

Available online at www.sciencedirect.com

LINEAR ALGEBRA AND ITS APPLICATIONS

Linear Algebra and its Applications 403 (2005) 414-418

www.elsevier.com/locate/laa

Idempotency of linear combinations of an idempotent matrix and a *t*-potent matrix that commute

J. Benítez*, N. Thome

Departamento de Matemática Aplicada, Instituto de Matemática Multidisciplinar, Universidad Politécnica de Valencia, Camino de Vera S/N. 46022, Spain

> Received 10 June 2004; accepted 19 February 2005 Available online 8 April 2005 Submitted by E. Tyrtyshnikov

Abstract

This paper deals with idempotent matrices (i.e., $A^2 = A$) and *t*-potent matrices (i.e., $B^t = B$). When both matrices commute, we derive a list of all complex numbers c_1 and c_2 such that $c_1A + c_2B$ is an idempotent matrix. In addition, the real case is also analyzed. © 2005 Elsevier Inc. All rights reserved.

Keywords: Idempotent matrix; t-potent matrix; Linear combination

We consider the following problem: to describe all pairs (c_1, c_2) of nonzero complex numbers for which there exist an idempotent complex matrix A (i.e., $A^2 = A$) and a t-potent complex matrix B (i.e., $B^t = B$) such that their linear combination $c_1A + c_2B$ is an idempotent matrix. This problem was studied in [1] and [2] for t = 2 and t = 3, respectively. We solve it for all t > 1, but only if A and B commute. We suppose that B has at least two distinct nonzero eigenvalues since otherwise $B = \lambda P$, where $P^2 = P$, that is, $c_1A + c_2B = c_1A + c_2\lambda P$ is a linear combination of idempotent matrices studied in [1].

^{*} Corresponding author. *E-mail addresses:* jbenitez@mat.upv.es (J. Benítez), njthome@mat.upv.es (N. Thome).

415

Theorem 1. Let A and B be nonzero complex matrices and $c_1A + c_2B = C$ satisfy $A^2 = A$, $B^{k+1} = B$, AB = BA, and $C^2 = C$. Assume that A and B are not simultaneously similar to $A' \oplus 0$ and $B' \oplus 0$, respectively. Also assume that B has at least two distinct nonzero eigenvalues and $c_1 \neq 0 \neq c_2$. Then there is a nonsingular matrix S such that $c_1S^{-1}AS + c_2S^{-1}BS = S^{-1}CS$ is one of the following linear combinations, in which $u, v \in \sqrt[k]{1}, u \neq v$, and $\varepsilon = \frac{1}{2} \pm \frac{\sqrt{3}}{2}i$.

$$\begin{aligned} \frac{v}{v-u} \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix} + \frac{1}{u-v} \begin{bmatrix} vI & 0 \\ 0 & uI \end{bmatrix} &= \begin{bmatrix} 0 & 0 \\ 0 & I \end{bmatrix}, \\ -uv^{-1} \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} + v^{-1} \begin{bmatrix} uI & 0 \\ 0 & vI \end{bmatrix} &= \begin{bmatrix} 0 & 0 \\ 0 & I \end{bmatrix}, \\ (1-uv^{-1}) \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} + v^{-1} \begin{bmatrix} uI & 0 \\ 0 & vI \end{bmatrix} &= \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix}, \\ \begin{bmatrix} I & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & 0 \end{bmatrix} + v^{-1} \begin{bmatrix} -vI & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & vI \end{bmatrix} &= \begin{bmatrix} 0 & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & I \end{bmatrix} if 2|k, \\ \varepsilon \begin{bmatrix} I & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & 0 \end{bmatrix} + \varepsilon^{-1}u^{-1} \begin{bmatrix} \varepsilon^{-1}uI & 0 & 0 \\ 0 & uI & 0 \\ 0 & 0 & \varepsilon uI \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & I & 0 \\ 0 & I & 0 \\ 0 & 0 & I \end{bmatrix} if 6|k. \end{aligned}$$

Proof. By simultaneous similarity transformations with *A* and *B*, we make $A = I_r \oplus 0$. Then $B = B_1 \oplus B_2$ since AB = BA. Both B_1 and B_2 are diagonalizable because $B^{k+1} = B$. By simultaneous similarity transformations with *A* and *B* that preserve $A = I_r \oplus 0$, we make $B = \text{diag}(\beta_1, \ldots, \beta_n)$, where all $\beta_i^{k+1} = \beta_i$, that is, $\beta_i \in \sqrt[k]{1}$ or $\beta_i = 0$. Since *A* and *B* are diagonal, $C = \text{diag}(\gamma_1, \ldots, \gamma_n)$ and $C^2 = C$ implies $\gamma_1, \ldots, \gamma_n \in \{0, 1\}$.

Therefore,

$$\begin{bmatrix} 1\\ \vdots\\ 1\\ 0\\ \vdots\\ 0 \end{bmatrix} c_1 + \begin{bmatrix} \beta_1\\ \vdots\\ \beta_r\\ \beta_{r+1}\\ \vdots\\ \beta_n \end{bmatrix} c_2 = \begin{bmatrix} \gamma_1\\ \vdots\\ \gamma_r\\ \gamma_{r+1}\\ \vdots\\ \gamma_n \end{bmatrix}, \quad \begin{array}{l} \beta_i \in \{0\} \cup \sqrt[k]{1},\\ \gamma_i \in \{0, 1\}. \end{array}$$
(1)

Because $\beta_{r+1}, \ldots, \beta_n$ and c_2 are all nonzero, $\gamma_{r+1} = \cdots = \gamma_n = 1$.

We can consider (1) as a system of linear equations with respect to c_1 and c_2 . Since this system is solvable, there are at most two linearly independent equations. The number of independent equations equals 2 since $A \neq 0$ and B has at least two nonzero eigenvalues. Let us fix two linearly independent equations.

Case 1: The linearly independent equations have the form

 $c_1 + c_2 u = 0$, $c_1 + c_2 v = 0$ $(u \neq v)$. Then $c_2 = 0$ and this case is impossible.

Case 2: The linearly independent equations have the form

 $c_1 + c_2 u = 1, \quad c_1 + c_2 v = 0.$

416

Then $c_1 = \frac{v}{v-u}$ and $c_2 = \frac{1}{u-v}$. From (1) we get $\frac{v}{v-u} + \frac{\beta_i}{u-v} \in \{0, 1\}$ for all $i = 1, \ldots, r$ and $\frac{\beta_j}{u-v} = 1$ for all $j = r+1, \ldots, n$. Hence $\beta_i = v$ or $\beta_i = u$ for all $i = 1, \ldots, r$ and $\beta_j = u - v$ for all $j = r+1, \ldots, n$.

If r = n, rearranging if necessary the eigenvalues of B, we get

$$A = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix}, \quad B = \begin{bmatrix} vI & 0 \\ 0 & uI \end{bmatrix}.$$

If r < n, then $\beta_j = \varepsilon u$, $v = \varepsilon^{-1}u$, and 6|k because $u = \beta_j + v$ and $u, \beta_j, v \in \sqrt[k]{1}$. Rearranging if necessary the eigenvalues of *B*, we get

	ΓΙ	0	0			$\int \varepsilon^{-1} u I$	0	0]	
A =	0	Ι	0	,	B =	0	иI	0	
	0	0	0			0	0	εиΙ	

Case 3: The linearly independent equations have the form

$$c_1 + c_2 u = 1$$
, $c_1 + c_2 v = 1$ $(u \neq v)$.

Then $c_2 = 0$ and this case is impossible.

Case 4: The linearly independent equations have the form

 $c_1 + c_2 u = 0, \quad c_2 v = 1.$

Then $c_1 = -uv^{-1}$ and $c_2 = v^{-1}$. From (1) we get $-uv^{-1} + v^{-1}\beta_i \in \{0, 1\}$ for all i = 1, ..., r and $v^{-1}\beta_j = 1$ for all j = r + 1, ..., n. Hence $\beta_i = u$ or $\beta_i = u + v$ for all i = 1, ..., r and $\beta_j = v$ for all j = r + 1, ..., n.

If $\beta_i = u$ for all i = 1, ..., r, rearranging if necessary the eigenvalues of *B*, we get

$$A = \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} uI & 0 \\ 0 & vI \end{bmatrix}$$

Suppose that there exists $i \in \{1, ..., r\}$ such that $\beta_i = u + v$. If $\beta_i \neq 0$, then $u = \varepsilon^{-1}\beta_i$, $v = \varepsilon\beta_i$, and 6|k since $\beta_i, u, v \in \sqrt[k]{1}$. Rearranging if necessary the eigenvalues of *B*, we get

$$A = \begin{bmatrix} I & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} \varepsilon^{-1} \beta_i I & 0 & 0 \\ 0 & \beta_i I & 0 \\ 0 & 0 & \varepsilon \beta_i I \end{bmatrix},$$

and $c_1 = -uv^{-1} = \varepsilon$, $c_2 = v^{-1} = \varepsilon^{-1}\beta_i^{-1}$. If $\beta_i = 0$, then u = -v, $c_1 = 1$, $c_2 = v^{-1}$, and k is even. Rearranging if necessary the eigenvalues of B, we get

$$A = \begin{bmatrix} I & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} -vI & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & vI \end{bmatrix}.$$

417

Case 5: The linearly independent equations have the form

 $c_1 + c_2 u = 1$, $c_2 v = 1$.

Then $c_1 = 1 - uv^{-1}$ and $c_2 = v^{-1}$. From (1) we get $1 - uv^{-1} + v^{-1}\beta_i \in \{0, 1\}$ for all i = 1, ..., r and $v^{-1}\beta_j = 1$ for all j = r + 1, ..., n. Hence $\beta_i = u$ or $\beta_i = u - v$ for all i = 1, ..., r and $\beta_j = v$ for all j = r + 1, ..., n.

If $\beta_i = u$ for all i = 1, ..., r, rearranging if necessary the eigenvalues of *B*, we get

$$A = \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} uI & 0 \\ 0 & vI \end{bmatrix}.$$

If there exists $i \in \{1, ..., r\}$ such that $\beta_i = u - v$, then $\beta_i = \varepsilon^{-1}u$, $v = \varepsilon u$, and 6|k because $u, \beta_i, v \in \sqrt[k]{1}$. Rearranging if necessary the eigenvalues of *B*, we get

$$A = \begin{bmatrix} I & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} \varepsilon^{-1} u I & 0 & 0 \\ 0 & u I & 0 \\ 0 & 0 & \varepsilon u I \end{bmatrix}.$$

and $c_1 = 1 - uv^{-1} = \varepsilon$, $c_2 = v^{-1} = \varepsilon^{-1}u^{-1}$.

Case 6: The linearly independent equations have the form

 $c_2 u = 1, \quad c_2 v = 1 \qquad (u \neq v).$

This system is unsolvable.

This completes the proof. \Box

It seems interesting to show that k must be less than 3 when c_1 and c_2 are restricted to be real numbers.

Corollary 1. Let c_1 and c_2 be nonzero real numbers. Let A and B be nonzero complex matrices and $c_1A + c_2B = C$ satisfy $A^2 = A$, $B^{k+1} = B$, AB = BA, $A \neq B$, and $C^2 = C$. Then $B^2 = B$ or $B^3 = B$.

Proof. The case k = 1 was studied in [1] and it yields $B^2 = B$. So, we suppose k > 1. From Theorem 1, $c_1 = \overline{c_1}$, and $c_2 = \overline{c_2}$ we get $\{u, v\} = \{1, -1\}$. Hence, we deduce that $B^3 = B$ since B is diagonalizable. \Box

Acknowledgements

We thank the referees for their valuable comments. Their suggests permitted rewritten the article in a shorter and clearer form than the first version. Supported by Generalitat Valenciana under Project Grupos03/062.

References

418

- J.K. Baksalary, O.M. Baksalary, Idempotency of linear combinations of two idempotent matrices, Linear Algebra Appl. 321 (2000) 3–7.
- [2] J.K. Baksalary, O.M. Baksalary, G.P.H. Styan, Idempotency of linear combinations of an idempotent matrix and a tripotent matrix, Linear Algebra Appl. 354 (2002) 21–34.