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Abstract

This paper deals with idempotent matrices (i.e., A2 = A) and t-potent matrices (i.e., Bt =
B). When both matrices commute, we derive a list of all complex numbers c1 and c2 such that
c1A + c2B is an idempotent matrix. In addition, the real case is also analyzed.
© 2005 Elsevier Inc. All rights reserved.
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We consider the following problem: to describe all pairs (c1, c2) of nonzero com-
plex numbers for which there exist an idempotent complex matrix A (i.e., A2 = A)
and a t-potent complex matrix B (i.e., Bt = B) such that their linear combination
c1A + c2B is an idempotent matrix. This problem was studied in [1] and [2] for
t = 2 and t = 3, respectively. We solve it for all t > 1, but only if A and B commute.
We suppose that B has at least two distinct nonzero eigenvalues since otherwise
B = λP , where P 2 = P , that is, c1A + c2B = c1A + c2λP is a linear combination
of idempotent matrices studied in [1].
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Theorem 1. Let A and B be nonzero complex matrices and c1A + c2B = C satisfy
A2 = A, Bk+1 = B, AB = BA, and C2 = C. Assume that A and B are not simul-
taneously similar to A′ ⊕ 0 and B ′ ⊕ 0, respectively. Also assume that B has at
least two distinct nonzero eigenvalues and c1 /= 0 /= c2. Then there is a nonsingular
matrix S such that c1S

−1AS + c2S
−1BS = S−1CS is one of the following linear

combinations, in which u, v ∈ k
√

1, u /= v, and ε = 1
2 ±

√
3

2 i.

v

v − u

[
I 0
0 I

]
+ 1

u − v

[
vI 0
0 uI

]
=

[
0 0
0 I

]
,

−uv−1
[
I 0
0 0

]
+ v−1

[
uI 0
0 vI

]
=

[
0 0
0 I

]
,

(1 − uv−1)

[
I 0
0 0

]
+ v−1

[
uI 0
0 vI

]
=

[
I 0
0 I

]
,


I 0 0

0 I 0
0 0 0


 + v−1


−vI 0 0

0 0 0
0 0 vI


 =


0 0 0

0 I 0
0 0 I


 if 2|k,

ε


I 0 0

0 I 0
0 0 0


 + ε−1u−1


ε−1uI 0 0

0 uI 0
0 0 εuI


 =


0 0 0

0 I 0
0 0 I


 if 6|k.

Proof. By simultaneous similarity transformations with A and B, we make A =
Ir ⊕ 0. Then B = B1 ⊕ B2 since AB = BA. Both B1 and B2 are diagonalizable
because Bk+1 = B. By simultaneous similarity transformations with A and B that
preserve A = Ir ⊕ 0, we make B = diag(β1, . . . , βn), where all βk+1

i = βi , that is,
βi ∈ k

√
1 or βi = 0. Since A and B are diagonal, C = diag(γ1, . . . , γn) and C2 = C

implies γ1, . . . , γn ∈ {0, 1}.
Therefore,



1
...

1
0
...

0




c1 +




β1
...

βr

βr+1
...

βn




c2 =




γ1
...

γr

γr+1
...

γn




,
βi ∈ {0} ∪ k

√
1,

γi ∈ {0, 1}. (1)

Because βr+1, . . . , βn and c2 are all nonzero, γr+1 = · · · = γn = 1.
We can consider (1) as a system of linear equations with respect to c1 and c2.

Since this system is solvable, there are at most two linearly independent equations.
The number of independent equations equals 2 since A /= 0 and B has at least two
nonzero eigenvalues. Let us fix two linearly independent equations.

Case 1: The linearly independent equations have the form
c1 + c2u = 0, c1 + c2v = 0 (u /= v).

Then c2 = 0 and this case is impossible.
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Case 2: The linearly independent equations have the form

c1 + c2u = 1, c1 + c2v = 0.

Then c1 = v
v−u

and c2 = 1
u−v

. From (1) we get v
v−u

+ βi

u−v
∈ {0, 1} for all i =

1, . . . , r and
βj

u−v
= 1 for all j = r + 1, . . . , n. Hence βi = v or βi = u for all i =

1, . . . , r and βj = u − v for all j = r + 1, . . . , n.
If r = n, rearranging if necessary the eigenvalues of B, we get

A =
[
I 0
0 I

]
, B =

[
vI 0
0 uI

]
.

If r < n, then βj = εu, v = ε−1u, and 6|k because u = βj + v and u, βj , v ∈
k
√

1. Rearranging if necessary the eigenvalues of B, we get

A =

I 0 0

0 I 0
0 0 0


 , B =


ε−1uI 0 0

0 uI 0
0 0 εuI


 .

Case 3: The linearly independent equations have the form

c1 + c2u = 1, c1 + c2v = 1 (u /= v).

Then c2 = 0 and this case is impossible.
Case 4: The linearly independent equations have the form

c1 + c2u = 0, c2v = 1.

Then c1 = −uv−1 and c2 = v−1. From (1) we get −uv−1 + v−1βi ∈ {0, 1} for all
i = 1, . . . , r and v−1βj = 1 for all j = r + 1, . . . , n. Hence βi = u or βi = u + v

for all i = 1, . . . , r and βj = v for all j = r + 1, . . . , n.
If βi = u for all i = 1, . . . , r , rearranging if necessary the eigenvalues of B, we

get

A =
[
I 0
0 0

]
, B =

[
uI 0
0 vI

]
.

Suppose that there exists i ∈ {1, . . . , r} such that βi = u + v. If βi /= 0, then u =
ε−1βi , v = εβi , and 6|k since βi, u, v ∈ k

√
1. Rearranging if necessary the eigen-

values of B, we get

A =

I 0 0

0 I 0
0 0 0


 , B =


ε−1βiI 0 0

0 βiI 0
0 0 εβiI


 ,

and c1 = −uv−1 = ε, c2 = v−1 = ε−1β−1
i . If βi = 0, then u = −v, c1 = 1, c2 =

v−1, and k is even. Rearranging if necessary the eigenvalues of B, we get

A =

I 0 0

0 I 0
0 0 0


 , B =


−vI 0 0

0 0 0
0 0 vI


 .
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Case 5: The linearly independent equations have the form

c1 + c2u = 1, c2v = 1.

Then c1 = 1 − uv−1 and c2 = v−1. From (1) we get 1 − uv−1 + v−1βi ∈ {0, 1} for
all i = 1, . . . , r and v−1βj = 1 for all j = r + 1, . . . , n. Hence βi = u or βi =
u − v for all i = 1, . . . , r and βj = v for all j = r + 1, . . . , n.

If βi = u for all i = 1, . . . , r , rearranging if necessary the eigenvalues of B, we
get

A =
[
I 0
0 0

]
, B =

[
uI 0
0 vI

]
.

If there exists i ∈ {1, . . . , r} such that βi = u − v, then βi = ε−1u, v = εu, and
6|k because u, βi , v ∈ k

√
1. Rearranging if necessary the eigenvalues of B, we get

A =

I 0 0

0 I 0
0 0 0


 , B =


ε−1uI 0 0

0 uI 0
0 0 εuI


 ,

and c1 = 1 − uv−1 = ε, c2 = v−1 = ε−1u−1.
Case 6: The linearly independent equations have the form

c2u = 1, c2v = 1 (u /= v).

This system is unsolvable.
This completes the proof. �

It seems interesting to show that k must be less than 3 when c1 and c2 are restricted
to be real numbers.

Corollary 1. Let c1 and c2 be nonzero real numbers. Let A and B be nonzero com-
plex matrices and c1A + c2B = C satisfy A2 = A, Bk+1 = B, AB = BA, A /= B,

and C2 = C. Then B2 = B or B3 = B.

Proof. The case k = 1 was studied in [1] and it yields B2 = B. So, we suppose
k > 1. From Theorem 1, c1 = c1, and c2 = c2 we get {u, v} = {1, −1}. Hence, we
deduce that B3 = B since B is diagonalizable. �
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