JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 228, 436-448 (1998)
ARTICLE NO. AY976156

Existence of Nonoscillatory Solution of Second Order
Linear Neutral Delay Equation

M. R. S. Kulenovit and S. HadZiomerspahit

Department of Mathematics, University of Sarajevo, 71000 Sarajevo, Bosnia and

metadata, citation and similar papers at core.ac.uk

Submitted by Hal L. Smith

Received September 23, 1996

Consider the neutral delay differential equation with positive and negative coef-
ficients,

LX)+ px(t =)+ QO — ) — 0x(t — ) =0,

where p € R and
7€(0,00), 01,0, €[0,00) and Q;, 0, € C([fy, 00), RY).

Some sufficient conditions for the existence of a nonoscillatory solution of the
above equation expressed in terms of f°° sQ;(s)ds < 00, i =1, 2, and certain tech-
nical conditions implying that Q,(s) dominates Q,(s) are obtained for values of
p # £1. © 1998 Academic Press

1. INTRODUCTION

Consider the neutral delay differential equation of second order with
positive and negative coefficients,

2
D150 + pr(t = D] + QUO(E — 03) ~ Qa()x(t — ) =0, (1)

where p € R and

TE (07 OO)’ gy, 0y € [Oa OO) and Qla QZ € C([tOﬁ OO), R+)7 (2)

o0
/ 5Q;(s)ds < oo, i=1,2. 3)
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Recently, there has been a lot of activity concerning the oscillation
and asymptotic behavior of first order neutral differential equations (see
[2, 7-11]), directed mainly at the so-called linearized oscillation theory (see
[1] and [4] for a review of this theory and [3] and [4] for some applications).
This theory of the corresponding first-order neutral delay equation

d

E[X(t) + px(t = )] + 0y()x(t — 01) = Qp()x(t — 0,) =0 (E)
was restricted to the case p € (0, 1), and very recently some of the results
have been extended to the case p > 1 (see [12] and [13]). The only global
results with respect to p (that is, the results that hold for every p € R) can
be found in [5] and [12]. The second order neutral equation (1) received
much less attention, which is due mainly to the technical difficulties arising
in its analysis. See [1, 3, 4] for reviews of this theory. In particular, there is
no global result, with respect to p, for (1).

Here we obtain the first global result (with respect to p) in the noncon-
stant coefficient case, which is a sufficient condition for the existence of a
nonoscillatory solution for all values of p # £1.

Let m = max{r, o4, 05}. By a solution of Eqg. (1) we mean a function
y € C([t, — m, 00), R), for some t; > t,, such that y(¢) + py(t — 7) is twice
continuously differentiable on [#,, co) and such that Eq. (1) is satisfied for
>t

Assume that (2) holds, #;, > t,, and let ¢ € C([t;, — m, t;], R) be a given
initial function. Then one can easily see by the method of steps that Eq. (1)
has a unique solution y € C([t; — m, c0), R) such that

y(t) = (1) for,—m<t<ut.

As is customary, a solution of Eq. (1) is said to oscillate if it has arbitrarily
large zeros. Otherwise the solution is called nonoscillatory.
The following result is the special case of our main result.

COROLLARY. Consider the equation

2
d—[x(t) + px(t — 1)+ Q(1)x(t — o) =0,

dr?
where p € R, p # %1,
T7€(0,00), o €[0,00), and Qe C([ty, ), R"),
and

foo sQ(s)ds < oo.

Then this equation has a nonoscillatory solution.
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This result, which is important for its own sake, will be used in the future
to prove the linearized oscillation result for second order neutral equations
of the form

2

SR+ prtt = )]+ quf (et — 0,)) — @af (et~ 0)) = 0

for the values of parameter p # +1.

The condition (3) seems to be reasonable, since in the particular case
p =0, O,(t) =0, it becomes the well-known nonoscillatory result for delay
equations (see [6]).

2. MAIN RESULT

Our main result is the following:
THEOREM. Consider Eq. (1), subject to conditions (2) and (3). If
aQq(s) — O5(s) =0 foreveryt>T, and a >0, (4)
where p # £1 and T, is large enough, then (1) has a nonoscillatory solution.

Proof. The proof of this theorem will be divided into four claims, de-
pending on the four different ranges of the parameter p.

Claim 1. p € [0,1). Choose a 1, > t, sufficiently large such that

tl > maX{T]_, t0+0'}, (szax{’T, gy, 0'2}, (5)
[ s[Qis) + Q)] ds <1~ p. (6)
0= [ s[M0u(5) = My Q5(5)] ds < p —1+ M, @)
[ s[M:01(5) = Mo0x(s)] ds = 0 (8)
1
hold, where M, and M, are positive constants such that

1-M

1- M2 <p < 1

1+ M,

holds.
Let X be the set of all continuous and bounded functions on [#,, co) with
the sup norm. Set

A={xeX: My <x(t) <M, 1>t}
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Define a mapping 7: A — X as follows
L= p=px(t=7) 41 [ [Qu(s)x(s — 1) = Qa(s)x(s — 03)] ds

(Tx)(1)= n /t S[01()x(s — 1) — Oo()x(s — o) ds, iz h
(Tx)(1n), h=t=1t.

Clearly, Tx is continuous. For every x € 4 and ¢ > t;, using (4) and (7)
we get

(T)(0) = 1= p = pa(t = 1)+ [ [Qu()x(s = o) = Quls)x(s = )] ds
+ [ 5106055 — 02) — 0a(5)x(5 — )]s
<1-ptt [ [M01(5) - MiQy(s)] ds
+ [ S[M,0:() = M,0,()] ds
<1-p+ /too S[Mr01(s) — My 05(s)] ds
+ [ S[,0:() = M,0,()] ds
—1-p+ /:° S[My01(5) — My Qs (s)] ds
<M,.
Furthermore, in view of (4) and (8) we have
(T)(0) = 1= p— pa(t = 1)+ [ [Qu(x(s = o) = Quls)x(s — )] ds
+ [ 51016 = 02) = Qa(6)x(s - )] s
> 1= p—pMyt+t [ [Mi01(s) — My0a(s)] ds

+ /tls[MlQl(s) - MzQz(s)] ds

>1-p-pM,
> M,.
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Thus we proved that 74 C A. Since A is a bounded, closed, and convex
subset of X we have to prove that T is a contraction mapping on A4 to
apply the contraction principle.

Now, for x;, x, € A and ¢ > t; we have

|(Tx1)(1) = (T )(1)|

< plxa(t =) = xp(t = 7))

QNG = o)~ xs - )| ds
[ Qs = 7) — x5 - )| ds
+ [ 50u)als = 02) = xals — )| ds

t
+ [ $Qa(5)|xi(s = 72) = xas = )| ds
1
= plxi— x| + |x - x|

A [ 00+ Qao s+ [ {01 + a0 s

=l + [ o009+ Qo)) a5}

= q1]x1 — x5
where we used sup norm. This immediately implies that
| 731 = Txa | < g1 1 — %o,
where in view of (6), g; < 1, which proves that T is a contraction mapping.

Consequently T has the unique fixed point x, which is obviously a positive
solution of Eq. (1). This completes the proof of Claim 1.

Claim 2. p € (1,400). Chooseat, > T; > t, sufficiently large such that

t+ 7>ty + max{oy, 0y}, (9)
[ [0 + Q)] ds < p - 1. (10)
0= [ s[N0i) - MiQy()]ds <1=p+ pNp, (1)

and

[ 5INi0i(5) ~ N> 0a(5)] ds =, (12)

1
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where N; and N, are positive constants such that

1-N)p=1+N, and p(1-N,) <Ll

Let X be the set as in Claim 1. Set

A={xeX:N; <x(1) <Nyt > t,}.

Define a mapping T: A — X as follows:

(Tx)(1) =

1 1
1————x(t+71)
p p

t+ T
p

4 [ o095 = ) = Qo(5)x(s — )] s

1

(Tx)(t1), h=t=t

+

[ 101515 = o) = Qa()x(s = )] s

441

t>4

Clearly, Tx is continuous. For every x € A and ¢ > ¢, using (4) and (11)

we get

(Tx)(t) =1- % — %x(t +7)

t+7
p

+

1 pt+7
+ P /t1 s[Q1(s)x(s — 07) — Qa(8)x(s — 0y)] ds

1 o0
h - voos
1 +7
+;/t1 S[Nle(S)_NlQZ(S)] ds

=t- % - %{/:S[Nle(S) = N1Qy(s)] ds
t+7
#7100 - Mo o]

1 1 poo
=1+ / s[N201(s) — N1 O (5)] ds
< N,.

[ 10:)x(s = 1) = Qa(5)x(s = )] s
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Furthermore, in view of (12) we have

(TH(0) = 1=~ = Zx(t+7)

F T [ T00x(s = o) — Qalo)x(s - )] ds
+ % / s[Q1()x(s — a1) — Qy(5)x(s — 07)] ds
>1— % — % + tJIr)T /ti[MQl(S) — N, Q,(s)] ds
+ % /t:+Ts[N1Q1(S) - NzQz(S)] ds
>1-— l - &
p p
> Nj.

Thus we proved that 74 C A. Since A is a bounded, closed, and convex
subset of X we have to prove that T is a contraction mapping on A4 to
apply the contraction principle.

Now for x;, x, € A and ¢t > ¢, we have

|(Tx1)(2) — (Tx,)(1)]
< %le(t +7) —xy(t + 7)|

t+7

N[ 0t = o) - xals - o) ds
+ [ 0a0ia(s = 02) = wals = )|
n %[ [0 lnts = o) = wals - o) s
+7
#7500 rils = ) = wals - ) as |
ey = vl + g - ol
E X, — X, +— X, — X,
X [/t s[O1(s) + Oa(s)] ds + [ s[Q1(s) + Qa(s)] ds:|
= bl 1+ [ 5[0+ 00 ]

|
1

=42
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where we used sup norm. This immediately implies that

|Tx1 = Tea| < @231 - x2

b

where in view of (10), g, < 1, which proves that 7 is a contraction mapping.
Consequently T has the unique fixed point x, which is obviously a positive
solution of Eq. (1). This completes the proof of Claim 2.

Claim 3. p € (-1,0). Choose a #; > T; > t, sufficiently large so that
(5) and the inequalities

/:° S[Q1(s) + Qy(s)] ds < p+1 (13)
0= [ s[MQU(s) - MoQu(3)]ds = (p+ D(Ma=1)  (14)
hold, where the constants M5 and M, satisfy
0<M;<1<M,.
Let X be the set as in Claim 1. Set
A={xeX: My <x(t) <Myt > t}.

Define a mapping 7: A — X as follows:
1+p—px(t—r)

1 [T[Qu)x(s — 1) = Qo(s)x(s — )] ds
(Tx)(1) = .

S R (O R AR O (e ) L
(Tx)(t,), h<t<t.

Clearly, Tx is continuous. For every x € A and ¢ > t;, using (14) we get
(Ix)(t)=1+p— px(t —7)

170155 = 1) = Q)35 — 7)) ds

+ /tts[Ql(S)x(S —0y) — OQx(s)x(s — 03)]ds <1+ p — pM,
+ t/too [M401(s) — M30,(s)] ds + /tt s[M4Q1(s) — M30,(s)] ds

<l4+p-pM;+ f[oo S[M4Q1(S) - M3Q2(s)] ds

<l+p-pM;+(p+1)(M;—1)
=M4.
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Furthermore, in view of (4) we have
(Tx)(t)=1+p—px(t—7)

o T[01(5)x(s — 0y) — Qp(s)x(s — )] ds
+ 01(5)x(s — 1) — Qp(5)x(s — 0)] ds
> 14 p— pMy+t [ [MsQi(s) — MaQa(s)] ds

t
+ [ SIMaQ1(5) ~ MyQy(5)] ds
1
z14+p—pM;
> M;.
Thus, we proved that TA C A. Since A is a bounded, closed, and convex
subset of X, we have to prove that T is contraction mapping on A to apply
the contraction principle.
Now, for x,, x, € A and ¢ > ¢, we have

|(Tx1)(1) = (T )(1)]

=< —P‘xl(f —7) = x(t — T)i

#1700 ra(s = o) = xpls = )| ds
1 [ 0)nls = ) = x5 = )| ds
+ [ 50u(0)xa(s = ) = oo = ) s
+ [ 50x(5)bxs(s = ) = oo = ) s
= =pllv =l + =l ({010 + Q0] as)

=[x + x5 {—p + /too s[01(5) + Ou(s5)] ds}

= %Hxl — X1
where we used sup norm. This immediately implies that

>

|71 = Tz | < g3 1 — xo),
where in view of (13), g; < 1. This proves that T is a contraction mapping.

Consequently, 7' has the unique fixed point x, which is obviously a positive
solution of Eq. (1). This completes the proof of Claim 3.



Claim 4. p € (—o0, —1).
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Choose a t;, > T; > t, sufficiently large such

that (9) and the inequalities

0= [ S[NUQi() ~ NsQx(9)] ds = (p+1)(N5 — 1)

[ [0 + Q)] ds < —p -1 (15)

(16)

hold, where the positive constants N; and N, satisfy

0<N3<1§N4

Let X be the set as in Claim 1. Set

A:{XGXN3§x(t)§N4,tZt0}

Define a mapping T: A — X as follows

(Tx)(1) =

1 1
1+ ———x(t+71)
p p

t+T
p

+ % /:“Ts[Ql(S)X(S —ay) — Qy(s)x(s — 03)] ds, >4

+ /:i[Ql(S)X(s —0y) — Oy(s)x(s — 0y)] ds

(Tx)(1), h=t=1t.

Clearly, Tx is continuous. For every x € A and ¢ > t;, using (4), we get

(Tx)(t) =1+ % - %x(t +7)

+ T [T [05)x(s — 01) — Qals)x(s — )] ds
p t+71
1 I+7
+ P ft s[01(5)x(s — 01) — Qy(5)x(s — 03)] ds
N
< l+ p p + p /;+T[N3Q1(S) N4Q2(s)] ds
1 47
4+ = / S[N3Q1(s) — NyQ5(s)]ds
Py
<1+ l - &
p p

<N,.
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Furthermore, in view of (16) we have
(Tx)(t) =1+ 1 1x(z‘+ )
= - — = T
p p

t+ 7
p

+ /t:[Ql(S)X(S —ay) — Ox(s)x(s — 0y)] ds

1 7 p
[ S0 = o) = Qals)x(s — )] ds

i

1 N3 t+'T
142
p p p

1 +7
o [ sINaQi(s) = NsQs(5)] ds

I

/t‘_(:_[N4Q1(S) — N3Q2(s)] ds

1 N 1
> 1+ - ?3 + > le S[N4Q1(s) — N3O, (s)] ds

1 Ny 1
>14+ = - =24 Z(p+1)(N;—1)
p p P

== Ng.

Thus, we proved that T4 C A. Since A is a bounded, closed, and convex
subset of X, we have to prove that 7 is a contraction mapping on A to
apply the contraction principle.

Now, for x;, x, € A and ¢ > t; we have

|(Tx1)(1) = (Tx)(1)]

1
< = 4 m) = x(r 4 1)

t;r [/ti 01(s)|x1(s — 07) — x5(s — 0)| ds
+ /: Qz(S)|x1(S —0y) — Xy(s — 0-2)| dsj|
_%[/tH—r SQl(S)|X1(S —0y) — xy(s — O-l)i ds

[T 50u0ls - 00) = wols = ) s |

Y PR Y P
= p 1 2 p 1 2

A7 sl00)+ 2o as+ [ o000 + 0] as]
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- —%Hxl x| {1 + /:Os[Ql(S) + Qs (5)] ds}

= CI4HX1 — X2

>

where we used sup norm. This immediately implies that
| Tx1 = T | < |31 — 2.

In view of (15), g, < 1, which proves that T is a contraction mapping.
Consequently, T' has the unique fixed point x, which is obviously a positive
solution of Eq. (1). This completes the proof of Claim 4.

The proof of the theorem is complete.

Remark. Condition (4), which implies that Q;(¢) dominates Q,(¢), may
look too restrictive. This condition is actually affected by the choice of
the constants M; and N,, i = 1,2, 3,4. Choosing those constants in an
appropriate way, we can specify that this condition hold for a single value
of a; in this case this condition becomes very easy to check and use. For
instance, if My, = aMy,_1, Nop = aNy_q, kK = 1,2, then a = « in (4),
where a > 1 is a given number. Choosing « to be as close to 1 as we please,
we get very precise asymptotic behavior for the nonoscillatory solution we
constructed, since in all cases we have

My < x(t) < aMy;_y, k=1,2
or
Noyx_1 < x(1) < aNy_y, k=1,2.

We can also specify our choice of constants by choosing M; = M; = N; =
N; and M, = M, = N, = N,, which can be achieved by taking M; and
M, to satisfy 0 < M; < M, and M,?> > M. In this case in all four cases
we will have the same asymptotic behavior of nonoscillatory solution as
M, < x(t) < M, with the same value of a = M,/M;.

Combining the last two choices of constants, we get M; < x(t) < aM;
and a = a.

Finally, in the special case where Q,(¢) = 0, condition (4) is redundant
and the theorem holds under condition (3) only. This result is stated as the
Corollary.
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