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Abstract

Absolutely or totally convex modules are a canonical generalization of absolutely or countably
absolutely convex sets in linear spaces. There are canonical connections between the category
of absolutely convex modules and the category of Saks spaces, each of which is given by a pair
of adjoint functors. Corresponding results hold for totally convex modules. c© 2001 Elsevier
Science B.V. All rights reserved.
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0. Introduction

Absolutely convex modules were introduced in [11,12], where they are still called
�nitely totally convex spaces. For a non-empty set M let M (N) denote the set of all
�nite sequences of elements of M . We de�ne 
ac := {�̂ | �̂ ∈ K(N) and ∑∞

i=1 |�i| ≤ 1},
where here and in the following, for �̂=(�1; : : : ; �n), the formal in�nite sum

∑∞
i=1 �i is

introduced as a convenient notation as
∑∞

i=1 �i =
∑n

i=1 �i and is often written simply
as
∑

i �i. An absolutely convex module C is a non-empty set together with a fam-
ily of operations �̂C :C(N) → C, for any �̂ ∈ 
ac. Writing

∑
i �ici :=

∑∞
i=1 �ici :=∑n

i=1 �ici := �̂C(ci; : : : ; cn) for �̂ = (�1; : : : ; �n) ∈ 
ac and (c1; : : : ; cn) ∈ C(N), these
operations are, moreover, required to satisfy the following set of equations:∑

i

�ikci = ck ; (AC1)
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∑
i

�i

(∑
k

�ikck

)
=
∑
k

(∑
i

�i�ik

)
ck (AC2)

for any �̂; �i=(�ik |1 ≤ k ≤ mi) ∈ 
ac and ci ∈ C; i ∈ N, for which the sums are de-
�ned. Together with absolutely a�ne mappings, i.e. mappings preserving these formal
sums f(

∑n
i=1 �ici)=

∑n
i=1 �if(ci); category AC of absolutely convex modules. Abso-

lutely convex modules are a natural generalization of absolutely convex sets in linear
spaces, they reect the algebraic component of convexity. Here and in the following
K denotes the �eld R of real or C of complex numbers. So actually one talks about
two categories, namely the categories of real or complex absolutely convex modules,
respectively.
A totally convex module C (cf. [11,12]) is de�ned in an analogous manner as

a non-empty 
-algebra, where 
 := {�̂ | �̂ = (�i | i ∈ N); �i ∈ K;
∑∞

i=1 | �i| ≤ 1};
satisfying the same equations (AC1), (AC2). This yields the category TC of totally
convex modules and totally a�ne mappings, i.e. mappings preserving these formal
sums f(

∑∞
i=1 �ici) =

∑∞
i=1 �if(ci) (cf. [3,8]).

If E is a normed K-vector space, its unit ball ©(E) := {x | x ∈ E; ||x|| ≤ 1} is an
absolutely convex set and hence an absolutely convex module which is denoted by
©̂ac(E): This induces a full and faithful functor ©̂ac : Vec1 → AC; Vec1 the category
of normed K-vector spaces and linear contractions. In the same way, the unit ball ©(E)
of a K-Banach space E induces a full and faithful functor ©̂ : Ban1 → TC; Ban1 the
category of K-Banach spaces and linear contractions. The close connection between
the theory of absolutely convex modules and the theory of normed vector spaces, or
the theory of totally convex modules and the theory of Banach spaces, respectively, is
shown by the fact that both functors have a left adjoint S0 : AC→ Vec1, S1 : TC→
Ban1, which means that any absolutely (totally) convex module generates a unique
normed vector (Banach) space (cf. [11,12]).
The existence of S0 and S1 is guaranteed by a general theorem and a constructive

proof of existence by “blowing up” is given in [11]. Because of their importance in
establishing a close connection between functional analytic theories and purely algebraic
ones it is of interest to get information about the structure of S0(C) (S1(C)) for an
absolutely (totally) convex module C. In the following a method used by Semadeni in
[15,16], to prove the existence of a universal compacti�cation of a bounded convex set
in a locally convex vector space and, in the theory of (approximate) order unit Banach
spaces (cf. [17, 9.11,9.13]), is used to give a new existence proof for S0 and S1. One
forms the vector space of absolutely or totally a�ne mappings, respectively. A�ne
mappings were already used to prove the existence of the corresponding functor S for
convex modules in [13] and superconvex modules in [10]. This approach yields more
than an existence proof for S0 and S1, namely a canonical functor S∗ to the category
of Saks spaces [2].
For topological totally convex spaces, S∗ turns out to be a left adjoint. In [6,7] Kleisli

and K�unzi have used a closely related method for proving the existence of S1(C) for
their topological totally convex modules with the strong topology.
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1. The associated Banach space

The main method used in the following is dualization. To illustrate its usefulness for
absolutely convex modules and also for other problems, we give at �rst a short proof
for the reection of AC into the subcategory of singular AC-modules.
For an absolutely convex module C let AC(C;K) denote the (hom-) set of all

absolutely a�ne morphisms from C to K. With the pointwise operations AC(C;K) is
a K-vector space and let AC∗(C;K) be its dual space. �̃C : C → AC∗(C;K) is de�ned
by �̃C(x)(f) := f(x); for x ∈ C; f ∈ AC∗(C;K). An absolutely convex module C is
called singular (cf. [12, 14.10]) if the “norm” of C is trivial. It was proved in [12]
that the singular absolutely convex modules coincide with the injective objects of AC
and with the K-vector spaces. The full subcategory ACsing of singular convex modules
is ext-mono-coreective ([12, 14.11]). Writing R(C) for the subspace of AC∗(C;K)
generated by �̃C(C) and �C for the co-restriction of �̃C to R(C) one gets the

Proposition 1.1. For C ∈ AC; �C :C→R(C) is the reection of AC into ACsing.
ACsing is not an epi-reective subcategory of AC.

Proof. Let ’ : C → V be a morphism in AC and V be singular i.e. a K-vector space.
�C(x) = �C(y), for x; y ∈ C; ’(x) 6= ’(y) would imply the existence of a � ∈ V ∗; the
dual of V , with �’(x) 6= �’(y), which is a contradiction. Hence, there exists a unique
AC-morphism �’0 : �C(C)→ V with ’= �’0�C: �’0 can be extended canonically to a
vector space homomorphism, i.e. an AC-morphism, ’0 : R(C)→ V with ’=’0�C ·’0
is obviously uniquely determined by ’ and this equation.
If ACsing were an epi-reective subcategory of AC it would be closed under taking

subobjects, which would imply that an absolutely convex subset of a vector space is
a vector space.

De�nition 1.2. For an absolutely convex module C de�ne

A�0(C) := {f |f ∈ AC(C;K) and f bounded}:
A�0(C) is a vector subspace of AC(C;K) and a Banach space with the norm

||f||∞ := sup{|f(c)| | c ∈ C}; f ∈ A�0(C):

For a topological K-vector space E, E′ will denote the topological dual of E, i.e. the
space of all continuous linear forms on E. For a normed space E, E′ is a Banach space
with the norm || ||∞.
If E ∈ Vec1, the category of normed K-vector spaces and linear contractions, the

unit ball ©(E) of E is an absolutely convex subset of E, hence an object of AC,
which will be denoted by ©̂ac(E): This induces a covariant, full and faithful functor
©̂ac : Vec1 → AC (cf. [11]).
For C ∈ AC, de�ne �̃C :C → (A�0(C))′ by �̃C(x)(f) := f(x); x ∈ C; f ∈ A�0(C):

Then �̃C is an AC-morphism. �̃C(C) is an absorbent, absolutely convex subset of the
subspace S0(C) generated by �̃C(C) in (A�0(C))′.
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Proposition 1.3 (cf. Pumpl�un and R�ohrl [11, 7.10]). With the Minkowski functional
|| || of �̃C(C); S0(C) is a normed K-vector space and induces a functor S0 : AC →
Vec1. S0 is left adjoint to ©̂ac with front adjunction �

0
C : C → ©̂ac ◦ S0(C); where �0C

denotes the co-restriction of �̃C to S0(C). Moreover;
◦
©(S0(C))⊂ �0C(C)⊂©(S0(C))

holds; where
◦
© denotes the open unit ball.

Proof. One has S0(C) = K�̃C(C) and || || is a norm, because �̃C(C) is absolutely
convex and bounded in (A�0(C))′ with respect to || ||∞: If E ∈ Vec1 and ’ : C →
©̂ac(E) is an AC-morphism one shows, using the Hahn–Banach Theorem, as in the
proof of 1:1 that there is an AC-morphism ’̃ : �̃0C(C) → ©̂ac(E) which can be
extended uniquely to a linear mapping ’0 : S0(C) → E. As �0C(C)⊂©(S0(C)) and
�0C(C) is dense in ©(S0(C)), because of

◦
©(S0(C))⊂ �C(C); ’0(©(S0(C))⊂©(E)

follows, i.e. ’0 is a linear contraction. ’0 is uniquely determined by ’ and
’= ©̂ac(’0)�

0
C for the same reason.

If X is a bounded subset of a Banach space B, the smallest totally convex subset of B
containing X , the totally convex closure totconv(X ) exists. It may be described as the
intersection of all totally convex subsets containing X or as {b ∈ B | b=∑∞

i=1 �ixi; �̂=
(�i | i ∈ N) ∈ 
; xi ∈ X; i ∈ N}. Totally convex subsets of arbitrary vector spaces
may prove useful in functional analysis.

De�nition 1.4. A set M 6= ∅ is called a totally convex set, if it is a subset of a vector
space E and a totally convex module, such that for any �̂ ∈ 
 with �nite support, i.e.
�i = 0 for i¿n for some n,

∞∑
i=1

�ixi =
n∑
i=1

�ixi

holds, if xi ∈ M , i ∈ N, where the sum on the right-hand side of this equation is just
the ordinary (absolutely convex) sum in E.

The totally convex sets are up to isomorphism, exactly the totally convex modules,
which can be embedded into a vector space by an injective AC-morphism. A necessary
condition for an absolutely convex subset of a vector space to be a totally convex subset
is linear boundedness. Using a method of Rod�e with which he proved the corresponding
result for convex sets in [14], one can show that an absolutely convex set has at most
one structure of a totally convex set. The following result should prove useful and is
stronger than Lemma 1:2 in [2] for Banach balls.

Lemma 1.5. If C ⊂E is a totally convex subset of a vector space E; then the subspace
E0 := KC is a Banach space with the Minkowski functional of C as norm.

Proof. (cf. Pumpl�un and R�ohrl [11, 7.4]): We may assume E0 = E. For x ∈ E,
||x|| := inf{�¿ 0 | x ∈ �C}
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is the Minkowski functional, i.e. a seminorm. In order to see that || || is a norm
consider a ∈ E with ||a||= 0. Then, for any n ∈ N, there is a cn ∈ C with a= 2−ncn.
With c0 := a, we introduce the “telescopic” formal totally convex sum

z :=
∞∑
n=1

1
2n+1

cn−1:

As cn+1 = 2cn, n ∈ N, the computational rules 2.4 of Pumpl�un and R�ohrl [11] imply

z =
1
2

(
1
2
a+

1
2

∞∑
n=2

1
2n−1

cn−1

)
=
1
4
a+

∞∑
n=2

1
2n+1

cn−1

=
1
4
a+

∞∑
n=1

1
2n+2

cn =
1
4
a+

∞∑
n=1

1
2n+2

(2cn−1) =
1
4
a+ z:

Hence a= 0 follows, i.e. || || is a norm.
Let xn ∈ E, n ∈ N, � :=

∑∞
n=1 ||xn||¡∞ and assume xn 6= 0, for n ∈ N.

Then cn := (2||xn||−1)xn ∈ C, n ∈ N, Putting �n := �−1||xn||, n ∈ N, results in
(�n | n ∈ N) ∈ 
, hence

c :=
∞∑
n=1

�ncn

is well de�ned and c ∈ C. Using again 2.4 in [11] one obtains

2�c −
n∑
i=1

xi = 2�
∞∑
i=1

�ici − 2
n∑
i=1

||xi||ci

= 2�

( ∞∑
i=1

�ici −
n∑
i=1

�ici

)
:

With tn :=
∑n

�=1 ��, n ∈ N,
∞∑
i=1

�ici −
n∑
i=1

�ici = tn
n∑
i=1

(t−1n �i)ci + (1− tn)
∞∑

i=n+1

(1− tn)−1�ici

−tn
n∑
i=1

(t−1n �i)ci =
∞∑

i=n+1

�ici

follows. The norm inequality [11, 6.2], implies∣∣∣∣∣
∣∣∣∣∣2�c −

n∑
i=1

xi

∣∣∣∣∣
∣∣∣∣∣ ≤ 2�

∞∑
i=n+1

�i||ci|| ≤ 2�
∞∑

i=n+1

�i;

hence
∑∞

i=1 xi converges to 2�c and E is a Banach space.

The proof shows that
◦
©(E)⊂C ⊂©(E) holds. The open unit ball of a Banach space

supplies an example of a totally convex set, which is neither sequentially complete nor
closed. Conversely, if C ⊂E is absolutely convex, absorbent and E is a Banach space
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with the Minkowski functional || || of C, then || || is also the Minkowski functional
of �C =©(E), i.e. of a totally convex set in E. This shows that the result 1.5 is sharp.
Denoting the restriction of ©̂ac to the subcategory Ban1 by ©̂ one gets the following

Proposition 1.6 (cf. Pumpl�un and R�ohrl [11, Section 7], Kleisli and K�unzi [6, 3.6]).
For C ∈ AC; S1(C) := K totconv(�̃C(C)) is a Banach space with norm the Minkowski
functional of totconv(�̃C(C)). S1(C); C ∈ AC; induces a functor S1 :AC→ Ban1 left
adjoint to ©̂ : Ban1 → AC.

Proof. �̃C(C) is a bounded subset of (A�0(C))′ hence its totally convex closure exists
and the �rst assertion follows from Lemma 1.5. Now, for an AC-morphism ’ :C →
©̂(B), B ∈ Ban1, consider the AC-morphism ’̃ : �̃C(C) → ©̂(B) in the proof of 1:3.
If ’̃ can be extended to an AC-morphism ’̃1 : totconv(�̃C(C))→ ©̂(B) it must satisfy

’̃1

( ∞∑
i=1

�ici

)
=

∞∑
i=1

�i’(ci); (∗)

ci ∈ C, i ∈ N, �̂ ∈ 
. To see that (∗) may be used as a de�nition for ’̃1, consider an
equation

∞∑
i=1

�i · �̃C(ci) =
∞∑
i=1

�i · �̃C(di);

ci, di ∈ C, i ∈ N, �̂, �̂ ∈ 
. This implies
∞∑
i=1

�if(ci) =
∞∑
i=1

�if(di)

for every f ∈ A�0(C). Now, for any � ∈ B′, �’ ∈ A�0(C) holds, hence
∞∑
i=1

�i(�’)(ci) =
∞∑
i=1

�i(�’)(di)

follows, which implies
∞∑
i=1

�i’(ci) =
∞∑
i=1

�i’(di);

i.e. ’̃1 is well-de�ned by (∗). ’̃1 extends uniquely to a linear contraction ’1 : S1(C)→B
satisfying ’= ©̂(’1)�̂C , where �̂C is the co-restriction of �̃C .
It is well known that Ban1 is a dense-reective, full subcategory of Vec1 with

reection T : Vec1 → Ban1 the completion. Hence T ◦ S0 is also a left adjoint of ©̂,
which means that S1(C) is the completion of S0(C) in (A�0(C))′ and the inclusion
S0(C)⊂ S1(C) is an isometry.

The full subcategory TC of AC of totally convex modules is of particular interest,
so we investigate the above construction now for totally convex modules.
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De�nition 1.7. Let C ∈ TC, E ∈ Vec1, then a mapping f : C → E is called totally
a�ne, if for any (�i | i ∈ N) ∈ 
 and any xi ∈ C; i ∈ N,

f

( ∞∑
i=1

�ixi

)
=

∞∑
i=1

�if(xi)

holds. Of course, this equation is to mean that the right side is convergent in the norm
of E.

Lemma 1.8. For C ∈ TC; E ∈ Vec1; a mapping f : C → E is totally a�ne if and
only if f is absolutely a�ne and bounded.

Proof. If f is totally a�ne, it is obviously absolutely a�ne. Assume f not to be
bounded, then for any n ∈ N, there is xn ∈ C with ||f(xn)|| ≥ 2n and

∑∞
n=1 2

−nf(xn)
is convergent in the norm, hence limn→∞(2−n||f(xn)||) = 0, which is a contradiction.
Conversely, assume f to be absolutely a�ne and bounded. Let (�i | i ∈ N) ∈ 
;

xi ∈ C; i ∈ N and put

An :=
n∑
i=1

|�i|:

One may assume 0¡An¡ 1 for all n ∈ N. Because of (AC2) in the in�nite case
∞∑
i=1

�ixi = An
n∑
i=1

�i
An
xi + (1− An)

∞∑
i=n+1

�i
1− An xi

for n ∈ N, which implies

f

( ∞∑
i=1

�ixi

)
−

n∑
i=1

�if(xi) = (1− An)f
( ∞∑
i=n+1

�i
1− An xi

)
or, as f is bounded by some M ¿ 0, i.e. ||f(x)|| ≤ M; for x ∈ C (cf. [11, 6.2]):∣∣∣∣∣

∣∣∣∣∣f
( ∞∑

i=1

�ixi

)
−

n∑
i=1

�if(xi)

∣∣∣∣∣
∣∣∣∣∣ ≤ M

∞∑
i=n+1

|�i|:

Hence,
∑∞

i=1 �if(xi) is convergent to f(
∑∞

i=1 �ixi) in the norm of E.

Lemma 1.9. Let f : C → E be totally a�ne; C ∈ TC; E ∈ Vec1; then V := Kf(C)
is a K-Banach space with norm the Minkowski functional of f(C):

||z||0 := inf{�¿ 0 | z ∈ �f(C)}:

This follows immediately from Lemma 1.5 because f(C) is obviously a totally
convex subset of E (cf. Lemma 1.8).
De�nition 1.7, Lemmas 1.8 and 1.9 remain valid if E is a Hausdor� locally convex

K-vector space (cf. [2, 1.2, p. 4]), but they are needed here only for normed spaces.
The unit ball ©(B) of a K-Banach space has a canonical totally convex structure

and induces a full and faithful functor ©̂ : Ban1 → TC. Because of Lemma 1.8,
De�nition 1.2 remains unchanged for TC and so does the de�nition of S0(C) in 1:3:
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Corollary 1.10 (cf. Pumpl�un and R�ohrl [11, 7.7], Kleisli and K�unzi [6, 3.6]). For
C ∈ TC; S0(C) = S1(C) holds and �1C = �0C is a TC-morphism. S1 is left adjoint to
©̂ with front adjunction �1C : C → ©̂ ◦ S1(C):

Proof. Because of Lemma 1.8 �̃C is totally a�ne, hence �̃C(C) is totally
convex (cf. Lemma 1.9), i.e. �̃C(C) = totconv(�̃C(C)) and the assertion follows from
Proposition 1.6.

2. The associated Saks space

(A�0(C))′, for C ∈ AC, also contains another set, which, in the classical case of a
bounded, convex subset C of a locally convex vector space, is called the a�ne com-
pacti�cation of C by Semadeni in [15]. The underlying structure of this construction
turns out to be a functor from AC to the category Saks1 of Saks spaces and continuous
linear contractions.

De�nition 2.1 (cf. Cooper [2, 3.2, p. 28]). A Saks space is a triple (|| ||; E;T) where
(|| ||; E) is a normed K-vector space, (E;T) is a (Hausdor�) locally convex K-vector
space with topology T and the unit ball ©(E) is bounded and closed in T .

For the sake of simplicity we will denote a Saks space by a letter e.g. E and, if
several spaces are involved, its norm by || ||E and its topology by TE . A morphism
f : E1 → E2 of Saks spaces is a linear contraction with respect to the norms, such that
its restriction to the unit balls ©(f) :©(E1)→ ©(E2) is TE1 – TE2 continuous. The
Saks spaces together with their morphisms form the category Saks1 of Saks spaces.
A Saks space E is called complete if ©(E) is TE-complete, from which it follows
that (|| ||; E) is a Banach space (cf. Lemma 1:5; [2, 1.2]). A Saks space E is called
compact, if ©(E) is TE-compact; a compact Saks space is obviously complete. The
full subcategory of compact Saks spaces will be denoted by CompSaks1.
In the following �((A�0(C))′;A�0(C)) will denote the weak ∗-topology of (A�0

(C))′; (A�0(C))′ with the supremum norm and this topology is a Saks space. For
a subset M ⊂(A�0(C))′; cl∗(M) will denote its weak ∗-closure. If cl∞( ) is the
closure operator of the || ||∞-topology in (A�0(C))′, one has cl∞(�̃C(C))⊂
cl∗(�̃(C)), because any weakly ∗-closed set is || ||∞-closed. One de�nes S∗(C) :=
K cl∗(�̃C(C)); for C ∈ AC. S∗(C) is obviously a K-vector space and the Minkowski
functional

||z||∗ := inf{�¿ 0 | z ∈ � cl∗(�̃C(C)}; z ∈ S∗(C)):
is a norm on S∗(C) with

||z||∞ ≤ ||z||∗; z ∈ S∗(C):
T ∗
C is de�ned as the topology induced in S∗(C) by �((A�0(C))′;A�0(C)):
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If E is a Saks space its unit ball ©(E) is an absolutely convex subset hence, with
this structure, an absolutely convex module. This induces a full and faithful functor
©̂S : Saks1 → AC.

Proposition 2.2. For C ∈ AC the following statements hold:
(i) (|| ||∗; S∗(C);T ∗

C ) is a compact Saks space with ©(S∗(C)) = cl∗(�̃C(C)):
(ii) The S∗(C); C ∈ AC; induce a functor S∗ : AC → Saks1 and the �̃C : C →

(A�0(C))′ (cf. Proposition 1:3) induce a natural transformation �∗ : AC →
©̂S ◦ S∗:

Proof. (i) cl∗(�̃C(C))⊂©(S∗(C)) follows from the de�nition of || ||∗. On the other
hand, cl∗(�̃C(C)) is a weakly ∗-closed subset of S∗(C) hence also T ∗

C -closed. This
yields ©(S∗(C))⊂ cl∗(�̃C(C)) (cf. [4, 6.4]). As cl∗(�̃C(C)) is weakly ∗-compact hence
T ∗
C -compact, (i) is proved.
To show (ii) let ’ : C1 → C2 be an AC-morphism, then

(A�0(’))′ : (A�0(C1))′ → (A�0(C2))′

is a Saks1-morphism. Now, for c1 ∈ C1 and f2 ∈ A�0(C2) we have
((A�0(’))′�̃C1 )(c1)(f2) = ((A�0(’))

′(�̃C1 (c1)))(f2) = (�̃C1 (c1)A�0(’))(f2)

= �̃C1 (c1)(f2’) = f2(’(c1)) = �̃C2 (’(c1))(f2):

This implies (A�0(’))′�̃C1 = �̃C2’, i.e. �̃C : C → (A�0(C))′ induces a natural trans-
formation. As (A�0(’))′ is weakly ∗-continuous

(A�0(’))′(cl∗(�̃C1 (C1)))⊂ cl∗(�̃C2 (C2))
hence (A�0(’))′ can be restricted to S∗(C1) and S∗(C2) and one de�nes S∗(’) as this
restriction. This proves (ii).

As cl∗(�̃C(C)) is weakly ∗-compact, it is a totally convex subset of (A�(C))′,
hence totconv (�̃C(C))⊂ cl∗(�̃C(C)); S1(C)⊂ S∗(C) and ||z||∗ ≤ ||z||1, for z ∈ S1(C),
follows. For totally convex spaces these results and proofs remain essentially the same.
The only change one has to make is that one has to consider the unit ball functor
©̂CS : CSak1 → TC, the restriction of ©̂S to the full subcategory of complete Saks
spaces CSaks1.

Corollary 2.3. S∗(C); for C ∈ TC; is a compact Saks space and induces a functor
S∗: TC→ CSaks1. �̃C ; C ∈ TC; induce a natural transformation �∗ : TC→ ©̂CS◦S∗:

The construction of S∗ gives an interesting relation between AC or TC and Saks1.
An obvious question, especially with respect to the results of Section 1, is, under
which conditions S∗ is universal, i.e. a left adjoint of ©̂S or ©̂CS. The key to the
solution of this problem is the observation that these two unit ball functors “forget”
too much, namely the locally convex topology TE on ©(E); E ∈ Saks1. Hence, we
now introduce topological absolutely or totally convex modules, respectively. By far
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more interesting, however, is an analogous construction for topological absolutely resp.
totally convex modules, which will be presented now.

De�nition 2.4 (cf. Kirschner [5], where a di�erent notion is introduced). C is called
a topological absolutely convex module; if C is an absolutely convex module and TC
is a topology on C; such that the mapping

�C : 
ac × C(N) → C

de�ned by �C(�̂; c) :=
∑

i �ici, (�̂; c) ∈ 
ac × C(N), C(N) := {c | c ∈ CN, support
of c �nite} , is continuous. Here, C(N) carries the subspace topology induced by the
product topology on CN and 
ac=©(K(N)) the subspace topology of K(N). A mapping
f : C1 → C2 between topological absolutely convex modules is called a morphism if
it is an AC-morphism and TC1 -TC2 continuous. The topological absolutely convex
modules and their morphisms constitute the category TopAC.

The category TopTC of topological totally convex modules is de�ned analogously.
C ∈ TC is called topological, if it has a topology TC such that

�C : 
 × CN → C;

�C(�̂; c) :=
∑

i �ici, is continuous, where 
=©(l1(N)) carries the subspace topology
of l1(N) and CN the product topology.
The unit balls ©(E), for E ∈ Saks1 resp. E ∈ CSaks1, induce two canonical, faithful

functors

©̂∗
: Saks1 → TopAC;

©̂∗
C : CSaks1 → TopTC:

That ©̂∗
(E) is in TopAC for E ∈ AC is obvious, the assertion for ©̂∗

C(E);
E ∈ CSaks1, follows from

Proposition 2.5. For a complete Saks space E; ©̂(E) is a topological totally convex
module.

Proof. Consider a net {(�̂i; xi) | i ∈ I} in 
×©̂(E)N converging to (�̂; x). This means
that, for �¿ 0, there is an i0(�) ∈ I such that, for all i ≥ i0(�), ||�̂ − �̂i||¡� in the
norm of l1(N). Let q be an element of a de�ning family of seminorms for the locally
convex topology TE . Then, for any �¿ 0, and any k ∈ N, there is an i1(�; q; k) ∈ I ,
such that for every i ≥ i1(�; q; k)

q
(
1
2x
i
j − 1

2xj
)
¡�
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holds for 1 ≤ j ≤ k. Besides, one has

q

(
1
2

∞∑
n=1

�inx
i
n −

1
2

∞∑
n=1

�nxn

)

≤ q
( ∞∑
n=1

�in

(
1
2
xin −

1
2
xn

))
+ q

( ∞∑
n=1

(
1
2
�in −

1
2
�n

)
xn

)
:

If k(�) ∈ N is chosen such that
∑

n¿k(�) |�n|¡�,
∑

n¿k(�) |�in|¡ 2� follows for all
i ≥ i0(�). This implies, for i ≥ max{i0(�); i1(�; q; k(�))},

q

( ∞∑
n=1

�in

(
1
2
xin −

1
2
xn

))
≤

∞∑
n=1

|�in|q
(
1
2
xin −

1
2
xn

)
=
∑
n≤k(�)

|�in|q
(
1
2
xin−

1
2
xn

)
+
∑
n¿k(�)

|�in|q
(
1
2
xin−

1
2
xn

)
¡�+Mq�= �(1 +Mq);

where Mq := sup{q(x) | x ∈ ©(E)}¡∞. This implies

q

(
1
2

∞∑
n=1

�inx
i
n −

1
2

∞∑
n=1

�nxn

)
≤ �

(
1 +

3
2
Mq

)
and hence the assertion.

De�nition 2.6. For C ∈ TopAC de�ne
A�c0(C) := {f |f ∈ A�0(C) and f continuous}:

Lemma 2.7. Let C ∈ TopAC; then the following statements hold:
(i) With the supremum norm || ||∞ A�c0 (C) is a Banach subspace of A�0(C).
(ii) The mapping �C : C → (A� c0(C))

′ de�ned as �C(x)(f) := f(x); for x ∈ C; f ∈
A� c0(C); is TC-weakly ∗-continuous. The �C; C ∈ TopAC; induce a natural trans-
formation.

Proof. (i) It is obvious that || ||∞ is a norm on A�c0(C). A�
c
0(C) is || ||∞-complete

because the uniform limit of continuous functions is continuous.
(ii) For f ∈ A� c0(C), let �(f) : (A� c0(C))′ → K denote the linear form �(f)(�) :=

�(f); � ∈ (A� c0(C))
′. Then �(f)�C = f is continuous for all f ∈ A� c0(C), hence

�C is TC-weakly ∗-continuous. For the last assertion we regard (A� c0(C))′ as a lo-
cally convex K-vector space with the weak ∗-topology. Let ’ : C1 → C2 be a
TopAC-morphism. For f2 ∈ A� c0(C2)A� c0(’)(f2) = f2’ (cf. Proposition 2.2) hence
A�c0(’)(f2) ∈ A� c0(C1) and A�

c
0( ) is a functor from TopAC to the category of

locally convex vector spaces, hence so is (A� c0( ))
′. That the �C; C ∈ TopAC, induce

a natural transformation follows from the proof of Proposition 2.2 because �C and �̃C
have the same underlying function.
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For C ∈ TopAC and a set M ⊂(A� c0(C))′, let clc∗(M) denote the weak ∗-closure of
M . De�ne

Sc∗(C) := K clc∗(�C(C))
and introduce the Minkowski functional

||z||c∗ := inf{�¿ 0 | z ∈ � clc∗(�C(C))};
z ∈ Sc∗(C): Then Sc∗(C) is a subspace of (A� c0(C))′ and || ||c∗ is a norm on Sc∗(C)
with

||z||∞ ≤ ||z||c∗ for z ∈ Sc∗(C):
If T̂

∗
C denotes the topology on S

c
∗(C) induced by the weak ∗-topology of (A� c0(C))′;

then one gets, by a proof completely analogous to that of Proposition 2.2,

Proposition 2.8. (i) For C ∈ TopAC (|| ||c∗; Sc∗(C); T̂
∗
C) is a compact Saks space

with

©(Sc∗(C)) = clc∗(�C(C)):
(ii) Let �∗C denote the co-restriction of �C to ©̂C(S

c
∗(C)); then the Sc∗(C);

C ∈ TopAC; induce a functor Sc∗ : TopAC → CSaks1 and the �∗C; C ∈ TopAC;
a natural transformation �∗C : TopAC→ ©̂∗

C ◦ Sc∗.

Theorem 2.9. If ©̂∗
cp : CompSaks1 → TopAC denotes the restriction of ©̂∗

C to

CompSaks1; S
c
∗ is a left adjoint of ©̂

∗
cp with front adjunction �

∗ : TopAC→ ©̂∗
cp◦Sc∗.

Proof. To simplify notation we write ©̂∗
for ©̂∗

cp. Let ’ : C → ©̂∗
(E); E ∈

CompSaks1, be a TopAC-morphism and denote by � : ©̂∗
(E) → ©̂∗

(Sc∗ ◦ ©̂∗
(E))

the mapping �∗C for C = ©̂∗
(E), to simplify notation. As � is continuous (2:7) and

©̂∗
(E) compact, �(©̂∗

(E)) is weakly ∗-compact, hence �(©̂∗
(E))= ©̂∗

(Sc∗ ◦ ©̂
∗
(E));

i.e. � is surjective. As any continuous linear form on E induces a continuous totally
a�ne mapping on ©̂∗

(E); � is also injective. Hence, � is a homeomorphism i.e. an
isomorphism in TopAC (cf. [1,16]). The usual argument shows that � can be uniquely
extended to a linear contraction �0 : E → Sc∗(©̂

∗
(E)): For z ∈ E; z 6= 0, and any � 6= 0

with �z ∈ ©(E) one de�nes �0(z) := �−1�(�z): This argument also implies that ©̂∗
is

full and faithful. Thus �0 is an isomorphism in CompSaks1. One puts ’0 := �
−1
0 S

c
∗(’)

for any morphism ’ : C → ©̂∗
(E) in TopAC, ’0 : Sc∗(C)→ E and gets ©̂∗

(’0)�∗C =
�−1©̂∗

(Sc∗(’))�
∗
C=’:’0 is uniquely determined by ’ and this equation because �

∗
C(C)

is dense in ©(Sc∗(C)). This proves that Sc∗ is left adjoint to ©̂∗
with front adjunc-

tion �∗.

Proposition 2.8 obviously holds also for TopTC and the Sc∗(C); C ∈ TopTC, induce
a functor again denoted by Sc∗ : TopTC → CompSaks1. The proof of Theorem 2.9
yields the
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Corollary 2.10. Sc∗ : TopTC → CompSaks1 is a left adjoint of ©̂
∗
cp : CompSaks1 →

TopTC with front adjunction �∗.

For E ∈ CompSaks1; ©̂
∗
cp(E) is also a topological totally convex space in the sense

of Kleisli and K�unzi, but their notion of a topological totally convex module (called
“space” in [6,7]) is di�erent from the one used here. They de�ne C ∈ TC to be
topological, if it carries a locally convex topology and if, for any �̂ ∈ 
, the mapping
�̂C : CN → C; �̂(C) :=

∑
i �ici; c ∈ CN, is continuous, where CN carries the product

topology. These objects are called pretopological by Kirschner [5]. The proof of Kleisli
and K�unzi for a left adjoint of the unit ball functor from the subcategory of their
topological totally convex modules given by the modules with the strong topology
also uses duality and it is similar to the one presented here.
Semadeni proved a theorem on a�ne compacti�cation for bounded convex sets

(cf. [15,16]). The corresponding statement for absolutely resp. totally convex sets is:

For any bounded absolutely (totally) convex subset K of a locally convex vector
space E there is a compact convex absolutely subset R(K) (R∞(K)) of a locally
convex vector space and an injective morphism �K : K → R(K) (�K∞ : K → R∞(K))
in TopAC (TopTC), such that for any morphism ’ : K → X in TopAC (TopTC),
with X any compact absolutely convex subset of a locally convex vector space; there
is a unique morphism ’0 : R(K) → X (’0 : R∞(K) → X ) in TopAC(TopTC) with
’= ’0�K .

Proof. These assertions follow easily from Theorem 2.9 and Corollary 2.10 with
�K = �∗K ; R(K) = ©̂∗

cp ◦ Sc∗(K) (R∞(K) = ©̂∗
cp ◦ S∗(C)).

For C ∈ AC, �1C : C → ©̂ac(S1(C)) may be regarded as its universal completion
(1:5), while, for C ∈ TopAC; �∗C : C → ©̂∗

cp(S
c
∗(C)) is simultaneously its univer-

sal compacti�cation and a topological completion. An analogous statement applies to
(topological) totally convex modules.
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