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Abstract

By means of a variational approach we find new series representations both for well-known mathematical
constants, such as π and the Catalan constant, and for mathematical functions, such as the Riemann zeta
function. The series that we have found are all exponentially convergent and provide quite useful analytical
approximations. With limited effort our method can be applied to obtain similar exponentially convergent
series for a large class of mathematical functions.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

This paper deals with the problem of improving the convergence of a slowly convergent series
where a large number of terms is needed to reach the desired accuracy. This is a challenging
problem, which has been considered before (see, for example, [1–3]) and which has interesting
applications in many physical problems. As a matter of fact it is well known that perturbation
theory often gives series which converge very slowly or do not converge at all (one example is the
perturbative series for the quantum anharmonic oscillator, which was originally studied in [4]).

In this paper we propose a new method to accelerate some class of mathematical series, which
does not rely on a perturbative approach, i.e., on an expansion in some small natural parameter
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(a parameter present in the original expression). The method works by introducing an artificial
dependence in the formulas upon an arbitrary parameter, by identifying a new “perturbation” and
by then devising an expansion which can be optimized to give faster rates of convergence. The
details of how this works will be explained in depth in the next section. This procedure is well
known in physics and it has been exploited in the so-called “linear delta expansion” (LDE) and
variational perturbation theory (VPT) approaches [5–8].

We will show in the following that such techniques can be used to obtain exponentially con-
vergent series for some mathematical functions. A proof of convergence of the method is also
provided. The “flexibility” and simplicity of the method that we propose suggests that application
to wider classes of series could be found.

The paper is organized as follows: in Section 2 we first introduce the method and then use it
to obtain accelerate series for π and for the Catalan constant; in Sections 3 and 4 we obtain a
family of series representations for the Riemann and Hurwitz zeta functions which all converge
in a certain domain of the arbitrary parameter; finally in Section 5 we draw our conclusions.

2. Mathematical constants

Many fundamental mathematical constants can be expressed as infinite sums. In many cases
such series converge very slowly and a huge number of terms has to be calculated before reaching
the desired precision. Several examples of this are discussed, for example, in [1], where the
authors consider a particular rearrangement of the series which transforms them into rapidly
converging series. In the following we review two of the examples of [1], π and the Catalan
constant, and obtain new series representations for these constants which display a fast rate of
convergence.

We first consider the series

S = 4
∞∑

n=1

[
1

4n − 3
− 1

4n − 1

]
, (1)

which converges very slowly to π and it is known as Gregory’s formula. The sum of the to the
first 103 terms yields an approximate value of π , which only has the first 3 decimals correct.

Flajolet and Vardi [1] have shown that it is possible to convert series such as the one in Eq. (1)
into rapidly converging ones. Here we generalize the method of Flajolet and Vardi, introducing
an arbitrary parameter in the series. Such parameter is then tuned to accelerate the convergence
of the series itself by using the principle of minimal sensitivity (PMS) [9].

Theorem 1. The series

S = 4
∞∑

m=1

(
1

1 + λ

)m+1 m∑
k=1

(
m

k

)
λm−k 3k − 1

4k+1
ζ(k + 1)

converges to π for λ > −1/2, with λ real.

Proof. We write the series of Eq. (1) in the equivalent form

S =
∞∑

n=1

1

n

1

1 + λ

(
1

1 − ( 3
4n

+ λ
)
/(1 + λ)

− 1

1 − ( 1
4n

+ λ
)
/(1 + λ)

)
, (2)

with an arbitrary parameter λ �= −1.
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Provided that∣∣∣∣
3

4n
+ λ

1 + λ

∣∣∣∣ < 1 and

∣∣∣∣
1

4n
+ λ

1 + λ

∣∣∣∣ < 1

for all n � 1, i.e., λ > −1/2, we can expand Eq. (2) as

S = 4
∞∑

n=1

1

4n

∞∑
m=1

(
1

1 + λ

)m+1 m∑
k=1

(
m

k

)
λm−k

[(
3

4n

)k

−
(

1

4n

)k]
.

As the series in m and n contain only positive terms, we can perform the series over n and
obtain the result

S =
∞∑

m=1

(
1

1 + λ

)m+1 m∑
k=1

(
m

k

)
λm−k 3k − 1

4k
ζ(k + 1). � (3)

Remark 2. The series of Eq. (3) for λ = 0 coincides with the result of Flajolet and Vardi [1]:

S(FV) =
∞∑

m=1

3m − 1

4m
ζ(m + 1) (4)

and converges geometrically to π .

Notice that Eq. (3) defines a family of series converging to π as long as λ > −1/2. Clearly
the dependence upon λ in Eq. (3) is artificial and shows up only when a finite number of terms
is considered. If we set SN(λ) to be the partial series of Eq. (3) the dependence upon λ in SN(λ)

then disappears in the limit N → ∞.
For fixed N we evaluate the partial sum at the points where

dSN(λ)/dλ = 0,

since there the expression is less sensitive to changes of the arbitrary parameter λ, a property
which shares with the full series (3). This is called principle of minimal sensitivity (PMS) [9]
and provides an equation which, once solved at a given order, provides an optimal value of λ for
a fixed partial sum SN(λ).

For S2(λ) we obtain

λ(1) = − 3

π2
ζ(3) ≈ −0.365381 > −1/2. (5)

Remark 3. The series of Eq. (3) converges geometrically to π . We can estimate the rate of
convergence by approximating the mth term in the series with

sm =
(

1

1 + λ

)m+1 m∑
k=1

(
m

k

)
λm−k 3k − 1

4k

= 1

(1 + λ)m+1

[
(λ + 3/4)m − (λ + 1/4)m

] ≈ m

(
λ + 3/4

1 + λ

)m

. (6)

Using the PMS value of Eq. (5) we obtain sm ≈ 1.65−m. This improves the rate sm ≈ 1.33−m

of the series of Flajolet and Vardi (4).
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Fig. 1. The error obtained using the partial sum of Eq. (3) over the first 10, 20 and 30 terms respectively as a function
of λ.

In Fig. 1 we display the partial sums of Eq. (3) with 10, 20 and 30 terms as a function of λ:
the locations of λ(1) and λ = 0 are marked with vertical lines. It turns out that λ(1) is an excellent
approximation to the exact minimum of the partial sum even for large values of terms.

In Fig. 2 we plot the error obtained by using Eq. (3) with λ given by Eq. (5) and by using
the formula of Flajolet and Vardi, Eq. (4). Our series converges exponentially more rapidly than
Eq. (4).

We now consider another series, which was also considered in [1]. The series

S =
∞∑

n=1

[
1

(4n − 3)2
− 1

(4n − 1)2

]
(7)

is known to slowly converge to the Catalan constant, G ≈ 0.9159656.

Theorem 4. The series defined as

S =
∞∑

m=1

(
1

1 + λ

)m+1 m∑
k=1

(
m

k

)
λm−kk

3k−1 − 1

4k+1
ζ(k + 1), (8)

converges to the Catalan constant for any λ > −1/2, with λ real.

Proof. We can rewrite Eq. (7) as

S = lim
a→0

d

da
S̃(a) (9)

where

S̃(a) ≡
∞∑[

1

(4n − 3 − a)
− 1

(4n − 1 − a)

]
.

n=1



P. Amore / J. Math. Anal. Appl. 323 (2006) 63–77 67
Fig. 2. The error obtained using the partial sum of Eq. (3) with λ = 0 and λ = λ(1) as a function of the number of terms
in the sum.

Note that this series converges uniformly in a so we can differentiate term by term. We can
apply Theorem 1 to S̃(a) and obtain

S̃(a) =
∞∑

m=1

m∑
k=1

(
m

k

)
λm−k

(1 + λ)m+1

(3 + a)k − (1 + a)k

4k+1
ζ(k + 1). (10)

As the series (10) converges uniformly in a, the proof is complete once the limit (9) is evalu-
ated. �

Notice that the series of Theorem 4 reduces to the formula given in [1] for λ = 0:

S(FV) =
∞∑

m=1

m
3m−1 − 1

4m+1
ζ(m + 1). (11)

Remark 5. The series defined as

S = 1

3

∞∑
m=1

m∑
k=1

1

23+2k

λm−k
0

(1 + λ0)m+2

(
m

k

)
ζ(k + 1)

× [−((
3 + 3k

)
k(1 + λ0)

) − 3
(−1 + 3k

)
(λ0 − m)

]
(12)

converges to the Catalan constant, where λ0 ≡ − 3
π2 ζ(3).

This follows from Eq. (10) for S̃(a) applying the PMS

dS̃(a)

dλ
= 0.

The optimal value of λ taking the first two terms in the series
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Fig. 3. |S(N) − G| as a function of the number of terms in the sum using Eq. (7) (diamonds), Eq. (11) (circles), Eq. (8)
(pluses) and Eq. (12) (triangles).

λ(1) = − 3

π2
ζ(3)

(
1 + a

2

)
, (13)

and Eq. (12) is obtained.

In Fig. 3 we compare the different approximations, showing that Eq. (8) (with λ = λ(1)) and
Eq. (12) have a greater rate of convergence then the corresponding equation in [1]. Equation (12)
provides a slightly better approximation.

Remark 6. The accelerated series (8) and (12) converge geometrically to the Catalan constant.
For example, the mth term of the series (8) behaves as

sm ≈ m

16(1 + λ)m+1

[
(λ + 3/4)m−1 − (λ + 1/4)m−1] ≈ m

(
λ + 3/4

1 + λ

)m

. (14)

Taking λ = λ0 we have sm ≈ m1.65−m.

It is clear that these results can be generalized to sums of the form

Sn =
∞∑

n=1

[
1

(4n − 3)n
− 1

(4n − 1)n

]
. (15)

3. The Riemann zeta function

In this section we apply the same strategy outlined above to the calculation of the Riemann
zeta function [10], and prove the following theorem.

Theorem 7. A convergent series for the Riemann zeta function, which is valid for �(s) > 0, with
the exclusion of s = 1, is
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ζ(s) = 1

1 − 21−s

∞∑
k=0

k∑
j=0

(
k

j

)
λk−j

(1 + λ)k+1

(−1)j

(1 + j)s
(16)

for λ > 0.

Proof. We use the integral representation

ζ(s) = 1

1 − 21−s

1

Γ (s)

1∫
0

logs−1 1
x

1 + x
dx, (17)

valid for �(s) > 0, and write it as

ζ(s) = 1

1 − 21−s

1

Γ (s)

1∫
0

1

1 + λ

logs−1 1
x

1 + x−λ
1+λ

dx, (18)

where λ is an arbitrary parameter introduced by hand. The condition
∣∣ x−λ

1+λ

∣∣ < 1 is fulfilled uni-
formly for all x ∈ [0,1] provided that λ > 0; in this case one can expand the denominator in
powers of

(
x−λ
1+λ

)
and obtain

ζ(s) = 1

1 − 21−s

1

Γ (s)

∞∑
k=0

1

(1 + λ)k+1

1∫
0

(−x + λ)k logs−1 1

x
dx

= 1

1 − 21−s

∞∑
k=0

k∑
j=0

(
k

j

)
λk−j

(1 + λ)k+1

(−1)j

(1 + j)s
, (19)

which completes our proof. �
Remark 8. The series (16) for λ = 1,

ζ(s) = 1

1 − 21−s

∞∑
k=0

1

2k+1

k∑
j=0

(
k

j

)
(−1)j

(1 + j)s
, (20)

has been first conjectured by Knopp around 1930 [11], and later proved by Hasse [12] and redis-
covered more recently by Sondow [13].

Although λ appears explicitly in the series (16), the series itself does not depend upon λ, as
long as λ > 0. However the partial sums ζ (K)(λ, s), defined as

ζ (K)(λ, s) ≡ 1

1 − 21−s

K∑
k=0

k∑
j=0

(
k

j

)
λk−j

(1 + λ)k+1

(−1)j

(1 + j)s
, (21)

must show a dependence upon λ. However such dependence may be minimized by applying the
PMS, i.e.,

d
ζ (K)(λ, s) = 0. (22)
dλ
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Fig. 4. The error |(ζ (K)(s) − ζ(s))/ζ(s)| obtained by using Eq. (23) to different orders.

To lowest order, which corresponds to sum up to K = 1, one has that λ
(1)
PMS = 2−s and the

corresponding formula is found to be

ζ(s) = 1

1 − 21−s

∞∑
k=0

1

(1 + 2−s)k+1

k∑
j=0

(
k

j

)
2−s(k−j) (−1)j

(1 + j)s
. (23)

Equation (23) is an exact series representation of the Riemann zeta function: this simple for-
mula yields an excellent approximation to the zeta function as it can be appreciated by looking
at Fig. 4, where we plot the error |(ζ (K)(s) − ζ(s))/ζ(s)| obtained by using Eq. (23) to different
orders, for 1 < s � 10. It is remarkable that this simple analytical formula works quite well even
in the proximity of s = 1, where the ζ function diverges.

The rate of convergence of the series is greatly improved by applying the PMS to higher
orders.1 Although it is possible to find the analytical solution to the PMS equation only to low or-
ders, we have calculated λ numerically in Fig. 5 for s = 2,3,4,5. For example, to order K = 101
we find that λ

(101)
PMS (2) = 0.482, λ

(101)
PMS (3) = 0.467, λ

(101)
PMS (4) = 0.452 and λ

(101)
PMS (5) = 0.439.

Remark 9. The thin solid lines correspond to the best fit of λ with the function

λFIT(K) = κ1 + κ2K logK

κ3K + (κ4 + K) logK

for K up to 101. The coefficients κi for s = 2,3,4,5 can be found in Table 1.

In Fig. 6 we display the dependence upon λ of the partial sums over the first K = 11,31,51
terms in the case of ζ(3). The vertical line corresponds to the location of λ

(101)
PMS . In Fig. 7 we plot

1 A real solution is found only for odd values of K .
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Fig. 5. The optimal parameter λPMS for s = 2,3,4,5 calculated to different orders.

Fig. 6. Dependence upon the variational parameter of |(ζ (K)(s) − ζ(s))/ζ(s)| with K = 11,31,51.

Table 1
Coefficients of the best fit of the λPMS as a function of K

s κ1 κ2 κ3 κ4

2 0.201 0.318 0.416 3.9396
3 0.0655 0.461 0.415 5.791
4 0.0035 0.514 0.288 8.283
5 −0.0245 0.515 0.0031 11.31



72 P. Amore / J. Math. Anal. Appl. 323 (2006) 63–77
Fig. 7. Difference |ζ (K)(3) − ζ(3)| as a function of the number of terms in the sum.

the difference |ζ (K)(3) − ζ(3)| using Eq. (16) with λ = λ
(K)
PMS (solid line), λ = 0 (dashed line)

and the series representation

ζ(3) =
∞∑

n=0

1

(n + 1)3
(24)

which corresponds to the dotted line in the plot. This last series converges quite slowly and a
huge number of terms (of the order of 1025) is needed to obtain the same accuracy that our series
with λ

(K)
PMS reaches with just 102 terms.

Remark 10. We now define

cK(λ, s) ≡
K∑

j=0

(
K

j

)
λK−j

(1 + λ)K+1

(−1)j

(1 + j)s
, (25)

which we can write as

cK(λ, s) =
K∑

j=0

(
K

j

)
λK−j

(1 + λ)K+1

(−1)j

Γ (s)

∞∫
0

e−(1+j)t t s−1 dt

= 1

Γ (s)

∞∫
0

e−t t s−1 (λ − e−t )K

(1 + λ)K+1
dt. (26)

For λ > 1 we have the inequality

∣∣cK(λ, s)
∣∣ � 1

Γ (s)

∞∫
e−t t s−1 λK

(1 + λ)K+1
dt = λK

(1 + λ)K+1
. (27)
0
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For 0 < λ < 1 we can split the integral in the two regions 0 < t < log(1/λ) and t > log(1/λ)

and obtain the inequality

∣∣cK(λ, s)
∣∣ � 1

Γ (s)

log(1/λ)∫
0

e−t t s−1 (λ − e−t )K

(1 + λ)K+1
dt + 1

Γ (s)

∞∫
log(1/λ)

e−t (K+1)t s−1

(1 + λ)K+1
dt

� λK

(1 + λ)K+1

(
1 − Γ (s, log(1/λ))

Γ (s)

)

+ 1

(1 + λ)K+1

Γ (s, (K + 1) log(1/λ))

Γ (s)

1

(K + 1)s
, (28)

where Γ (a, x) is the incomplete gamma function. Using the asymptotic behavior of Γ (a, x) (see
[14, 6.5.32]),

Γ (a, x) ≈ xa−1e−x,

we can estimate the rate of convergence to be

∣∣cK(λ, s)
∣∣ � λK

(1 + λ)K+1

[
1 − λ

Γ (s)

(
log

1

λ

)s−1(
1 − 1

1 + K

)]
, (29)

which is essentially geometric.
Notice that the K th term of series of Eq. (20) decays with a much slower rate, given by

c
(KHS)
K ≈ 2−K. (30)

If s is on the critical line, i.e., s = 1/2 + iτ , we have

ζ

(
1

2
+ iτ

)
= (2)−1/2+iτ

2−1/2+iτ − 1

∞∑
k=0

k∑
j=0

(
k

j

)
λk−j

(1 + λ)k+1

(−1)j

(1 + j)1/2+iτ
. (31)

In Fig. 8 we have plotted the error (in percent) over the real part of the zeta function, i.e.,

Ξ ≡ �
[
ζ (K)

( 1
2 + iτ

) − ζ
( 1

2 + iτ
)

ζ
( 1

2 + iτ
) ]

× 100,

as a function of the number of terms considered in the sum of Eq. (31). We use τ = 50. The solid
line corresponds to Eq. (20), whereas the dashed line corresponds to using our formula, Eq. (31),
with λ = 0.3.

4. The generalized Hurwitz zeta function

We now turn our attention to the generalized Hurwitz zeta function given by

ζ (s, u, ξ) =
∞∑

n=0

1

(nu + ξ)s
, (32)

which includes as special cases both the Riemann (ζ (s,1,1)) and the Hurwitz (ζ (s,1, ξ)) zeta
functions.

We prove the following theorem:
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Fig. 8. Ξ ≡ �[(ζ (K)( 1
2 + iτ ) − ζ( 1

2 + iτ ))/ζ( 1
2 + iτ )] × 100, as a function of the number of terms considered in the

sum of Eq. (31). The dashed curve is obtained using λ = 0.3.

Theorem 11. Let s and u be real numbers such that su > 1; then

ζ (u, s, ξ) = 1

ξ s
+

∞∑
k=0

Γ (k + s)

Γ (s)
Ψk(λ,u, s, ξ) (33)

where

Ψk(λ,u, s, ξ) ≡
k∑

j=0

(−ξ)j

j !(k − j)!
λ2(k−j)

(1 + λ2)s+k
ζ(us + uj) (34)

and λ2 > (ξ − 1)/2 (ξ > 0).

Proof. For us > 1 the series ζ (u, s, ξ) converges; we use the identity

ζ (u, s, ξ) = 1

ξ s
+

∞∑
n=1

1

nsu

1

(1 + λ2)s

1

(1 + Δ(n))s
, (35)

where

Δ(n) ≡ ξ/nu − λ2

1 + λ2
. (36)

Provided that λ2 > (ξ − 1)/2 and ξ > 0, |Δ(n)| < 1 and therefore by the binomial theorem

1

(1 + Δ(n))s
=

∞∑
k=0

Γ (k + s)

Γ (s)k!
[−Δ(n)

]k
.

Using this result in Eq. (35) we have
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ζ (u, s, ξ) = 1

ξ s
+

∞∑
n=1

∞∑
k=0

Γ (k + s)

Γ (s)k!
k∑

j=0

(
k

j

)
λ2(k−j)

(1 + λ2)s+k

(−ξ)j

nu(s+j)
. (37)

As the sum over n and k converges absolutely, we can sum over n and obtain

ζ (u, s, ξ) = 1

ξ s
+

∞∑
k=0

Γ (k + s)

Γ (s)

k∑
j=0

(−ξ)j

j !(k − j)!
λ2(k−j)

(1 + λ2)s+k
ζ
(
u(s + j)

)
,

which completes our proof. �
Having proved our fundamental result, Eq. (33), we now discuss some of the properties of

the new series. We first stress that (33) is independent of the arbitrary parameter λ, although
λ appears explicitly in the expression. This happens because Eq. (32) is independent of λ and
it has just been proved that our new series, Eq. (33) converges to Eq. (32) provided that λ2 >

(ξ − 1)/2 and ξ > 0. In other words we can say that Eq. (33) describes a family of series, each
corresponding to a different value of λ and each converging to the same series, Eq. (32).

Consider the partial sum

ζ (N)(λ,u, s, ξ) = 1

ξ s
+

N∑
k=0

Γ (k + s)

Γ (s)
Ψk(λ,u, s, ξ)

obtained by restricting the infinite sum to the first N + 1 terms. Obviously ζ (N)(λ,u, s, ξ) de-
pends upon λ as a result of having neglected an infinite number of terms. We can use this feature
to our advantage and fix λ so that the convergence rate of the series is maximal.

The proper value of λ is chosen using the PMS, which amounts to find λ fulfilling the equation

d

dλ
ζ (N)(s, λ) = 0. (38)

A straightforward mathematical interpretation of this condition is that the value of λ comply-
ing with this equation also minimizes the difference [15]

Ξ ≡ [
ζ (u, s, ξ) − ζ (N)(λ,u, s, ξ)

]2
. (39)

To lowest order, which corresponds to choosing N = 1, one obtains the optimal value

λ
(1)
PMS =

√
ξ

ζ(u(1 + s))

ζ(su)
, (40)

which can be used as long as λ2
PMS > (ξ − 1)/2. Notice that, since λPMS depends upon ξ then

ζ (N)(λPMS, u, s, ξ) will not be a polynomial in ξ . On the other hand, if we had chosen λ = 0, then
ζ (N)(0, u, s, ξ) would be a polynomial of N th order in ξ . In that case however the convergence of
the series would be strictly limited to the region ξ < 1. For this reason we will refer to our accel-
erated series corresponding to λPMS and to λ = 0 as being “nonperturbative” and “perturbative,”
respectively.

In Fig. 9 we plot the difference |ζ (K)(2, 3
5 ,1) − ζ (2, 3

5 ,1)| as a function of the number of
terms in the sum of Eq. (32). In this case su = 6/5 is close to 1 and (32) converges very slowly.
The horizontal lines are the values obtained by using Eq. (33) with the optimal value given in
Eq. (40).
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Fig. 9. Difference |ζ (K)(2, 3
5 ,1) − ζ (2, 3

5 ,1)| as a function of the number of terms in the sum.

5. Conclusions

The variational approach that we have described in this paper allows in many cases to convert
a slowly converging series into a series which converges exponentially. In most cases the results
that are obtained by following this approach are explicit. Although we have considered only a
few examples, we believe that it should be possible to apply this method to a larger class of series.
Indeed the results of [16,17], which focus on the calculation of the period of a classical oscillator,
and of [18], which focuses on the calculation of the spectrum a quantum oscillator in the WKB
approximation, provide a similar series representation for elliptic functions. In [19] the author
has also applied the accelerated series for the generalized Hurwitz zeta function obtained in the
present paper to the calculation of bosonic one loop integrals at finite temperature in quantum
field theory. The author and collaborators are presently applying the results of this paper to the
calculation of the Casimir energy for massive scalar fields between parallel plates [20]. In our
opinion, the strongest results of the present paper are Eqs. (16) and (23); it remains to study the
possible uses of such equations both in mathematical and physical problems (for example, these
equations could be used to further improve the rate of convergence of series such as the one in
Eq. (4)).
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