Idempotency of linear combinations of an idempotent matrix and a t-potent matrix that commute

J. Benítez*, N. Thome
Departamento de Matemática Aplicada, Instituto de Matemática Multidisciplinar, Universidad Politécnica de Valencia, Camino de Vera S/N. 46022, Spain
Received 10 June 2004; accepted 19 February 2005
Available online 8 April 2005
Submitted by E. Tyrtyshnikov

Abstract

This paper deals with idempotent matrices (i.e., $A^{2}=A$) and t-potent matrices (i.e., $B^{t}=$ $B)$. When both matrices commute, we derive a list of all complex numbers c_{1} and c_{2} such that $c_{1} A+c_{2} B$ is an idempotent matrix. In addition, the real case is also analyzed. © 2005 Elsevier Inc. All rights reserved.

Keywords: Idempotent matrix; t-potent matrix; Linear combination

We consider the following problem: to describe all pairs (c_{1}, c_{2}) of nonzero complex numbers for which there exist an idempotent complex matrix A (i.e., $A^{2}=A$) and a t-potent complex matrix B (i.e., $B^{t}=B$) such that their linear combination $c_{1} A+c_{2} B$ is an idempotent matrix. This problem was studied in [1] and [2] for $t=2$ and $t=3$, respectively. We solve it for all $t>1$, but only if A and B commute. We suppose that B has at least two distinct nonzero eigenvalues since otherwise $B=\lambda P$, where $P^{2}=P$, that is, $c_{1} A+c_{2} B=c_{1} A+c_{2} \lambda P$ is a linear combination of idempotent matrices studied in [1].

[^0]Theorem 1. Let A and B be nonzero complex matrices and $c_{1} A+c_{2} B=C$ satisfy $A^{2}=A, B^{k+1}=B, A B=B A$, and $C^{2}=C$. Assume that A and B are not simultaneously similar to $A^{\prime} \oplus 0$ and $B^{\prime} \oplus 0$, respectively. Also assume that B has at least two distinct nonzero eigenvalues and $c_{1} \neq 0 \neq c_{2}$. Then there is a nonsingular matrix S such that $c_{1} S^{-1} A S+c_{2} S^{-1} B S=S^{-1} C S$ is one of the following linear combinations, in which $u, v \in \sqrt[k]{1}, u \neq v$, and $\varepsilon=\frac{1}{2} \pm \frac{\sqrt{3}}{2} \mathrm{i}$.

$$
\begin{aligned}
& \frac{v}{v-u}\left[\begin{array}{cc}
I & 0 \\
0 & I
\end{array}\right]+\frac{1}{u-v}\left[\begin{array}{cc}
v I & 0 \\
0 & u I
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
0 & I
\end{array}\right], \\
& -u v^{-1}\left[\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right]+v^{-1}\left[\begin{array}{cc}
u I & 0 \\
0 & v I
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
0 & I
\end{array}\right], \\
& \left(1-u v^{-1}\right)\left[\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right]+v^{-1}\left[\begin{array}{cc}
u I & 0 \\
0 & v I
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
0 & I
\end{array}\right], \\
& {\left[\begin{array}{lll}
I & 0 & 0 \\
0 & I & 0 \\
0 & 0 & 0
\end{array}\right]+v^{-1}\left[\begin{array}{ccc}
-v I & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & v I
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & I & 0 \\
0 & 0 & I
\end{array}\right] \text { if } 2 \mid k,} \\
& \varepsilon\left[\begin{array}{ccc}
I & 0 & 0 \\
0 & I & 0 \\
0 & 0 & 0
\end{array}\right]+\varepsilon^{-1} u^{-1}\left[\begin{array}{ccc}
\varepsilon^{-1} u I & 0 & 0 \\
0 & u I & 0 \\
0 & 0 & \varepsilon u I
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & I & 0 \\
0 & 0 & I
\end{array}\right] \text { if } 6 \mid k .
\end{aligned}
$$

Proof. By simultaneous similarity transformations with A and B, we make $A=$ $I_{r} \oplus 0$. Then $B=B_{1} \oplus B_{2}$ since $A B=B A$. Both B_{1} and B_{2} are diagonalizable because $B^{k+1}=B$. By simultaneous similarity transformations with A and B that preserve $A=I_{r} \oplus 0$, we make $B=\operatorname{diag}\left(\beta_{1}, \ldots, \beta_{n}\right)$, where all $\beta_{i}^{k+1}=\beta_{i}$, that is, $\beta_{i} \in \sqrt[k]{1}$ or $\beta_{i}=0$. Since A and B are diagonal, $C=\operatorname{diag}\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ and $C^{2}=C$ implies $\gamma_{1}, \ldots, \gamma_{n} \in\{0,1\}$.

Therefore,

$$
\left[\begin{array}{c}
1 \tag{1}\\
\vdots \\
1 \\
0 \\
\vdots \\
0
\end{array}\right] c_{1}+\left[\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{r} \\
\beta_{r+1} \\
\vdots \\
\beta_{n}
\end{array}\right] c_{2}=\left[\begin{array}{c}
\gamma_{1} \\
\vdots \\
\gamma_{r} \\
\gamma_{r+1} \\
\vdots \\
\gamma_{n}
\end{array}\right], \begin{aligned}
& \\
& \beta_{i} \in\{0\} \cup \sqrt[k]{1}, \\
& \gamma_{i} \in\{0,1\} .
\end{aligned}
$$

Because $\beta_{r+1}, \ldots, \beta_{n}$ and c_{2} are all nonzero, $\gamma_{r+1}=\cdots=\gamma_{n}=1$.
We can consider (1) as a system of linear equations with respect to c_{1} and c_{2}. Since this system is solvable, there are at most two linearly independent equations. The number of independent equations equals 2 since $A \neq 0$ and B has at least two nonzero eigenvalues. Let us fix two linearly independent equations.

Case 1: The linearly independent equations have the form

$$
c_{1}+c_{2} u=0, \quad c_{1}+c_{2} v=0 \quad(u \neq v)
$$

Then $c_{2}=0$ and this case is impossible.

Case 2: The linearly independent equations have the form

$$
c_{1}+c_{2} u=1, \quad c_{1}+c_{2} v=0
$$

Then $c_{1}=\frac{v}{v-u}$ and $c_{2}=\frac{1}{u-v}$. From (1) we get $\frac{v}{v-u}+\frac{\beta_{i}}{u-v} \in\{0,1\}$ for all $i=$ $1, \ldots, r$ and $\frac{\beta_{j}}{u-v}=1$ for all $j=r+1, \ldots, n$. Hence $\beta_{i}=v$ or $\beta_{i}=u$ for all $i=$ $1, \ldots, r$ and $\beta_{j}=u-v$ for all $j=r+1, \ldots, n$.

If $r=n$, rearranging if necessary the eigenvalues of B, we get

$$
A=\left[\begin{array}{cc}
I & 0 \\
0 & I
\end{array}\right], \quad B=\left[\begin{array}{cc}
v I & 0 \\
0 & u I
\end{array}\right] .
$$

If $r<n$, then $\beta_{j}=\varepsilon u, v=\varepsilon^{-1} u$, and $6 \mid k$ because $u=\beta_{j}+v$ and $u, \beta_{j}, v \in$ $\sqrt[k]{1}$. Rearranging if necessary the eigenvalues of B, we get

$$
A=\left[\begin{array}{ccc}
I & 0 & 0 \\
0 & I & 0 \\
0 & 0 & 0
\end{array}\right], \quad B=\left[\begin{array}{ccc}
\varepsilon^{-1} u I & 0 & 0 \\
0 & u I & 0 \\
0 & 0 & \varepsilon u I
\end{array}\right] .
$$

Case 3: The linearly independent equations have the form

$$
c_{1}+c_{2} u=1, \quad c_{1}+c_{2} v=1 \quad(u \neq v) .
$$

Then $c_{2}=0$ and this case is impossible.
Case 4: The linearly independent equations have the form

$$
c_{1}+c_{2} u=0, \quad c_{2} v=1 .
$$

Then $c_{1}=-u v^{-1}$ and $c_{2}=v^{-1}$. From (1) we get $-u v^{-1}+v^{-1} \beta_{i} \in\{0,1\}$ for all $i=1, \ldots, r$ and $v^{-1} \beta_{j}=1$ for all $j=r+1, \ldots, n$. Hence $\beta_{i}=u$ or $\beta_{i}=u+v$ for all $i=1, \ldots, r$ and $\beta_{j}=v$ for all $j=r+1, \ldots, n$.

If $\beta_{i}=u$ for all $i=1, \ldots, r$, rearranging if necessary the eigenvalues of B, we get

$$
A=\left[\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right], \quad B=\left[\begin{array}{cc}
u I & 0 \\
0 & v I
\end{array}\right]
$$

Suppose that there exists $i \in\{1, \ldots, r\}$ such that $\beta_{i}=u+v$. If $\beta_{i} \neq 0$, then $u=$ $\varepsilon^{-1} \beta_{i}, v=\varepsilon \beta_{i}$, and $6 \mid k$ since $\beta_{i}, u, v \in \sqrt[k]{1}$. Rearranging if necessary the eigenvalues of B, we get

$$
A=\left[\begin{array}{lll}
I & 0 & 0 \\
0 & I & 0 \\
0 & 0 & 0
\end{array}\right], \quad B=\left[\begin{array}{ccc}
\varepsilon^{-1} \beta_{i} I & 0 & 0 \\
0 & \beta_{i} I & 0 \\
0 & 0 & \varepsilon \beta_{i} I
\end{array}\right]
$$

and $c_{1}=-u v^{-1}=\varepsilon, c_{2}=v^{-1}=\varepsilon^{-1} \beta_{i}^{-1}$. If $\beta_{i}=0$, then $u=-v, c_{1}=1, c_{2}=$ v^{-1}, and k is even. Rearranging if necessary the eigenvalues of B, we get

$$
A=\left[\begin{array}{lll}
I & 0 & 0 \\
0 & I & 0 \\
0 & 0 & 0
\end{array}\right], \quad B=\left[\begin{array}{ccc}
-v I & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & v I
\end{array}\right] .
$$

Case 5: The linearly independent equations have the form

$$
c_{1}+c_{2} u=1, \quad c_{2} v=1
$$

Then $c_{1}=1-u v^{-1}$ and $c_{2}=v^{-1}$. From (1) we get $1-u v^{-1}+v^{-1} \beta_{i} \in\{0,1\}$ for all $i=1, \ldots, r$ and $v^{-1} \beta_{j}=1$ for all $j=r+1, \ldots, n$. Hence $\beta_{i}=u$ or $\beta_{i}=$ $u-v$ for all $i=1, \ldots, r$ and $\beta_{j}=v$ for all $j=r+1, \ldots, n$.

If $\beta_{i}=u$ for all $i=1, \ldots, r$, rearranging if necessary the eigenvalues of B, we get

$$
A=\left[\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right], \quad B=\left[\begin{array}{cc}
u I & 0 \\
0 & v I
\end{array}\right] .
$$

If there exists $i \in\{1, \ldots, r\}$ such that $\beta_{i}=u-v$, then $\beta_{i}=\varepsilon^{-1} u, v=\varepsilon u$, and $6 \mid k$ because $u, \beta_{i}, v \in \sqrt[k]{1}$. Rearranging if necessary the eigenvalues of B, we get

$$
A=\left[\begin{array}{ccc}
I & 0 & 0 \\
0 & I & 0 \\
0 & 0 & 0
\end{array}\right], \quad B=\left[\begin{array}{ccc}
\varepsilon^{-1} u I & 0 & 0 \\
0 & u I & 0 \\
0 & 0 & \varepsilon u I
\end{array}\right],
$$

and $c_{1}=1-u v^{-1}=\varepsilon, c_{2}=v^{-1}=\varepsilon^{-1} u^{-1}$.
Case 6: The linearly independent equations have the form

$$
c_{2} u=1, \quad c_{2} v=1 \quad(u \neq v) .
$$

This system is unsolvable.
This completes the proof.
It seems interesting to show that k must be less than 3 when c_{1} and c_{2} are restricted to be real numbers.

Corollary 1. Let c_{1} and c_{2} be nonzero real numbers. Let A and B be nonzero complex matrices and $c_{1} A+c_{2} B=C$ satisfy $A^{2}=A, B^{k+1}=B, A B=B A, A \neq B$, and $C^{2}=C$. Then $B^{2}=B$ or $B^{3}=B$.

Proof. The case $k=1$ was studied in [1] and it yields $B^{2}=B$. So, we suppose $k>1$. From Theorem 1, $c_{1}=\overline{c_{1}}$, and $c_{2}=\overline{c_{2}}$ we get $\{u, v\}=\{1,-1\}$. Hence, we deduce that $B^{3}=B$ since B is diagonalizable.

Acknowledgements

We thank the referees for their valuable comments. Their suggests permitted rewritten the article in a shorter and clearer form than the first version. Supported by Generalitat Valenciana under Project Grupos03/062.

References

[1] J.K. Baksalary, O.M. Baksalary, Idempotency of linear combinations of two idempotent matrices, Linear Algebra Appl. 321 (2000) 3-7.
[2] J.K. Baksalary, O.M. Baksalary, G.P.H. Styan, Idempotency of linear combinations of an idempotent matrix and a tripotent matrix, Linear Algebra Appl. 354 (2002) 21-34.

[^0]: * Corresponding author.

 E-mail addresses: jbenitez@mat.upv.es (J. Benítez), njthome@mat.upv.es (N. Thome).

