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0. Introduction

When an infinite dimensional dynamical system has an attracting finite dimensional center mani-
fold W c , one can view the large-time dynamics starting from any initial condition in the phase space
X as being captured by a finite dimensional system, namely that on W c . The presence of a (strong)
stable foliation will allow one to say more, namely that the trajectory starting from every initial con-
dition x ∈ X is asymptotically close to that of some ψ(x) ∈ W c . Via this association, we propose to
introduce a notion of “typical initial condition” in X , calling x ∈ X typical if ψ(x) is a typical point
with respect of the Lebesgue measure on W c . While such a notion can be defined in the abstract, it
is hard to know a priori what it means: For example, what constitutes a typical set in a k-parameter
family of initial conditions? Is it, under reasonable conditions, compatible with Lebesgue measure
in parameter space? The property that would provide an answer to such questions is the absolutely
continuity of the stable foliation, and that is the main result of the present paper.
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We will present our results in the framework of C1,α maps of Banach spaces satisfying a globally
defined infinitesimal invariant cones condition. In addition to its relevance to differential equations
(see below), this setting is the simplest in which to present our main result. To discuss the absolute
continuity of the stable foliation F s , we naturally need to first establish the existence of F s . Also,
while our main result does not rely on the existence of center manifolds, similar ideas are used in
the first steps of its proof. For these reasons, we will include in the present manuscript the proofs of
existence and regularity of W c and F s . We do not pretend that our results on W c and F s are novel:
versions of them – especially in the case of C1 center manifolds – have been proved a number of
times before (see references below). We are not aware, however, of global results in the generality of
(A1)–(A4) in Section 1 which provide the regularity needed for our purposes.

An important motivation for this work comes from finite or infinite dimensional dynamical systems
generated by ordinary, partial, or functional differential equations. We will give examples to show that
our assumptions are satisfied by time-T maps of certain classes of differential equations on suitable
function spaces. Our results are also applicable to non-autonomous differential equations that are
periodic in time. In order to include parabolic type PDEs which are not time reversible, we do not
assume that our maps are locally invertible.

As for the invariant cones condition, we drew our motivation both from differential equations and
from abstract hyperbolic theory.

From the differential equations side, in contexts where center manifolds have been proved, the
dynamical systems is often described in terms of a dominant linear operator along with controllable
nonlinear parts, and a spectral gap for the linear operator is assumed; see e.g. [4–6,10]. On the other
hand, as was pointed out in [13], a more essential condition for the existence of invariant manifolds
is the invariance of cones accompanied by certain expanding or contracting properties, and the spec-
tral gap condition serves only as a more accessible condition to ensure the cone invariance. In the
construction in [2,13,7,17,8], for example, the cone condition is verified for the differential equations
in question by showing, roughly speaking, that the vector field on the boundaries of the cones point
inward.

In abstract hyperbolic theory, one often starts with a compact invariant set the tangent bundle
over which is equipped with a splitting into a direct sum of D f -invariant subbundles.3 From this
setup one deduces the existence of local invariant disks tangent to the invariant linear subspaces,
and global invariant manifolds are obtained from local ones by iterating forwards or backwards. In
the uniform hyperbolic setting, the standard reference for invariant manifolds theory is [11]; see
also [3]. The results here differ from previous ones in that they are genuinely global in nature, and no
assumptions are made on the existence of invariant splittings, which are in fact shown to exist only
on a set determined by the dynamics.

We postpone our discussion on regularity of stable foliations to Section 1, after the relevant defi-
nitions have been introduced.

This paper is organized as follows: Section 1 contains the formal setting and statement of results.
In Section 2 we illustrate how our conditions are verified for certain C0 semigroups. Section 3 contains
the proofs of Theorems 1 and 2 on center manifolds and stable foliations. This sets us up for the proof
of Theorem 3, our main result, which asserts the absolute continuity of F s and is proved in Section 4.

1. Statement of results

We state our results in a global setting, obtained usually from standard cutoff and extension argu-
ments in concrete situations involving differential equations.

Setting. Let (X, | · |) be a Banach space, and let f ∈ C1,α0(X, X) for some α0 > 0, i.e., f ∈ C1, and
‖D f ‖Cα0 < ∞. We assume ‖D f ‖C0 < ea , and there is a reference splitting of X into X = Ec ⊕ Es

where Ec and Es are closed subspaces the projection operators associated with which satisfy

3 We will not discuss the nonuniformly hyperbolic case, which from our point of view resembles the hyperbolic case except
that it involves a host of other issues not relevant to the present context.
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‖π c‖,‖π s‖ � M . These subspaces are not assumed to be D f -invariant, and the relations between
them and the dynamics are as follows:

(A1) There exist μc ∈ (0,1) and λc ∈R such that for any x0, x ∈ X with |π sx| �μc |π cx|, we have

∣∣π s(D f )x0 x
∣∣ �μc

∣∣π c(D f )x0 x
∣∣ and

∣∣π c(D f )x0 x
∣∣ � eλc

∣∣π cx
∣∣.

(A2) There exist μs ∈ (0,1)4 and λs < λ−
c � min{0, λc} such that for any x0, x ∈ X , if |π c(D f )x0 x| �

μs|π s(D f )x0 x|, then

∣∣π cx
∣∣ �μs

∣∣π sx
∣∣ and

∣∣π s(D f )x0 x
∣∣ � eλs

∣∣π sx
∣∣.

(A3) dim(Ec) < ∞.
(A4) Let Bs(0, R) = {x ∈ Es: |x| < R}. Then for any R > 0, there exists R ′ > 0 such that f (Ec +

Bs(0, R)) ⊂ (Ec + Bs(0, R ′)).

The constants α0,a, M,μc,μs, λc and λs will be referred to in the rest of this paper as system con-
stants.

We remark on these assumptions: (A1) and (A2) are invariant cones conditions. Notice that λc
can be positive or negative, so that (A1) and (A2) define center and stable cones respectively. The
bound in (A1) is usually stated as |π c(Dn f )x0 x| � Cenλc |π cx| for all n � 1, and analogously for (A2).
We have omitted the constant C since for our purposes we can work with f k for some fixed k � 1
instead of f . Our main result, namely the absolute continuity of stable foliations (Theorem 3), requires
dim(Ec) < ∞, while our results on center manifolds and stable foliations (Theorems 1 and 2) are valid
also when dim(Ec) = ∞ and (A3) is replaced by the weaker condition

(A3′) For every x ∈ X , π c(D f )x|Ec maps Ec onto Ec .

In the case dim(Ec) < ∞, this condition is implied by (A1).
Notation: Throughout this paper, the tangent space at a point in X is identified with X itself.

In (A1), for example, x0 is the base point and x is a tangent vector at x0. Likewise, we identify the
linear spaces Ec and Es with the corresponding subsets of X , permitting statements such as “For
g : Ec → Es , define graph(g)� {y + g(y), y ∈ Ec}”.

Results. Three results are presented. Theorems 1 and 2, which have been proved a number of times
under technical assumptions different from ours (see the Introduction), provide the backdrop for The-
orem 3, which is the main result of the present paper.

Theorem 1 (Center manifolds theorem). Assume (A1)–(A4), with (A3) replaced by (A3′). Then there exist α,
K0 > 0 and a unique hc ∈ C1,α(Ec, Es) such that

(1) f (W c) = W c where W c � graph(hc);
(2) ‖Dhc‖C0 �μc and ‖Dhc‖Cα � K0‖D f ‖Cα .

Here α depends only on system constants, and K0 depends on system constants and on α.

Theorem 2 (Stable foliations theorem). Assume (A1)–(A4), with (A3) replaced by (A3′). Then there exist
α, K0 > 0 (with the same dependence as above) such that the following hold:

(1) (Individual stable manifolds.) Associated with every x ∈ X, there is a mapping hs
x : Es → Ec such that

4 Alternately, we may permit μc to be � 1 and assume 0 < μs < min{1, 1
μ }.
c
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(a) hs
x(π

sx) = π c x, i.e., x ∈ W s
x � graph(hs

x);
(b) f (W s

x) ⊂ W s
f x;

(c) ‖Dhs
x‖C0 �μs and ‖Dhs

x‖Cα � K0‖D f ‖Cα .
(2) (Stable foliation.) The family {W s

x} defines a Cα foliation F s on X, i.e., for x, y ∈ X, either W s
x = W s

y or
W s

x ∩ W s
y = ∅; moreover the mapping defined by

Hs(x) = hs
π c x

(
π sx

) + π sx

is a homeomorphism, and Hs ∈ C0,α(X, X).

We remark that smoothness of a foliation involves not only the smoothness of individual leaves
but also how these leaves are “packed together”. Theorem 2 asserts that individual stable manifolds
W s

x are C1,α , but the foliation F s is only C0,α . Indeed, under the conditions (A1)–(A4), the stable
foliation is, in general, not C1. It has been shown (in settings different from ours) that higher dif-
ferentiability can be guaranteed by more stringent conditions; see e.g. [4]. We will not go in this
direction. Instead, we will show that (A1)–(A4) alone imply a weaker form of regularity, one which
already has important implications.

Unlike Theorems 1 and 2, finite dimensionality of Ec is required for Theorem 3. First we intro-
duce some needed definitions. For a C1,α map g : Ec → Es (where α is as in Theorems 1, 2) with
‖g‖C0 < ∞, ‖Dg‖C0 � μc and ‖Dg‖Cα < ∞, we let Σg � graph(g) and call Σg a transversal to the
stable foliation F s . All transversals considered in this paper are assumed to be of this form. The
holonomy map T g1,g2 : Σg1 → Σg2 sends x ∈ Σg1 to the unique point in W s

x ∩ Σg2 . We will con-
firm in Section 4 that this map is well defined. Next, we introduce a natural measure class on Σgi :
Assuming that dim(Ec) = k, we fix (arbitrarily) a linear isomorphism between Ec and R

k , and let
m denote Lebesgue measure on Ec . The reference measure mΣgi

on Σgi is then defined by letting
mΣgi

(A) � m(π c(A)) for every Borel subset A ⊂ Σgi . Finally, we say the foliation F s is absolutely
continuous if for every pair of transversals Σg1 and Σg2 , the holonomy map T g1,g2 carries mΣg1

-zero
measure sets to mΣg2

-zero measure sets.

Theorem 3 (Absolute continuity of the stable foliation). Assume (A1)–(A4). Then the foliation F s is absolutely
continuous. Moreover, for any admissible g1, g2 : Ec → Es,

d(T g1,g2)∗(mΣg1
)

dmΣg2

� C2

where system constants aside, C2 depends only on α, ‖D f ‖Cα , ‖Dg1,2‖Cα and ‖g1 − g2‖C0 .

In finite dimensions, absolute continuity of the stable foliation has been proved a number of times,
a fact which attests to the importance of this result. It was proved for Anosov diffeomorphisms in [1],
and in nonuniform hyperbolic settings with or without singularities in [12,15,16,18]. Our proof of The-
orem 3 follows the ideas outlined in [18]. To our knowledge this result is new in infinite dimensions,
where it has the following interpretation:

Interpretation of our results. When a dynamical system defined on an infinite dimensional space X
has a finite dimensional center manifold W c which attracts all points in X , we think of its large-
time dynamics as being captured by the finite dimensional system on W c . The existence of a stable
foliation says a little more, namely that it associates each initial condition x0 ∈ X to y0 ∈ W s

x0
∩ W c ,

with the property that ‖ f k(x0) − f k(y0)‖ → 0 exponentially fast.
The absolute continuity of the stable foliation F s permits us to introduce the following notion of

“almost everywhere” on X : Let P be a property which either holds or does not hold at each x ∈ X .
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We say P respects stable manifolds if for every x, P holds at x if and only if it holds for all y ∈ W s
x .

For such P , it makes sense to think of it as holding “almost everywhere” (a.e.) on X if it holds on a
full mΣ -measure set for some transversal Σ , for by Theorem 3 this condition is independent of Σ .
Likewise, it makes sense to view P has holding on “a positive measure set” in X if it holds on a
positive mΣ -set on some Σ .

As an example, consider the following: Let ϕ be a uniformly continuous observable and ϕ̄ a pu-
tative spatial average. Then the property that P holds at x if 1

n

∑n−1
i=0 ϕ( f i(x)) → ϕ̄ as n → ∞ clearly

respects stable manifolds. It follows that if ν is an SRB measure on f |W c with no zero Lyapunov ex-
ponents, and ϕ̄ = ∫

ϕdν , then passing property P on W c to all of X via the stable foliation, we have
that P holds on a positive measure set (or possibly a.e.) in X in the sense above.

2. Verification of conditions for differential equations

In this section, we demonstrate that the setting in Section 1 is compatible with that for some
differential equations to which our results apply. We first discuss our conditions in the framework of
general C0 semigroups, which includes ordinary differential equations and some partial differential
equations, before giving concrete examples.

Specifically, we consider the differential equation

ut = Au + g(u) (1)

where X is a Banach space, A : D(A) → X is the generator of a C0 semigroup, and g ∈ C1,α0(X, X),
α0 ∈ (0,1]. We assume:

(H1) There exist closed subspaces Ec and Es of X such that X = Ec ⊕ Es with ‖π c‖,‖π s‖ = 1.
(H2) The subspaces Ec,s are invariant under A. Let Ac,s = A|Ec,s . Then there exist a0, λ± ∈ R with

a0 � 0 and λ− < min{λ+,0} such that
(i) ‖et A‖� ea0t and ‖et As ‖� eλ−t ∀t � 0,

(ii) ‖et Ac ‖� eλ+t ∀t � 0.
(H3) ‖g‖C1,α0 (X,X) < ∞.

In the hypotheses above, we omitted constants in front of the exponentials because they can be
removed in a standard way by taking an equivalent norm of X . For the same reason we assumed
‖π c,s‖ = 1 in this section. In practical problems, (H3) is often obtained through a cut-off which does
not change the dynamics in a neighborhood of an absorbing ball.

Let L = ‖Dg‖C0(X,L(X)) . Fix any T > 0, and let f : X → X be the time-T map of the semiflow gen-
erated by (1). Then f ∈ C1,α0 (X, X) with ‖D f ‖C0 � e(a0+L)T , see, for example [14]. We will show that
with respect to the splitting Ec ⊕ Es in (H1), the assumptions (A1)–(A4) in Section 1 are satisfied for
some λc,s and μc,s when L and λ± satisfy (2) below. (A3) can generally be verified in concrete prob-
lems, and (A4) is disposed of quickly since ‖D f ‖C0 � e(a0+L)T . We now concentrate on (A1) and (A2):

Lemma 4. Assume

L

λ+ − λ−
<

1

4
and λ− < −2L, (2)

where L = ‖Dg‖C0(X,L(X)) . Then there exist μc,μs ∈ (0,1) independent of T such that the invariant cones
conditions (A1) and (A2) are satisfied with

λs = (
λ− + L(1 + μs)

)
T < 0 and λc = (

λ+ − L(1 + μc)
)
T > λs.
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Proof. We show the result for μc and λc ; the case of μs and λs is treated similarly. Given a solution
u(t), t � 0, consider its linearized solution u1(t) and write uc,s

1 = π c,su1, gc,s = π c,s g . Let β > 1 be a
number to be chosen. For arbitrary t1, we assume |us

1(t1)| �μc |uc
1(t1)|, and let t2 > t1 be such that

∣∣us
1(t)

∣∣� βμc
∣∣uc

1(t)
∣∣ ∀t ∈ [t1, t2].

We will show that this in fact implies |us
1(t2)| �μc|uc

1(t2)|. From this we conclude

t∗ = sup
{

t � t1
∣∣ ∣∣us

1(τ )
∣∣ � βμc

∣∣uc
1(τ )

∣∣ ∀τ ∈ [t1, t]} = +∞,

hence

∣∣us
1(t)

∣∣ �μc
∣∣uc

1(t)
∣∣ ∀t � t1,

proving the first half of (A1).
For t ∈ [t1, t2], we have

∣∣uc
1(t)

∣∣ � ∣∣e(t−t2)Ac
uc

1(t2)
∣∣ +

t2∫
t

∣∣e(t−τ )Ac
Dgc(u(τ )

)
u1(τ )

∣∣dτ

� eλ+(t−t2)
∣∣uc

1(t2)
∣∣ + L(1 + βμc)

t2∫
t

eλ+(t−τ )
∣∣uc

1(τ )
∣∣dτ .

The Gronwall inequality yields

∣∣uc
1(t)

∣∣ � e−(λ+−L(1+βμc))(t2−t)
∣∣uc

1(t2)
∣∣, t ∈ [t1, t2]. (3)

Similarly (but going forward in time rather than backward) we estimate

∣∣us
1(t2)

∣∣ � eλ−(t2−t1)
∣∣us

1(t1)
∣∣ + L(1 + βμc)

t2∫
t1

eλ−(t2−τ )
∣∣uc

1(τ )
∣∣dτ . (4)

Substituting in (3), we obtain that the first term of (4) is

�μce(λ−−λ++L(1+βμc))(t2−t1)
∣∣uc

1(t2)
∣∣

and the second term is

� L(1 + βμc)

λ+ − λ− − L(1 + βμc)
· (1 − e(λ−−λ++L(1+βμc))(t2−t1)

) · ∣∣uc
1(t2)

∣∣.

Combining and letting B = L(1+βμc)
λ+−λ−−L(1+βμc)

, we obtain

∣∣us
1(t2)

∣∣ � {
(μc − B)e(λ−−λ++L(1+βμc))(t2−t1) + B

}∣∣uc
1(t2)

∣∣,
which is �μc |uc

1(t2)| if we can guarantee that 0 � B �μc . With β = 1, B �μc is equivalent to
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(1 + μc)
2 �

(
λ+ − λ−

L

)
μc.

The assumption in the lemma guarantees that for μc close enough to 1, the inequality above is a
strict inequality. Hence it remains valid for β slightly > 1. The second inequality in (A1) follows
from (3). �

The computation above suggests that the larger (λ+ −λ−)/L, the smaller μc and μs can be, equiv-
alently, the “narrower” the invariant cones centered at Ec and Es . This is in agreement with intuition:
λ+ − λ− is the spectral gap, and L measures deviation from the linear map which preserves the
splitting Ec ⊕ Es .

Remark 1. The arguments above remain valid if A is the generator of an analytic semigroup and
g : Xβ → X is smooth for some β ∈ [0,1).

Assumptions (H1)–(H3) and (2) are easily checked for ODEs. To demonstrate PDE applications,
consider a reaction–diffusion equation

ut = �u + g(u), x ∈ Ω �R
n, u|∂Ω = 0 (5)

or a damped Klein–Gordon equation

utt − �u + γ ut + g(u) = 0, x ∈ Ω �R
n, u|∂Ω = 0, γ > 0, (6)

where g is a C1,α0 function. Suppose g(0) = 0. Let A = � + g′(0) in the first example and A =(
0 1

−�−g′(0) −γ

)
in the second example. It is clear that in both cases, A has discrete spectrum, so

dim(Ec) < ∞. To study the local dynamics near u = 0, one may replace g(u) by g′(0)u + G(u) where
G(u) = (g(u) − g′(0)u)η( u

δ
) and η(u) is a cut-off function: η|[−1,1] = 1 and η||u|>2 = 0. Clearly, the

dynamics of the modified equation is identical to that of the original equation in a δ-neighborhood
of 0 in the Sobolev spaces H1

0 ∩ Hk for (5) and (H1
0 ∩ Hk) × Hk−1 for (6), with k > 1 + n

2 . When
δ  1, it is easy to see that L � C Lip(G) = O (δ) where C depends only on n and k and all the above
assumptions are satisfied.

When n = 1, one does not need to assume g(0) = 0. The eigenvalues of A = � of (5) are λ1 >

λ2 > · · · → −∞ with |λk| = O (k2). Under certain conditions such as those given in [17], (5) has an
absorbing ball of radius R > 0 which contains the attractor of (5). Let G(u) = g(u)η( u

R ), where η is
defined in the above, and L = C Lip(G). Then there exists m � 1 such that λ+ = λm and λ− = λm+1
satisfy (2). Hence the theorems of this paper apply.

3. Proofs of Theorems 1 and 2

The setting is as in Section 1, and (A1), (A2), (A3′) and (A4) are assumed throughout. In Sec-
tions 3.1–3.3, we prove Theorems 1 and 2 under the additional assumption

(A5) eλs−λ
−
c

1−μcμs
< 1.

This provisional assumption is used only to show that graph transforms are contractions, and is re-
moved in Section 3.4.

While the basic outline of the proofs follow standard graph transform ideas, a number of technical
issues arise as a result of (i) the infinite dimensionality, (ii) the global nature of our results, and
(iii) the fact that our invariant cones conditions are assumed only for D f . For example, passing (A2)
to the nonlinear map f is not at all immediate as we will see in Section 3.2.
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Notation: In the proofs to follow, “K ” will be used as a generic constant, i.e., it is used multi-
ple times with different meaning in different contexts. With no exception, however, it is allowed to
depend only on system constants and on the value of α in question.

3.1. Existence of a Lipschitz center manifold W c

The aim of this subsection is to prove the existence of a center manifold W c that is the graph of
a function hc with Lip(hc) �μc . Let

Wc = {
h ∈ C0(Ec, Es) ∣∣ ‖h‖C0 < ∞, Lip(h)�μc

}
.

We seek to define Γ :Wc →Wc such that if h̃ = Γ (h), then

graph(h̃) = f
(
graph(h)

)
.

For h ∈Wc , we use the notation

H = I + h : Ec → X and Fh � π c f H : Ec → Ec . (7)

Lemma 5.

(a) Fh is a homeomorphism satisfying Lip(F −1
h )� e−λc .

(b) For h1,2 ∈Wc , |F −1
h2

− F −1
h1

|C0 � Mea−λc |h2 − h1|C0 .

We postpone the proof of this lemma so as not to disrupt the flow of the main argument. Contin-
uing, we let

h̃ = π s f H F −1
h . (8)

Then clearly graph(h̃) = f (graph(h)). We check next that h̃ ∈ Wc : (A4) together with ‖h‖C0 < ∞
implies ‖h̃‖C0 < ∞. To see the Lipschitz property of h̃, consider any x̃c

1,2 = Fh(xc
1,2) with |x̃c

2 − x̃c
1|  1.

Lemma 5(a) tells us that |xc
2 − xc

1| � e−λc |x̃c
2 − x̃c

1|, permitting us to write

∣∣x̃c
2 − x̃c

1

∣∣ = ∣∣π c( f
(

H
(
xc

2

)) − f
(

H
(
xc

1

)))∣∣
�

∣∣π c(D f )H(xc
1)

(
H

(
xc

2

) − H
(
xc

1

))∣∣ − o
(∣∣xc

2 − xc
1

∣∣).
Similarly

∣∣h̃(
x̃c

2

) − h̃
(
x̃c

1

)∣∣ � ∣∣π s(D f )H(xc
1)

(
H

(
xc

2

) − H
(
xc

1

))∣∣ + o
(∣∣xc

2 − xc
1

∣∣)
�μc

∣∣π c(D f )H(xc
1)

(
H

(
xc

2

) − H
(
xc

1

))∣∣ + o
(∣∣xc

2 − xc
1

∣∣).
Due to the definition of Wc and the fact that ‖D f ‖Cα0 < ∞, the o(·) above is uniform in xc

1,2 and

h ∈ Wc . These inequalities together imply that on any ball of radius δ, h̃ has local Lipschitz constant
μc + o(δ), which yields the same global Lipschitz constant. Taking δ → 0 we obtain Lip(h̃) � μc .
Thus h̃ ∈Wc .
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We record the following analog of (A1) for f (as opposed to D f ) that will be useful later:

Lemma 6. Given x1,2 ∈ X with |π s(x2 − x1)| �μc|π c(x2 − x1)|, let x̃1,2 = f (x1,2). Then

∣∣π s(x̃2 − x̃1)
∣∣ �μc

∣∣π c(x̃2 − x̃1)
∣∣ and

∣∣π c(x2 − x1)
∣∣ � e−λc

∣∣π c(x̃2 − x̃1)
∣∣.

To prove the lemma, one notes that, by the Hahn–Banach Theorem, there exists L̃ ∈L(Ec, Es) such
that L̃(π c(x2 − x1)) = π s(x2 − x1) and |L̃| � μc . Let h ∈ Wc be such that graph(h) = x1 + (I + L̃)(Ec)

(with cut-off at infinity). The lemma follows from the estimates above.
Returning to the main proof, note that with respect to the C0 metric, Wc is a complete metric

space. We will show that Γ is a contraction mapping. Our center manifold W c is then given by
W c = graph(ĥ) where ĥ is the unique fixed point of Γ .

Specifically, we will show

‖h̃2 − h̃1‖C0 �
eλs

1 − μcμs
‖h2 − h1‖C0 (9)

for all h1,2 ∈Wc . By (A5), this Lipschitz constant is < 1. It suffices to consider h1,2 where ‖h1 − h2‖C0

is arbitrarily small, for by letting h(i) = h1 + i
N (h2 − h1), i = 0, . . . , N , for arbitrarily large N and

comparing h(i) and h(i+1) (which are in Wc), we obtain the desired result for arbitrary h1,2. To derive
a contradiction, then, we assume there exists δ0 such that for arbitrarily small ε > 0, there exist h1,2
and xc ∈ Ec such that ‖h2 − h1‖C0 � ε and

∣∣h̃2
(
xc) − h̃1

(
xc)∣∣ >

(
δ0 + eλs

1 − μcμs

)
‖h2 − h1‖C0 . (10)

Let xc
1,2 be such that f (H1,2(xc

1,2)) = H̃1,2(xc); from the discussion above we know xc
1,2 exist and are

unique.
Our first step is to show H2(xc

2) − H1(xc
1) lies in the stable cone. Let x̃c = π c f (H2(xc

1)). Then

∣∣H̃2
(
x̃c) − H̃1

(
xc)∣∣ = ∣∣ f

(
H2

(
xc

1

)) − f
(

H1
(
xc

1

))∣∣ � ea‖h2 − h1‖C0

which, after applying π c , implies

∣∣x̃c − xc
∣∣ � Mea‖h2 − h1‖C0 .

This along with Lemma 5 and (A1) applied to the points H2(xc
1) and H2(xc

2) gives

∣∣xc
2 − xc

1

∣∣ � e−λc
∣∣x̃c − xc

∣∣ � Mea−λc ‖h2 − h1‖C0 . (11)

By Taylor’s expansion,

h̃2
(
xc) − h̃1

(
xc) = f

(
H2

(
xc

2

)) − f
(

H1
(
xc

1

))
= (D f )H1(xc

1)

(
H2

(
xc

2

) − H1
(
xc

1

)) + o
(‖h2 − h1‖C0

)
.

We see that o(·) is uniform in h1,h2 and xc due to the Cα0 bound on D f and (11). Observe that
h̃2(xc) − h̃1(xc) ∈ Es and has norm � const · ‖h2 − h1‖C0 by (10). For o(·) small enough, we have that
(D f )H1(xc

1)(H2(xc
2) − H1(xc

1)) is in the stable cone. That together with (A2) puts H2(xc
2) − H1(xc

1) in
the stable cone.
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Thus we have, by (A2),

∣∣xc
2 − xc

1

∣∣ �μs
∣∣h2

(
xc

2

) − h1
(
xc

1

)∣∣ �μs‖h2 − h1‖C0 + μcμs
∣∣xc

2 − xc
1

∣∣, (12)

which yields

∣∣xc
2 − xc

1

∣∣� μs

1 − μcμs
‖h2 − h1‖C0 . (13)

Applying again (A2) followed by the second half of (12) and then (13), we obtain

∣∣h̃2
(
xc) − h̃1

(
xc)∣∣ � eλs

∣∣h2
(
xc

2

) − h1
(
xc

1

)∣∣ + o
(‖h2 − h1‖C0

)

� eλs

(
‖h2 − h1‖C0 + μcμs

1 − μcμs
‖h2 − h1‖C0

)
+ o

(‖h2 − h1‖C0

)

=
(

o(1) + eλs

1 − μcμs

)
‖h2 − h1‖C0 ,

contradicting (10) and completing the proof. �
Proof of Lemma 5. (a) Let h ∈Wc be fixed. For xc

0 ∈ Ec , it is an easy exercise to show that

F̃
(
xc)� π c f H

(
xc

0

) + π c(D f )H(xc
0)

(
H

(
xc) − H

(
xc

0

))

defines a homeomorphism from Ec to itself with

Lip
(

F̃ −1)� e−λc .

Since F̃ (xc) is the principal part of the Taylor expansion of Fh(xc) for xc close to xc
0, using our as-

sumption that ‖D f ‖C0,α < ∞, we obtain the following uniform estimate: given δ > 0, there exists
ε > 0 such that for every xc

0 ∈ Ec , Fh maps {|xc − xc
0| < ε} homeomorphically onto its image, on which

Lip(F −1
h ) � (1 + δ)e−λc .

To prove that Fh is in fact a global homeomorphism, it remains to prove that Fh maps Ec

bijectively onto Ec , which follows from a topological argument. From the fact that Fh is a local home-
omorphism the inverse of which has a uniform Lipschitz bound, we deduce that Fh(Ec) is both open
and closed; hence Fh(Ec) = Ec , and it remains to prove that the map is one to one.

We assume Fh(x1) = Fh(x2) � x0, and show that x1 = x2. Let L = {tx1 + (1 − t)x2 | t ∈ [0,1]}. Since
Ec is simply connected, there exists a homotopy (continuous) map Ψ : [0,1] × L → Ec such that

(1) Ψ (0, ·) = Fh|L ;
(2) Ψ (t, x1) = Ψ (t, x2) = x0, t ∈ [0,1];
(3) Ψ (1, x) = x0, x ∈ L.

We claim there is a continuous map G : [0,1] × L → Ec such that

(a) G|{0}×L = id;
(b) Ψ = Fh ◦ G .
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This is true because Fh is locally invertible, and we can use G = F −1
h ◦Ψ to continue G from {0}× L to

[0, ε]× L, then to [ε,2ε]× L, and so on until its domain includes all of [0,1]× L. The invertibility of Fh
in neighborhoods of x1 and x2 is crucial in the next argument. That together with properties of Ψ and
the continuity of G forces G ≡ x1 on ({x1}× [0,1])∪ (L ×{1}), and G ≡ x2 on ({x2}× [0,1])∪ (L ×{1}),
implying x1 = x2. Therefore Fh is a homeomorphism. Finally, noting that the local Lipschitz constant
of (1 + δ)e−λc for F −1

h above is in fact a global Lipschitz constant, and we finish the proof of (a) by
letting δ → 0.

(b) For any h1,2 ∈Wc , we have from (7) that

|Fh2 − Fh1 |C0 � Mea|h2 − h1|C0 .

Now fix xc ∈ Ec , and let xc
1,2 = F −1

h1,2
(xc). Then

∣∣xc
2 − xc

1

∣∣ � e−λc
∣∣Fh2

(
xc

2

) − Fh2

(
xc

1

)∣∣ = e−λc
∣∣Fh1

(
xc

1

) − Fh2

(
xc

1

)∣∣
which is estimated above. �
3.2. The stable foliation

In this subsection we present the proof of Theorem 2 under assumption (A5). For clarify, we divide
the proof into Parts A, B and C.

A. Invariant stable subspaces. We prove here the existence of a D f -invariant bundle of stable sub-
spaces defined everywhere on X . Recall that Ec,s are not D f -invariant.

Lemma 7. There exist α > 0 depending only on system constants, K � 1, and mappings L̂ : X → L(Es, Ec)

and F̂ : X →L(Es, Es) such that if we write L̂x = L̂(x), then:

(1) D fx(graph(L̂x)) ⊂ graph(L̂ f x) ∀x;
(2) (D f )x(I + L̂x) = (I + L̂ f x) F̂ x ∀x;
(3) ‖L̂‖C0 �μs , ‖L̂‖Cα � K‖D f ‖Cα , and ‖ F̂‖C0 � eλs , ‖ F̂‖Cα � K (1 + ‖D f ‖C0 )‖D f ‖Cα .

Viewing X s
x � graph(L̂x) = (I + L̂x)Es as a subspace of the tangent space at x, (1) above says that

{X s
x, x ∈ X} is a D f -invariant stable subbundle of the tangent bundle over X .

Proof of Lemma 7 assuming (A5). Let

Σ = {
L ∈ C0(X,L

(
Es, Ec)) ∣∣ ‖L‖C0 �μs

}
.

Our first task is to define a graph transform Γ from Σ to itself such that if L̃ = Γ (L), then for each
x ∈ X , (D f )x(graph(L̃x)) ⊂ graph(L f x). This relation is equivalent to

π c(D f )x
∣∣

Es + π c(D f )x
∣∣

Ec L̃x = L f xπ
s(D f )x

∣∣
Es + L f xπ

s(D f )x
∣∣

Ec L̃x,

from which we deduce

(
π c − L f xπ

s)(D f )x
∣∣

Ec L̃x = (
L f xπ

s − π c)(D f )x
∣∣

Es . (14)
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We claim the operator (π c − L f xπ
s)(D f )x|Ec : Ec → Ec is an isomorphism satisfying

∥∥((
π c − L f (x)π

s)(D f )x
∣∣

Ec

)−1∥∥� e−λc

1 − μsμc
. (15)

To see that, consider the family of operators

P (τ ) �
(
π c − τ L f xπ

s)(D f )x
∣∣

Ec : Ec → Ec, τ ∈ [0,1].

Injectivity of P (τ ) is assured by (A1) and the definition of Σ :

∣∣(π c − τ L f xπ
s)(D f )xz

∣∣ � eλc (1 − τμcμs)|z| � eλc (1 − μcμs)|z|. (16)

By (A3′), P (0) is invertible. Now for any τ0 ∈ [0,1], if P (τ0) is invertible, then ‖(P (τ0))
−1‖ is given

by (16), and for τ ∈ (τ0 − δ, τ0 + δ) with δ = 1
Mμs

eλc−a(1 − μcμs), ‖P (τ ) − P (τ0)‖ < ‖(P (τ0))
−1‖−1

so P (τ ) is invertible as well. It follows that P (1) is invertible and thus (14) implies

L̃x �
((

π c − L f xπ
s)(D f )x

∣∣
Ec

)−1(
L f xπ

s − π c)(D f )x
∣∣

Es .

This together with ‖L̃‖C0 � μs (by (A2)) guarantees that Γ (Σ) ⊂ Σ since the continuity of f , D f ,
and L in x implies the continuity of L̃ in x. Given L1,2 ∈ Σ , a straightforward computation using (14)
yields

L̃2
x − L̃1

x = ((
π c − L2

f xπ
s)(D f )x

∣∣
Ec

)−1(
L2

f x − L1
f x

)
π s(D f )x

(
I + L̃1

x

)
.

The bound in (15) together with (A2) and (A5) imply

Lip(Γ ) � eλs−λc

1 − μcμs
< 1,

giving, by the contraction mapping theorem, the existence of a unique fixed point L̂ of Γ with the
desired estimate on its C0 norm. This is the L̂ in the theorem.

Associated with each L ∈ Σ , there is an associated mapping F where Fx maps Es in the tangent
space of x to Es in the tangent space of f x. This mapping is defined by

Fx = π s(D f )x(I + L̃x),

and satisfies the equation

(D f )x(I + L̃x) = (I + L f x)Fx.

The asserted C0 norm of F follows immediately from (A2).
To obtain the Hölder estimates, for any L ∈ Σ and x1,2 ∈ X , another straightforward computation

using (14) gives

L̃x2 − L̃x1 = ((
π c − L f x2π

s)(D f )x2

∣∣
Ec

)−1(
(L f x2 − L f x1)π

s(D f )x1

+ (
L f x2π

s − π c)((D f )x2 − (D f )x1

))
(I + L̃x1).



Z. Lian et al. / J. Differential Equations 254 (2013) 283–308 295
Assumptions (A1)–(A4) along with (15) imply

‖L̃‖Cα � eλs−λc+αa

1 − μcμs
‖L‖Cα + Me−λc (1 + μs)

2

1 − μcμs
‖D f ‖Cα .

Choosing 0 < α � α0 so that eλs−λc+αa

1−μcμs
< 1, we have that the iteration sequence Γ n L for L ∈ Cα is

bounded in Cα and thus the limit fixed point of Γ has the same Cα bound. The Cα estimate on F
follows from its representation above in terms of L. �

Lemma 7 provides another splitting, an alternative to X = Ec ⊕ Es , namely

X = Ec ⊕ Xs
x, where Xs

x = (
(I + L̂x)Es), x ∈ X .

Let P c
x ∈L(X, Ec) and P s

x ∈L(X, X s) denote the associated projections, i.e.

P s
x = (I + L̂x)π

s, P c
x = I − P s

x = π c − L̂xπ
s. (17)

This splitting will be useful later.

B. Invariant stable foliation with Lipschitz leaves. Let

W s = {
φ ∈ C0(X × Es, Ec) ∣∣ φx(0) = 0, Lip(φx) �μs

}
,

where φx � φ(x, ·) ∈ C0(Es, Ec). Define the norm ‖ · ‖s on W s as

‖φ‖s � sup
x∈X

∥∥φ(x, ·)∥∥s where
∥∥φ(x, ·)∥∥s � sup

xs∈Es

|φ(x, xs)|
|xs| .

For φ ∈W s , we use the notation

Φx(·) � x + · + φx(·) ∈ C0(Es, X
)
,

so that Φx(Es) = graph(φx) + x.
Before proceeding further we record the following simple lemma that will be used a number of

times:

Lemma 8. For any h ∈Wc , φ ∈W s , and y ∈ X, let g : Es → Ec be defined by

g
(
xs) = π c y + φ

(
y, xs − π s y

)
.

Then graph(h) meets graph(g) in a unique point x̂. Moreover:

(a) With φ fixed, x̂ varies continuously with y and is Lipschitz in h, satisfying, for fixed y,

∣∣x̂c
2 − x̂c

1

∣∣� μs

1 − μcμs
|h2 − h1|C0 .

Here x̂i is the point of intersection for graph(hi) and x̂c
i = π c x̂i .

(b) If g is C1 , and hτ ∈ Wc is a 1-parameter family such that hτ (xc) is C1 in both xc and τ , then x̂ is also C1

in τ .
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This lemma follows from the observation that given h, φ and y, x̂c is the fixed point of the
mapping xc �→ g(h(xc)). Since this mapping has Lipschitz constant μcμs < 1, the assertions follow
immediately from the contraction mapping theorem.

We now define a graph transform Γ s on W s with the property that if φ̃ = Γ s(φ) and Φ̃ has the
obvious meaning, then

f
(
Φ̃x

(
Es)) ⊂ Φ f x

(
Es).

Fix x ∈ X and x̃s ∈ Es , we define φ̃x(x̃s) as follows: Let h ∈ Wc be the constant function h ≡ π sx + x̃s .
From Section 3.1, f (graph(h)) is the graph of a function h̃ ∈ Wc . By Lemma 8, graph(h̃) and Φ f x(Es)

meet in a unique point x̂. The graph transform property forces us to take φ̃x(x̃s) = F −1
h (π c x̂) − π c x.

Lemma 5(b) and Lemma 8 imply that φ̃ is continuous in both x and x̃s and is Lipschitz in x̃s;
this Lipschitz constant can be written explicitly in terms of M , λc , a, and μc,s , uniformly in x and φ.
However, these lemmas do not guarantee Lip(φ̃x)�μs , which we now prove.

Lemma 9. Let ϕ, ϕ̃ : Es → Ec be Lipschitz. Assume Lip(ϕ) � μs and f (graph(ϕ̃)) ⊂ graph(ϕ). Then
Lip(ϕ̃) �μs .

Proof. This lemma hinges on the following geometric facts about the linear maps D fx:

(a) Given ε0 > 0, there exists δ0 > 0 such that if |vc| � (μs + ε0)|vs|, then |D fx(v)| � δ0|v|.
(b) Given ε1 > 0, there exists δ1 > 0 such that if |π c D fx v| � (μs + δ1)|π s D fx v|, then |vc | �

(μs + ε1)|vs|.

We first prove the lemma assuming (a) and (b). Suppose Lip(ϕ̃) �μs +c for some c > 0. Then there
exist x1, x2 ∈ graph(ϕ̃) with |x2 − x1| arbitrarily small such that |π c(x2 − x1)| � (μs +c/2)|π s(x2 − x1)|.
(a) ensures that for such x1, x2,

f (x2) − f (x1) = D fx1(x2 − x1) + error

where |error|/|D fx1 (x2 − x1)| → 0 as |x2 − x1| → 0. This together with f (x1,2) ∈ graph(ϕ) and
Lip(ϕ) �μs tells us that by taking |x2 − x1| → 0, D fx1 (x2 − x1) is arbitrarily close to the stable cone in
the sense of (b). We then conclude, by (b), that the same is true for x2 − x1, contradicting our initial
assumption.

The proof of (a) is easy and left as an exercise (hint: use P s
x + P c

x).
Proof of (b): For any v , let wc = wc(v) ∈ Ec be such that π c D fx wc = π c D fx v; wc exists since

π c D fx|Ec is a bijection. It suffices to prove

(∗) given any ε > 0, ∃δ1 > 0 s.t. if |π c D fx v| � (μs + δ1)|π s D fx v|, then v − εwc lies in the stable
cone.

This is because

∣∣wc
∣∣ � e−λc

∣∣π c D fx wc
∣∣ = e−λc

∣∣π c D fx v
∣∣ � Mea−λc |v|.

Combined with (∗), this gives

∣∣vc
∣∣� ∣∣vc − εwc

∣∣ + ε
∣∣wc

∣∣�μs
∣∣vs

∣∣ + εMea−λc
(∣∣vc

∣∣ + ∣∣vs
∣∣)

which implies (b) if ε is small enough.
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To prove (∗), it suffices to show, by (A2), that

∣∣π c(D fx v − εD fx wc)∣∣�μs
∣∣π s(D fx v − εD fx wc)∣∣. (18)

The two sides are estimated by

∣∣π c(D fx v − εD fx wc)∣∣ � (1 − ε)
∣∣π c D fx v

∣∣ � (1 − ε)(μs + δ1)
∣∣π s D fx v

∣∣;∣∣π s(D fx v − εD fx wc)∣∣ � ∣∣π s D fx v
∣∣ − μcε

∣∣π c D fx v
∣∣ � ∣∣π s D fx v

∣∣(1 − μcε(δ1 + μs)
)
.

To obtain (18), one requires that

(1 − ε)(μs + δ1) �μs
(
1 − μcε(δ1 + μs)

)
,

which is true for δ1 <
μsε(1−μcμs)
1−(1−μcμs)ε

. �
This completes the proof that Γ s(W s) ⊂ W s . The last lemma says that f (as opposed to D f )

satisfies the invariant cones property in the stable direction. In the same spirit, we now prove the
contractive property for f in the stable direction.

Lemma 10. For x̃1,2 ∈ X, let x1,2 = f (x̃1,2). Assume these 4 points satisfy

∣∣π c(x2 − x1)
∣∣ �μs

∣∣π s(x2 − x1)
∣∣ and

∣∣π c(x̃2 − x̃1)
∣∣ �μs

∣∣π s(x̃2 − x̃1)
∣∣.

Then

∣∣π s(x2 − x1)
∣∣ � eλs

∣∣π s(x̃2 − x̃1)
∣∣.

Proof. By the Hahn–Banach Theorem, there exists T ∈L(Es, Ec) such that |T | �μs and Tπ s(x2 −x1)=
π c(x2 − x1). Let φ ∈ W s be such that φ(y, xs) = T xs for all y, and let φ̃ = Γ s(φ). From the unique-
ness given by Lemma 8, we have Φ̃x̃1

(π s(x̃2 − x̃1)) = x̃2. Taking x̃s in the construction of Γ s to be

τπ s(x̃2 − x̃1), τ ∈ [0,1], it follows from Lemmas 8 and 9(b), together with the fact that F −1
h is smooth

if h is smooth, that φ̃x̃1
is C1 in xs with |Dφ̃x̃1

| �μs . Therefore (A2) implies

∣∣π s(x2 − x1)
∣∣ �

1∫
0

∣∣π s(D f )Φ̃x̃1
(τπ s(x̃2−x̃1))(DΦ̃x̃1

)τπ s(x̃2−x̃1)π
s(x̃2 − x̃1)

∣∣dτ

� eλs
∣∣π s(x̃2 − x̃1)

∣∣.
Here we have used the fact that (D f )(DΦ̃)π s(x̃2 − x̃1) belongs to the stable cone, which follows from
f (Φ̃x̃1

(Es)) = Φx1 (Es). �
Returning to the main argument, we prove next that Γ s is a contraction with respect to the norm

‖ · ‖s , with contraction constant (eλs−λc )/(1 − μsμc), which is < 1 by (A5). The unique fixed point
φ̂ ∈W s of Γ s is our candidate for invariant stable foliation.

Let φ1, φ2 ∈W s , x ∈ X and x̃s ∈ Es . We need to show

|x̃c
2 − x̃c

1|
|x̃s| � eλs−λc

1 − μ μ
· ∥∥(φ2) f x − (φ1) f x

∥∥
s (19)
s c
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where x̃c
1,2 = (φ̃1,2)x(x̃s). Let xs

1,2 be given by f ((Φ̃1,2)x(x̃s)) = (Φ1,2) f x(xs
1,2). Applying Lemma 6, we

get

∣∣x̃c
2 − x̃c

1

∣∣ � e−λc
∣∣(φ2) f x

(
xs

2

) − (φ1) f x
(
xs

1

)∣∣ (20)

and

∣∣xs
2 − xs

1

∣∣ �μc
∣∣(φ2) f x

(
xs

2

) − (φ1) f x
(
xs

1

)∣∣
�μc

∣∣(φ2) f x
(
xs

1

) − (φ1) f x
(
xs

1

)∣∣ + μcμs
∣∣xs

2 − xs
1

∣∣.
These inequalities yield

∣∣xs
2 − xs

1

∣∣ � μc

1 − μcμs

∣∣(φ2) f x
(
xs

1

) − (φ1) f x
(
xs

1

)∣∣.
Plugging all this back into (20), and using Lemma 10, we obtain

|x̃c
2 − x̃c

1|
|x̃s| � eλs−λc

1 − μcμs
· |φ2 f x(xs

1) − φ1 f x(xs
1)|

|xs
1|

(21)

proving (19).
We finish this subsection by checking that φ̂, the fixed point of Γ s , has the following properties:

Let {Φ̂x} be the associated maps. Then

(i) each Φ̂x(Es) is a stable manifold, i.e. for all x ∈ X and x̃s
1,2 ∈ Es , |π s f n(Φx(x̃s

2))−π s f n(Φx(x̃s
1))| �

enλs |x̃s
2 − x̃s

1|; and

(ii) φ̂ defines a foliation, i.e. for all x, y ∈ X , either Φ̂x(Es) = Φ̂y(Es) or Φ̂x(Es) ∩ Φ̂y(Es) = ∅.

(i) follows from (A2) and Lemma 10.
With regard to (ii), notice that this is not true for arbitrary φ ∈ W s . (Had we built this property

into the definition of W s , the space would not be complete under the metric ‖ ·‖s .) Suppose, to derive
a contradiction, that there exist x, y ∈ X and η1,2 ∈ Φ̂x(Es), ξ1,2 ∈ Φ̂y(Es), i = 1,2, such that

η1 = ξ1, π sη2 = π sξ2 and η2 �= ξ2.

Then by (i) above, |π s( f n(η2)) − π s( f n(η1))| � enλs |π sη2 − π sη1|, and an analogous estimate holds
for ξ1,2. This implies

∣∣ f n(η2) − f n(ξ2)
∣∣ � ∣∣ f n(η2) − f n(η1)

∣∣ + ∣∣ f n(ξ1) − f n(ξ2)
∣∣ � 4enλs

∣∣π sη2 − π sξ2
∣∣,

but by Lemma 6, these two points are � enλc |η2 − ξ1| apart, contradicting the previous estimate for
large n.

To summarize, we have shown that through each x ∈ X , there is a unique Lipschitz stable man-
ifold W s

x � Φ̂x(Es), and the family {W s
x} defines a continuous foliation which is the foliation F s in

Theorem 2.

C. Regularity of stable manifolds. Let φ̂s ∈ W s be the fixed point of Γ s . We will show that φ̂x is
differentiable with Dφ̂s

x(0) = L̂x . The C1,α property of φ̂x will then follow immediately from Lemma 7,
as will the C0,α property of the mapping Hs in the statement of Theorem 2.
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Let

R(δ)� sup

{ |φ̂s
x(xs) − L̂xxs|

|xs| : x ∈ X, |xs| ∈ (0, δ)

}
� 2μs.

For x ∈ X and xs ∈ Es with |xs| < δ, let x̄s ∈ Es be such that Φ̂s
f (x)(x̄s) = f (Φ̂s

x(xs)). We will show that

|φ̂s
x(xs) − L̂xxs|

|xs| � o(1) +
(

eλs−λc

1 − μcμs

) |φ̂s
fx
(x̄s) − L̂ fx x̄s|

|x̄s| (22)

where o(1) → 0 as δ → 0 uniformly in x and xs . Since the left side of (22) can be chosen arbitrarily
close to R(δ) and the quantity in parenthesis is < 1 by (A5), (22) gives immediately R(δ) = o(1) and
thus the uniform differentiability of φ̂s

x in xs with the desired derivative.
To prove (22), observe first that by Taylor’s expansion, we have

x̄s = π s((D f )x
(
xs + φ̂s

x

(
xs)) + f1

)

where f1(x, Φ̂s
x(xs)) = o(|x − Φ̂s

x(xs)|) = o(|x̄s|). From (14), we obtain

φ̂s
f (x)

(
x̄s) − L̂ f (x)x̄s = (

π c − L̂ f (x)π
s)((D f )x

(
φ̂s

x

(
xs) − L̂xxs) + f1

)
.

Note also that |x̄s| � eλs |xs| < δ (Lemma 10). The desired inequality then follows from (15).

3.3. Regularity of W c and related estimates

This subsection discusses the regularity of Γ n(h) where Γ is the graph transform in Section 3.1
and h ∈ Wc ∩ C1,α where α > 0 is a sufficiently small number to be determined. In addition to
completing the proof of Theorem 1 under assumption (A5), this subsection contains a number of
estimates that will be useful in the proof of Theorem 3.

All notation is as in Section 3.1. Since much of the discussion here is about derivatives, it is no-
tationally clearer to distinguish between T z X , the tangent space of z ∈ X , and X (no distinction was
made previously). Similarly, Ec,s

z denote subspaces of T z X , and T z graph(h) has the obvious meaning
for z ∈ graph(h).

A. A priori C1,α bounds. For h ∈Wc , we let h(n) � Γ n(h). The main result of Part A is

Proposition 11. The following holds for all sufficiently small α:

(i) Given C1 > 0, there exists C2 � C1 such that for all h ∈Wc ∩ C1,α , if ‖Dh‖Cα � C1 , then ‖Dh(n)‖Cα � C2
for all n � 1.

(ii) It is in fact true that lim supn→∞ ‖Dh(n)‖Cα � K‖D f ‖Cα .

Recall that at each z ∈ X , there are two ways to represent x ∈ T z X :

x = π c(x) + π s(x) ∈ Ec
z ⊕ Es

z and x = P c
z(x) + P s

z(x) ∈ Ec
z ⊕ Xs

z.

It will turn out that the second representation yields better estimates due to the invariance of X s . Let
h ∈ Wc ∩ C1 and z ∈ graph(h); z will always be a point in graph(h) in the discussion to follow. Since
P c

z maps T z graph(h) isomorphically onto Ec
z , we may define Sh,z ∈L(Ec

z, Es
z) by



300 Z. Lian et al. / J. Differential Equations 254 (2013) 283–308
Sh,z
(

P c
z x

) = π s P s
zx for x ∈ T z graph(h). (23)

Suppose z = H(zc). Since π s P s
zx = (Dh)zc (P c

z x + L̂zπ
s P s

zx), one obtains by a straightforward computa-
tion the following relations between Sh,z and (Dh)zc :

Sh,z = (Dh)zc (I + L̂z Sh,z); (24)

Sh,z = (
I − (Dh)zc L̂z

)−1
(Dh)zc . (25)

From (25), it follows immediately that

‖Sh,z‖� μc

1 − μcμs
. (26)

Instead of estimating ‖Dh(n)‖Cα directly, we will work with ‖Sh(n)‖Cα where Sh : Ec → L(Ec, Es) is
defined by Sh(zc) = Sh,z . Specifically, we will show that there exist β ∈ (0,1) and a constant C such
that the following hold for all α > 0 sufficiently small and all h ∈Wc ∩ C1,α :

(B1) ‖Dh‖Cα � C‖Sh‖Cα + C ;
(B2) ‖Sh̃‖Cα � β‖Sh‖Cα + C , h̃ = Γ (h);
(B3) ‖Sh‖Cα � C‖Dh‖Cα + C .

Assuming ‖Sh‖Cα < ∞, it is easy to see that a repeated application of (B2) gives a C ′ with
‖Sh(n)‖Cα � C ′ for all n � 0. That together with (B3) applied to h and (B1) applied to h(n) imply
immediately the assertion in item (i) of Proposition 11. Item (ii) follows from the nature of the “C” in
the proofs below.

Proofs of (B1) and (B3): Let h ∈Wc ∩ C1,α ; we will omit the “h” in Sh,· since it is the only graph in
question. Let z1, z2 ∈ graph(h). From (24), we obtain

(Dhzc
2
− Dhzc

1
)(I + L̂z1 Sz1)

= Dhzc
2
(I + L̂z1 Sz1) − Dhzc

2
(I + L̂z2 Sz2) + Sz2 − Sz1

= (I − Dhzc
2

L̂z2)(Sz2 − Sz1) − Dhzc
2
(L̂z2 − L̂z1)Sz1 .

Note that for any z ∈ graph(h) and x ∈ T z graph(h),

(I + L̂z Sz)P c
z x = xc and P c

z x = (I − L̂z Dhz)xc,

so that

(I + L̂z Sz)
−1 = I − L̂z Dhz.

Using ‖I − DhL̂‖,‖I − L̂Dh‖� 1 + μcμs , we obtain

‖Dhzc
2
− Dhzc

1
‖� [

(1 + μcμs)‖Sz2 − Sz1‖ + μc‖L̂z2 − L̂z1‖‖Sz1‖
] · (1 + μcμs).

This together with the bound on ‖L̂‖Cα in Lemma 7 and (26) gives

‖Dh‖Cα � (1 + μsμc)
2‖S‖Cα + K‖D f ‖Cα

proving (B1).



Z. Lian et al. / J. Differential Equations 254 (2013) 283–308 301
The equations at the beginning of the proof also give

‖S‖Cα � (1 − μcμs)
−2‖Dh‖Cα + K‖D f ‖Cα ,

proving (B3).
Proof of (B2): Let h, S be as above. Let h̃ = Γ (h), and let S̃ be the corresponding operator. We will

prove

‖ S̃‖Cα �
(

eλs−(1+α)λc

1 − μcμs

)
‖S‖Cα + K‖D f ‖Cα . (27)

For α small enough, the quantity in parenthesis is < 1 by (A5). The α in Proposition 11 is the smaller
of this α and the one in Lemma 7.

Let z ∈ graph(h), x ∈ T z graph(h), z̃ = f (z) and x̃ = D fzx. By the definition of S , we have

x = (
I + (I + L̂z)Sz

)
P c

zx and x̃ = (
I + (I + L̂z z̃) S̃ z̃

)
P c

z̃ D fzx.

Also, by the invariance of X s , we have

P c
z̃ D fzx = P c

z̃ D fz
(

P c
zx

)
.

Substituting D fzx = x̃ into the equations above, we obtain

D fz
(

I + (I + L̂z)Sz
) = (

I + (I + L̂ z̃) S̃ z̃
)

F̄ z, (28)

where F̄ z = P c
z̃ D fz|Ec

z
. From (17) and (15), it follows that

∥∥( F̄ z)
−1

∥∥� e−λc

1 − μcμs
. (29)

Applying π s P s
z = π s to (28), we obtain from the invariance of X s

S̃ z̃ F̄ z = π s(D f )z(I + L̂z)Sz + π s(D f )z
∣∣

Ec
z
. (30)

We now use (30) to estimate ‖ S̃‖Cα : For zi ∈ graph(h) and z̃i = f (zi) ∈ graph(h̃), i = 1,2, we have

( S̃ z̃2
− S̃ z̃1

) F̄ z1 = π s(D f )z2(I + L̂z2)(Sz2 − Sz1)

+ π s((D f )z2(I + L̂z2) − (D f )z1(I + L̂z1)
)

Sz1

+ π s((D f )z2 − (D f )z1

) − S̃ z̃2
( F̄ z2 − F̄ z1).

From (A2) and Lemma 7, we obtain

∥∥π s(D f )z2(I + L̂z2)
∥∥
L(Es

z2
)
� eλs .

The bound in (27) follows from the inequality above, Lemma 5, (29), (26), and the Cα-property of D f ,
L̂ and S , the factor involving α in (27) coming from
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‖Sz1 − Sz2‖� ‖S‖Cα · ∣∣zc
1 − zc

2

∣∣α � ‖S‖Cα · (e−λc
∣∣z̃c

1 − z̃c
2

∣∣)α.

The proof of Proposition 11 is now complete.

B. C1,α property of W c. Let hc ∈ Wc be the fixed point of Γ , and let α be as in Proposition 11.
We will show that for any h ∈ Wc ∩ C1,α , the sequence {Dh(n)}n�0 is Cauchy in the C0-norm. It will
then follow that hc is differentiable with ‖Dh(n) − Dhc‖C0 → 0. Proposition 11(ii) further implies that
‖Dhc‖Cα � K‖D f ‖Cα .

Let h1,2 ∈ Wc ∩ C1. From Lemma 8, any stable manifold W s = W s
z has unique intersection points

with graph(h1,2); we denote them by z1,2, and let z̃1,2 = f (z1,2); equivalently, z̃1,2 are the points of
intersection of W s

f (z) with graph(h̃1,2).

Proceeding as in Part A, we let S1,2 = Sh1,2 . From (30), we obtain

(
S̃2

z̃2
− S̃1

z̃1

)
F̄ z1 = π s(D f )z2(I + L̂z2)

(
S2

z2
− S1

z1

)
+ π s((D f )z2(I + L̂z2) − (D f )z1(I + L̂z1)

)
S1

z1

+ π s((D f )z2 − (D f )z1

) − S̃2
z̃2

( F̄ z2 − F̄ z1).

Using (A2) and (29), we obtain

∥∥S̃2
z̃2

− S̃1
z̃1

∥∥ � eλs−λc

1 − μcμs

∥∥S2
z2

− S1
z1

∥∥ + K‖D f ‖Cα |z2 − z1|α. (31)

Since z1,2 are on the same stable fiber, one also has

|z2 − z1| � (1 + μs)
∣∣zs

2 − zs
1

∣∣. (32)

This leads to the following Inclination or λ-lemma:

Lemma 12. We let h1,2 ∈ Wc ∩ C1 , fix an arbitrary W s = W s
x, and let z1,2 be the unique points in

graph(h1,2) ∩ W s. For n � 1, we let h(n)
1,2 = Γ n(h1,2), and zn

1,2 ∈ graph(h(n)
1,2) ∩ W s

f n(x) . Then

∥∥(
Dh(n)

2

)
(zn

2)c − (
Dh(n)

1

)
(zn

1)c

∥∥� K

(
eλs−λ−

c

1 − μcμs

)n∥∥(Dh2)zc
2
− (Dh1)zc

1

∥∥

+ nK‖D f ‖Cα

(
eλs−λ−

c

1 − μcμs

)αn∣∣zs
2 − zs

1

∣∣α. (33)

Proof. Letting Sn,1 and Sn,2 be the operators associated to Dh(n)
1,2, we obtain by (31), (32) and

Lemma 10

∥∥Sn,2
zn

2
− Sn,1

zn
1

∥∥ �
(

eλs−λc

1 − μcμs

)n∥∥S2
z2

− S1
z1

∥∥

+ nK‖D f ‖Cα

(
eλs−λ−

c

1 − μcμs

)αn∣∣zs
2 − zs

1

∣∣α.

Following the proof of (B1) of Proposition 11, we obtain that
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∥∥(
Dh(n)

2

)
(zn

2)c − (
Dh(n)

1

)
(zn

1)c

∥∥� (1 + μsμc)
2
∥∥Sn,2

zn
2

− Sn,1
zn

1

∥∥ + K‖D f ‖Cα

∣∣zn
2 − zn

1

∣∣α.

Also, |zn
2 − zn

1| � (1 + μs)|(zn
2)

s − (zn
1)

s|. Thus by applying Lemma 10 and the above inequalities, we
complete the proof. �

To prove the assertion at the beginning of Part B, we now assume h1,2 ∈Wc ∩ C1,α , and write

∥∥(
Dh(n)

2

)
(zn

1)c − (
Dh(n)

1

)
(zn

1)c

∥∥
�

∥∥(
Dh(n)

2

)
(zn

2)c − (
Dh(n)

1

)
(zn

1)c

∥∥ + ∥∥Dh(n)
2

∥∥
Cα

∣∣(zn
2

)c − (
zn

1

)c∣∣α.

The first term is estimated in Lemma 12, and the second by

∣∣(zn
2

)c − (
zn

1

)c∣∣ �μs
∣∣(zn

2

)s − (
zn

1

)s∣∣ �μsenλs
∣∣zs

2 − zs
1

∣∣.
3.4. Removing assumption (A5)

Proof of Lemma 7, Theorem 1, Theorem 2. Notice that for all n ∈ Z
+ , assumptions (A1)–(A4), with

(A3) replaced by (A3′), are satisfied by f n with the same splitting X = Ec ⊕ Es and μc,s , but with
λc,s replaced by λ

(n)
c,s = nλc,s and with a replaced by a(n) = na. Since (A5) is satisfied by f n for some n

(depending only on μc,s and λc,s), it follows from Sections 3.1–3.3 that for the system defined by f n ,
there is

(i) a unique invariant center manifold W c ,
(ii) an invariant stable subbundle X s , and

(iii) an equivariant stable foliation F s .

Moreover, there exists α > 0 such that all relevant Cα-norms are as described in Theorems 1 and 2.
As ‖D f n‖Cα � const‖D f ‖Cα for a constant depending on ‖D f ‖ and n, it remains only to show that
the objects in (i)–(iii) are invariant under f .

Observe first that (A5) was not used in the construction of the graph transforms in the proofs
of Theorem 1, Lemma 7, and Theorem 2. Thus these graph transforms are well defined for f with-
out (A5).

What gives the desired results is that the uniqueness of the fixed points of the graph transforms
for f n imply that they are also fixed points for the corresponding graph transforms for f . As an
illustration, let h ∈ Wc be the unique fixed point of Γ f n , the graph transform defined by f n , and let

h̃ = Γ f (h) where Γ f is the graph transform for f . Since

f n( f
(
graph(h)

)) = f
(

f n(graph(h)
)) = f

(
graph(h)

)
,

i.e., Γ f n (h̃) = h̃, it follows that h̃ = h. �
4. Absolute continuity of stable foliations

Assumptions (A1)–(A4) are in effect throughout this section. Without loss of generality, we may

assume (A5) also by considering a power of f . Let Θ � eλs−λ
−
c

1−μcμs
be the constant in (A5), and let α be

as in Theorems 1 and 2.
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4.1. Preliminary estimates

For g : Ec → Es , we will use the notation Σg = graph(g). We begin with a lemma that is an
immediate consequence of Lemma 8:

Lemma 13. The following hold for all g ∈Wc :

(i) for every x ∈ X, W s
x meets Σg in exactly one point;

(ii) there is a homeomorphism T g : Ec → Σg such that for each xc ∈ Ec , T g(xc) is the unique point in
W s(xc) ∩ Σg .

Item (i) above asserts that Σg is a genuine global transversal to the stable foliation F s in Theo-
rem 2. Item (ii) defines the holonomy map between Ec and Σg . More generally, for any g1,2 ∈ Wc

the holonomy map T g1,g2 : Σg1 → Σg2 is given by

T g1,g2 = T g2 ◦ T −1
g1

.

As in Section 3.3, for g ∈ Wc , let g(n) = Γ n(g), n = 1,2, . . . . By the invariance of stable manifolds
(Theorem 2), we have, for g1,2 ∈Wc and n ∈ Z

+ , the relation

f n
∣∣
Σg2

◦ T g1,g2 = T
g(n)

1 ,g(n)
2

◦ f n
∣∣
Σg1

. (34)

Lemma 14. The following hold for all g1,2 ∈Wc , x ∈ Σg1 , y = T g1,g2 (x), and n � 1:

(i) |π c(x) − π c(y)| �μs|π s(x) − π s(y)|;
(ii) |π s( f nx) − π s( f n y)| � enλs |π s(x) − π s(y)|;

(iii) assuming additionally that g1,2 are C1 , we have

∥∥(
Dg(n)

1

)
π c( f nx) − (

Dg(n)
2

)
π c( f n y)

∥∥� 2KμcΘ
n + nK‖D f ‖CαΘnα

∣∣π s(x) − π s(y)
∣∣α

where Θ is the constant in (A5) and K is as in (33).

Item (i) is a property of stable manifolds; (ii) follows from Lemma 10, and (iii) follows from (33).
We consider next how the measures mΣg on Σg (see Section 1 for notation) are transformed

by the composite maps in (34). If g ∈ Wc is C1, then mΣg(n)
is related to mΣg via the Jacobian of

(D f n)|Σg . Since the mΣg -measures are induced from Lebesgue measure on Ec , this is equivalent to
studying |det(D F n

g)| where F n
g : Ec → Ec is defined by

F n
g

(
xc) = π c f n(xc + g

(
xc)), n = 1,2, . . . .

Notice that F g = F 1
g is invertible with Lip((F g)

−1)� e−λc .

Lemma 15. Given Q 0 > 0, there exists C0 � 1 such that for all g1, g2 ∈ Wc ∩ C1(Ec, Es) with
‖g1 − g2‖C0 � Q 0 , x ∈ Σg1 , y = T g1,g2 x and n � 0,

C−1
0 �

|det(D F n
g1

)π c x|
|det(D F n

g2)π c y| � C0.

Here C0 depends only on system constants, α, ‖D f ‖Cα and Q 0 .
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Proof. Taking logarithm of the quotient in question, we are led to terms of the form

∣∣log
∣∣det(D F

g(i)
1

)π c( f i x)

∣∣ − log
∣∣det(D F

g(i)
2

)π c( f i y)

∣∣∣∣,
which we claim to be

� C
∥∥(D F

g(i)
1

)π c( f i x) − (D F
g(i)

2
)π c( f i y)

∥∥
for some C independent of g1,2, i or x. This is because by (A4),

∥∥(D F g)xc
∥∥� M(1 + μc)ea

for all g ∈Wc that are C1 and xc ∈ Ec . This together with Lip((F g)
−1) � e−λc implies that (D F g)xc lies

in a compact region U ⊂ GL(k,R) where k = dim(Ec). The constant C above is the Lipschitz constant
of the mapping A �→ log |det(A)| for A ∈ U .

Since

(D F g)π c x = π c(D1 f )x + π c(D2 f )x Dgπ c x,

we have, for every i � 1,

∥∥(D F
g(i)

1
)π c( f i x) − (D F

g(i)
2

)π c( f i y)

∥∥
�

∥∥π c(D1 f ) f i x − π c(D1 f ) f i y

∥∥ + ∥∥π c(D2 f ) f i x − π c(D2 f ) f i y

∥∥∥∥(
Dg(i)

1

)
π c( f i x)

∥∥
+ ∥∥π c(D2 f ) f i y

∥∥∥∥(
Dg(i)

1

)
π c( f i x) − (

Dg(i)
2

)
π c( f i y)

∥∥
� M‖D f ‖Cα (1 + μc)(1 + μs)

α
∣∣π s( f ix

) − π s( f i y
)∣∣α

+ Mea(2KμcΘ
i + iK‖D f ‖CαΘ iα

∣∣π s(x) − π s(y)
∣∣α)

� C ′Θ̂ iα max
{‖g1 − g2‖α

C0 ,1
}

for some Θ < Θ̂ < 1.

To obtain the last line we have used

(i) |π s( f i x) − π s( f i y)|� eiλs |π s(x) − π s(y)| (Lemma 10), and
(ii) |π s(x) − π s(y)| � 1

1−μcμs
‖g1 − g2‖C0 .

Notice that C ′ does not depend on g1,2 or i.
Finally,

log
|det(D F n

g1
)π c x|

|det(D F n
g2)π c y| �

n−1∑
i=0

∣∣log
∣∣det(D F

g(i)
1

)π c( f i x)

∣∣ − log
∣∣det(D F

g(i)
2

)π c( f i y)

∣∣∣∣

� C
n−1∑
i=0

∥∥(D F
g(i)

1
)π c( f i x) − (D F

g(i)
2

)π c( f i y)

∥∥

� C
∞∑

i=0

C ′Θ̂ iα max
{‖g1 − g2‖α

C0 ,1
}

< ∞,

which completes the proof. �
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Lemma 16. Fix arbitrary λ < λ−
c . Given Q 1 > 0, there exists C1 � 1 such that for all g ∈ Wc ∩ C1,α with

‖Dg‖Cα � Q 1 and n ∈ Z
+ , if x, y ∈ graph(g) are such that | f n(x) − f n(y)| � enλ , then

C−1
1 �

|det(D F n
g)π c x|

|det(D F n
g)π c y| � C1.

Here C1 depends only on system constants, α, ‖D f ‖Cα , λ and Q 1 .

Proof. The idea is similar to that in the proof of Lemma 15: we need to show that |(D F g(i) )π c( f i x) −
(D F g(i) )π c( f i y)| decays at a rate independent of g, x, y or n. Proceeding as before, we have

∣∣(D F g(i) )π c( f i x) − (D F g(i) )π c( f i y)

∣∣
�

∥∥π c(D1 f ) f i x − π c(D1 f ) f i y

∥∥
+ ∥∥π c(D2 f ) f i x

(
Dg(i))

π c( f i x) − π c(D2 f ) f i y

(
Dg(i))

π c( f i y)

∥∥
� M

(‖D f ‖Cα
(
1 + μc)(1+α) + ea

∥∥Dg(i)
∥∥

Cα

) · ∣∣π c( f ix
) − π c( f i y

)∣∣α.

Using Proposition 11 to bound ‖Dg(i)‖Cα and noticing that

∣∣π c( f ix
) − π c( f i y

)∣∣ � Menλ−(n−i)λc � Meiλ

by Lemma 5, we complete the argument. �
Remark 2. Lemma 16 holds, in fact, if g is only C1, in which case the constant C1 depends on
‖g −hc‖C0 (instead of ‖Dg‖Cα ). This is because ‖Dgi − Dhc‖ → 0 exponentially fast by the Inclination
Lemma (Lemma 12) and hc ∈ C1,α . All the results in the next subsection remain valid under this
modified assumption.

4.2. Proof of absolute continuity

We will show that given Q 0, Q 1 > 0, there exists C2 > 1 such that the following holds for all
g1,2 ∈ Wc ∩ C1,α with ‖g1 − g2‖C0 � Q 0 and ‖Dg1,2‖Cα � Q 1: Let Ã ⊂ Σg1 be an arbitrary Borel
subset. Then

C−1
2 mΣg1

( Ã) � mΣg2

(
T g1,g2( Ã)

)
� C2mΣg1

( Ã). (35)

Equivalently, for every Borel subset A ⊂ Ec ,

C−1
2 m(A) �m

(
Ť g1,g2(A)

)
� C2m(A), (36)

where Ť g1,g2 (xc) � π c T g1,g2 (xc + g1(xc)). System constants aside, we permit C2 to depend only on α,
‖D f ‖Cα , Q 0 and Q 1.

Clearly, it suffices to prove (36) for bounded sets A, and since every bounded Borel set can be
approximated from the inside by a compact subset that is arbitrarily close to it in measure, it suffices
to prove (36) for compact sets. Finally, since the choice of g1 and g2 is arbitrary, it suffices to prove
the second inequality in (36).

We will use the notation Bc(xc, r) = {z ∈ Ec: |xc − z| < r}.
Let a compact set A ⊂ Ec be fixed, and let U be a small neighborhood of A such that

m(U ) � 2m(A). Since dist(A, ∂U ) > 0, there exists N1 such that for any n � N1 and any xc ∈ A,
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(
F n

g1

)−1(
Bc(F n

g1

(
xc), enλ

)) ⊂ U

where λ = λ−
c +λs

2 . Lemma 5 was used in this last step.
Next we choose N2 > N1 such that for any n > N2,

Ť gn
1,gn

2

(
Bc(F n

g1

(
xc), enλ

)) ⊂ Bc(F n
g2

(
Ť g1,g2

(
xc)),2enλ

)
.

This can be done because if x = xc + g1(xc) and y = T g1,g2 (x), then by Lemma 10,

∣∣F n
g1

(
xc) − F n

g2

(
Ť g1,g2

(
xc))∣∣ = ∣∣π c( f nx

) − π c( f n y
)∣∣

�μs
∣∣π s( f nx

) − π s( f n y
)∣∣

�μsenλs ∣∣π s(x) − π s(y)
∣∣.

Now for n � N2, we let An
1 = F n

g1
(A), and let {B1, . . . , B�} be a Besicovitch cover of An

1 by enλ-balls
centered at points in An

1, i.e., An
1 ⊂ ⋃

i Bi and no point in An
1 is contained in more than C∗ of these

balls where C∗ = C∗(dim(Ec)) is given by the Besicovitch Covering Lemma (see e.g. [9]).
For each i, we let xc

i be the center of Bi , yc
i = Ť g1,g2 (xc

i ), and B ′
i = Bc(yc

i ,2enλ). Since U ⊃⋃
i(F n

g1
)−1(Bi), we have

m(A) � 1

2
m(U ) � 1

2C∗
∑

i

m
((

F n
g1

)−1
(Bi)

); (37)

we have divided the right side by C∗ to compensate for potential overcount due to overlaps. Similarly,⋃
i(F n

g1
)−1(Bi) ⊃ A implies

m
(
Ť gn

1,gn
2
(A)

)
�

∑
i

m
((

F n
g2

)−1(
B ′

i

))
. (38)

Comparing (37) and (38), we see that to complete the proof, it remains to produce a constant C
which is permitted to depend on the same quantities as C2 such that for each i,

m
((

F n
g2

)−1(
B ′

i

))
� Cm

((
F n

g1

)−1
(Bi)

)
.

This inequality follows from the following comparisons: By Lemma 16, we have

det
(

D F n
g1

)(
xc

1

) ≈ det
(

D F n
g1

)(
xc

2

)
for all xc

1, xc
2 ∈ (

F n
g1

)−1
(Bi),

as well as the analogous conclusion for yc
1, yc

2 ∈ (F n
g2

)−1(B ′
i). The problem is therefore reduced to

showing that for xc ∈ Ec and yc = Ť g1,g2 (xc),

∣∣det
(

D F n
g2

)(
yc)∣∣ ≈ ∣∣det

(
D F n

g1

)(
xc)∣∣,

and that is guaranteed by Lemma 15.
The proof of Theorem 3 is now complete. �
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