solution we find

(4.30)ccorr = 6NN ′p + 12p +O
(

1

NN ′

)
.

To subleading order this agrees with (2.11).

5. Heterotic two-charge models

In view of a possible heterotic string duality with (0,8) spacetime supersymmetry [5,6], it
is an interesting question whether we can systematically switch off charges in the present (0,4)

duality. Clearly, the worldsheet theory for strings on AdS3 × S3/ZN × T 4 requires at least one
KK monopole and is not applicable for vanishing KK monopole charge. Since the KK monopoles
break supersymmetry down to (0,4) there seems to be no obvious way to generalise the model
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to (0,8). Nevertheless, it is interesting to consider models with less charges such as the F1-KKM
and the NS5-KKM intersection.

5.1. F1-KKM intersection (N ′ = 0)

We shall first consider a heterotic two-charge model consisting of a stack of p fundamental
strings in the background of a KK monopole with charge proportional to N � 2. The setup is
the same as in Section 2.1, but now N ′ = 0 (no NS5-branes). From (2.11), we find the central
charges of the boundary conformal field theory to be (cL, cR) = (24p,12p). Remarkably, the
central charges do not depend on the charge of the KK monopole since the leading term cubic in
the charges (∝ NN ′p) is absent. This has some interesting consequences.

Let us first have a look at the supergravity solution. Classically, the solution has a horizon
of zero area leaving a naked curvature singularity at the origin. This corresponds to a vanishing
Bekenstein–Hawking entropy on the classical level. It is however believed that higher-derivative
corrections to the supergravity solution resolve the classical singularity leading to a finite entropy.
The corrected supergravity solution presented in the previous section is valid for large NN ′ and
thus cannot be applied to this case.

The heterotic worldsheet theory for this case has some peculiar features. The left sector of the
CFT on the S3/ZN has collapsed to a trivial theory with bosonic level k′

b = cws
L (S3/ZN) = 0.

The supersymmetric level corresponding to the right sector is k′
s = k′

b + 2 = 2, and we have
cws
R (S3/ZN) = 3

2 . We are thus left with a trivial theory in the left sector and three fermions χ̄a

(a = 1,2,3) in the right sector. The AdS3 part of the geometry is described by a heterotic SL(2)

WZW model with levels kb = 4 and ks = 2. The full (supersymmetric part of the) background is
thus

(5.1)SL(2,R)2 × {
χ̄1, χ̄2, χ̄3} × T 4,

and the central charges of the worldsheet model are:

cws
L

(
SL(2)

) = 6, cws
L

(
S3/ZN

) = 0, cws
L

(
T 4) = 4,

(5.2)cws
R

(
SL(2)

) = 15/2, cws
R

(
S3/ZN

) = 3/2, cws
R

(
T 4) = 6,

ensuring criticality, (cws
L , cws

R ) = (26,15), given that cws
L (E8 × E8) = 16. The worldsheet model

also gives the correct central charges for the boundary CFT, cf. Eq. (2.23). Related heterotic
models involving three fermions can be found in [1,3].

We conclude with some comments on the dual boundary conformal field theory. Removing
the D5 branes in the quiver ADHM theory corresponds to the removal of the outer circle and
the spikes in the quiver diagram in Fig. 3.1. The ADHM part of the quiver action disappears,
leaving only that part of the action which corresponds to the inner circle of the quiver diagram.
Nevertheless, the counting of the massless degrees of freedom in the remaining quiver theory
seems to yield the correct central charges, (cL, cR) = (24p,12p) (for N � 2). It is interesting
to observe that the independence of cL,R on N is reflected by fact that varying N changes only
the number of sites in the quiver diagram corresponding to U(p) gauge groups. Recall, however,
that the fields of the U(p) gauge groups do not contribute to the central charges of the infrared
conformal field theory. Certainly, it would be interesting to study this field theory in more detail.
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5.2. Heterotic NS5-KKM intersection (p = 0)

For completeness, we also consider the NS5-KKM intersection which can be obtained from
the three-charge model of Section 2.1 by setting p = 0.

Let us approach this setup from a slightly different point of view. In [5] Lapan, Simons and
Strominger suggested to start from a four-dimensional monopole black hole with near-horizon
geometry

(5.3)R
t × R

φ × S2 × T 6,

where R
t denotes time and R

φ a real line labelled by φ with linear dilaton. Decompactifying one
of the compact directions, i.e. replacing R

t × S1 by a two-dimensional Minkowski space R
1,1

leads to the geometry

(5.4)R
1,1 × R

φ × S2 × T 5.

The CFT on (5.4) is then expected to describe a monopole string in five dimensions [5]. Ref. [5]
also suggested that the S2 factor could be described by the coset model of [24].

Here, however, we deviate from the proposal of [5] and include a KK monopole charge by
replacing S2 × T 5 by S3/ZN × T 4. Of course, we thereby break half of the target space super-
symmetry. Heterotic string theory in the background of a five-dimensional monopole string with
additional KK monopole charge is then expected to be given by the CFT on

(5.5)R
1,1 × R

φ × S3/ZN × T 4.

In fact, the thus derived background is nothing but the near-horizon geometry of the F1-NS5-
KKM set-up for vanishing electrical F1 charge, p = 0. This can be seen by setting F = 1 in (2.1)
and taking the limit r → 0.

Heterotic string theory on the background (5.5) can be described by a linear dilaton theory
with central charges

(5.6)cws
L

(
R

1,1 × R
φ
) = 2 + (

1 + 3Q2
D

)
, cws

R

(
R

1,1 × R
φ
) = 3 +

(
3

2
+ 3Q2

D

)
,

and dilaton charge QD . The internal part of the geometry, S3/ZN and T 4, will be described as
before, see Section 2.3. By criticality, the linear dilaton charge QD is related to the bosonic level
k′
b of the S3/ZN theory as

(5.7)Q2
D = 2

k′
b + 2

,

where k′
b = k′

s − 2 = NN ′, if we assume k′
s = NN ′ + 2.

Finally, as explained in [40], there is a simple relation between linear dilaton and SL(2) mod-
els. Adding p D1-branes along the R1,1 and taking the near-horizon limit amounts to replacing
the factor R

1,1 × R
φ by AdS3. The level of SL(2) is related to the dilaton charge by ks = 2/Q2

D

(kb = ks + 2). This leads back to AdS3 × S3/ZN × T 4, as expected.
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6. Conclusions

We studied the AdS3/CFT2 correspondence of a heterotic three-charge model with (0,4) su-
persymmetry. We gathered evidence for the equivalence of the following two theories:

(i) E8 × E8 heterotic string theory on AdS3 × S3/ZN × T 4;
(ii) the (0,4) Higgs branch theory of a ZN orbifold of Witten’s ADHM sigma model.

We motivated the duality by studying the low-energy effective action of a particular type I setup
dual to a heterotic configuration with AdS3 × S3/ZN × T 4 near-horizon geometry. We con-
structed the ultraviolet theory in terms of a ZN orbifold of the ADHM massive sigma model [12]
and verified that the corresponding Higgs branch theory has the correct central charges. We also
found that the first-order α′-corrected supergravity solution correctly reproduces the (supersym-
metric) central charge of the boundary conformal field theory up to terms of order O( 1

NN ′ ), cf.
(4.30) with (2.11).

The proposed heterotic duality obviously requires further investigation. The evidence we gave
is based on the counting of the massless degrees of freedom of the ultraviolet orbifold theory.
These modes are not renormalised and therefore also constitute the Higgs branch theory. Its
actual construction is expected to be straightforward along the lines of [17] by integrating out
the massive modes in the UV theory. This procedure will be made more complicated by the
fact that the Higgs branch metric will receive α′ corrections and seems to be divergent at the
origin [17]. It would also be interesting to work out the dictionary between the chiral primaries
of the boundary CFT and those of the worldsheet model [11]. The primaries of the boundary
CFT will be composite operators of the massless fields of the ultraviolet ADHM quiver model.
A comparison of the corresponding n-point functions should then provide further evidence for the
duality. Such tests have previously been performed in the type II AdS3/CFT2 duality in [41–45].
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Appendix A. Web of dualities

In this appendix we display the various dualities leading from the heterotic theory on T 5

(along x5,6,7,8,9) to M-theory on K3 × T 2 (along x6,7,8,9 and x5,10). For a review of string
dualities see e.g. [39]. In order to facilitate keeping track of the various steps, we have depicted
a schematic overview in the following web:
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M-theory

p M5 01 6789
N ′ M5 01 567 10
N M5 01 5 8910

� lift

Type IIB

p KK 01 6789
N ′ D1 01
N D5 01 6789

T567↔
Type IIA

p NS5 01 6789
N ′ D4 01 567
N D4 01 5 89

Type I

p D1 01
N ′ D5 01 6789
N KK 01 6789

� S � het/type I

Type IIB

p KK 01 6789
N ′ F1 01
N NS5 01 6789

T5↔
Type IIA

p NS5 01 6789
N ′ F1 01
N KK 01 6789

↔ heterotic

p F1 01
N ′ NS5 01 6789
N KK 01 6789

We start in the lower right corner with the heterotic theory as described in Section 2.1. Fol-
lowing the first arrow to the left,10 heterotic-type IIA duality takes us to a setup with NS5-branes,
fundamental strings and KK monopoles as described in the corresponding box. Going further to
the left (using the arrow labelled T5), we perform a T-duality along the isometry direction of
the KK monopoles (direction x5), which exchanges the KK monopoles and the NS5-branes but
leaves the F1 untouched. Since we have performed the T-duality only along a single direction,
the setup is now in the type IIB theory. Following the next arrow upwards (labelled by S), we
perform S-duality in the type IIB framework, which turns the NS5-branes and F1 into D5- and
D1-branes, respectively. Next we follow the arrow labelled T567 to the right, which represents
T-duality transformations along x5,6,7. Since again the isometry direction of the KK monopoles
is affected, they are transformed to NS5-branes, while the D1 and D5-branes are mapped to D4-
branes. Since we have performed the duality transformation in an odd number of dimensions, we
are back to the type IIA framework. The final arrow pointing upwards is the M-theory lift, which
takes us to the setup of three stacks of M5-branes described in Section 2.2.
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