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We use the QCD sum rules to evaluate the mass of a possible scalar mesonic state that couples to a
molecular D∗

s D̄∗
s current. We find a mass mD∗

s D∗
s
= (4.14 ± 0.09) GeV, which is in an excellent agreement

with the recently observed Y (4140) charmonium state. We consider the contributions of condensates up
to dimension-eight, we work at leading order in αs and we keep terms which are linear in the strange
quark mass ms . We also consider a molecular D∗ D̄∗ current and we obtain mD∗ D∗ = (4.13±0.10), around
200 MeV above the mass of the Y (3930) charmonium state. We conclude that it is possible to describe
the Y (4140) structure as a D∗

s D̄∗
s molecular state or even as a mixture of D∗

s D̄∗
s and D∗ D̄∗ molecular

states.
© 2009 Elsevier B.V. All rights reserved.
There is growing evidence that at least some of the new
charmonium states recently discovery in the B-factories are non-
conventional cc̄ states. Some possible interpretations for these
states are mesonic molecules, tetraquarks, or/and hybrid mesons.
Some of these new mesons have their masses very close to the
meson–meson threshold like the X(3872) [1] and the Z+(4430)

[2]. Therefore, a molecular interpretation for these states seems
natural. The most recent acquisition for this list of peculiar states
is the narrow structure observed by the CDF Collaboration in the
decay B+ → Y (4140)K + → J/ψφK + . The mass and width of this
structure is M = (4143±2.9±1.2) MeV, Γ = (11.7+8.3

−5.0 ±3.7) MeV
[3]. Since the Y (4140) decays into two IG ( J P C ) = 0−(1−−) vector
mesons, it has positive C and G parities.

There are already some theoretical interpretations for this
structure. Its interpretation as a conventional cc̄ state is compli-
cated because, as pointed out by the CDF Collaboration [3], it
lies well above the threshold for open charm decays and, there-
fore, a cc̄ state with this mass would decay predominantly into
an open charm pair with a large total width. In Ref. [4], the au-
thors interpreted the Y (4140) as the molecular partner of the
charmonium-like state Y (3930), which was observed by Belle
and BaBar Collaborations near the J/ψω threshold [5]. They con-
cluded that the Y (4140) is probably a D∗

s D̄∗
s molecular state with

J P C = 0++ or 2++ . In Ref. [6] they have interpreted the Y (4140)

as an exotic hybrid charmonium with J P C = 1−+ .
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In this work, we use the QCD sum rules (QCDSR) [7–9], to study
the two-point function based on a D∗

s D̄∗
s current with J P C = 0++ ,

to see if the new observed resonance structure, Y (4140), can
be interpreted as such molecular state. In previous calculations,
the hidden charm mesons X(3872), Z+(4430), Y (4260), Y (4360),
Y (4660), Z+

1 (4050) and Z+
2 (4250) have been studied using the

QCDSR approach as tetraquark or molecular states [10–16]. In
some cases a very good agreement with the experimental mass
was obtained.

The starting point for constructing a QCD sum rule to evaluate
the mass of a hadronic state, H , is the correlator function

Π(q) = i

∫
d4x eiq.x〈0|T [

jH (x) j†
H (0)

]|0〉, (1)

where the current j†
H creates the states with the quantum num-

bers of the hadron H . A possible current that couples with a D∗
s D̄∗

s
molecular state with IG J P C = 0+0++ is

j = (s̄aγμca)
(
c̄bγ

μsb
)
, (2)

where a and b are color indices.
The QCD sum rule is obtained by evaluating the correlation

function in Eq. (1) in two ways: in the OPE side, we calculate the
correlation function at the quark level in terms of quark and gluon
fields. We work at leading order in αs in the operators, we con-
sider the contributions from condensates up to dimension eight
and we keep terms which are linear in the strange quark mass ms .
In the phenomenological side, the correlation function is calculated
by inserting intermediate states for the D∗

s D̄∗
s molecular scalar
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state. Parameterizing the coupling of the scalar state H = D∗
s D̄∗

s ,
to the current j, in Eq. (2) in terms of the parameter λ

〈0| j|H〉 = λ, (3)

the phenomenological side of Eq. (1) can be written as

Πphen(q2) = λ2

M2
H − q2

+
∞∫

0

ds
ρcont(s)

s − q2
, (4)

where the second term in the RHS of Eq. (4) denotes higher scalar
resonance contributions.

It is important to notice that there is no one to one corre-
spondence between the current and the state, since the current in
Eq. (2) can be rewritten in terms of sum an over tetraquark type
currents, by the use of the Fierz transformation. However, the pa-
rameter λ, appearing in Eq. (3), gives a measure of the strength of
the coupling between the current and the state.

The correlation function in the OPE side can be written as a
dispersion relation:

ΠOPE(q2) =
∞∫

4m2
c

ds
ρOPE(s)

s − q2
, (5)

where ρOPE(s) is given by the imaginary part of the correlation
function: πρOPE(s) = Im[ΠOPE(s)].

As usual in the QCD sum rules method, it is assumed that
the continuum contribution to the spectral density, ρcont(s) in
Eq. (4), vanishes bellow a certain continuum threshold s0. Above
this threshold, it is given by the result obtained with the OPE.
Therefore, one uses the ansatz [17]

ρcont(s) = ρOPE(s)Θ(s − s0). (6)

To improve the matching between the two sides of the sum
rule, we perform a Borel transform. After transferring the contin-
uum contribution to the OPE side, the sum rules for the scalar
meson, described by a scalar D∗

s D∗
s molecular current, up to

dimension-eight condensates, using factorization hypothesis, can
be written as:

λ2e
−m2

D∗
s D∗

s
/M2

=
s0∫

4m2
c

ds e−s/M2
ρOPE(s), (7)

where

ρOPE(s) = ρpert(s) + ρ〈s̄s〉(s) + ρ〈G2〉(s)

+ ρmix(s) + ρ〈s̄s〉2
(s) + ρmix〈s̄s〉(s), (8)

with

ρpert(s) = 3

29π6

αmax∫
αmin

dα

α3

1−α∫
βmin

dβ

β2
(1 − α − β)

[
(α + β)m2

c − αβs
]3

×
([

(α + β)m2
c − αβs

β

]
− 4mcms

)
,

ρ〈s̄s〉(s) = 3〈s̄s〉
25π4

αmax∫
αmin

dα

α

{
ms

(m2
c − α(1 − α)s)2

1 − α

− mc

1−α∫
dβ

[
(α + β)m2

c − αβs
]

βmin
×
[

(α + β)m2
c − αβs

αβ
− 4msmc

β

]}
,

ρ〈G2〉(s) = m2
c 〈g2G2〉
28π6

αmax∫
αmin

dα

α3

1−α∫
βmin

dβ (1 − α − β)

× [
(α + β)m2

c − αβs
]
,

ρmix(s) = −m2
0〈s̄s〉

26π4

{
3mc

αmax∫
αmin

dα

α

[
m2

c − α(1 − α)s
]

− ms
(
8m2

c − s
)√

1 − 4m2
c /s

}
,

ρ〈s̄s〉2
(s) = mc〈s̄s〉2

8π2

{√
1 − 4m2

c /s(2mc − ms)

− msm
2
c

1∫
0

dα

α
δ

(
s − m2

c

α(1 − α)

)}
, (9)

where the integration limits are given by αmin = (1 −√
1 − 4m2

c /s )/2, αmax = (1 +
√

1 − 4m2
c /s )/2, βmin = αm2

c /

(sα − m2
c ), and we have used 〈s̄gσ .Gs〉 = m2

0〈s̄s〉. We have ne-
glected the contribution of the dimension-six condensate 〈g3G3〉,
since it is assumed to be suppressed by the loop factor 1/16π2.
We also include a part of the dimension-8 condensate contribu-
tions, related with the mixed condensate–quark condensate con-
tribution:

ρmix〈s̄s〉(s) = −mcm2
0〈s̄s〉2

16π2

1∫
0

dα δ

(
s − m2

c

α(1 − α)

)

×
[
(2mc − ms)

(
1 + m2

c

α(1 − α)M2

)

− 5

3
ms

(
1 − α + m2

c

αM2
+ m4

c

2α2(1 − α)M4

)]
. (10)

It is important to point out that a complete evaluation of the
dimension-8 condensate, and higher dimension condensates con-
tributions, require more involved analysis [18], which is beyond
the scope of this calculation.

To extract the mass mD∗
s D∗

s
we take the derivative of Eq. (7)

with respect to 1/M2, and divide the result by Eq. (7).
For a consistent comparison with the results obtained for the

other molecular states using the QCDSR approach, we have con-
sidered here the same values used for the quark masses and con-
densates as in Refs. [10–16,19]: mc(mc) = (1.23 ± 0.05) GeV, ms =
(0.13 ± 0.03) GeV, 〈q̄q〉 = −(0.23 ± 0.03)3 GeV3, 〈s̄s〉 = 0.8〈q̄q〉,
〈s̄gσ .Gs〉 = m2

0〈s̄s〉 with m2
0 = 0.8 GeV2, 〈g2G2〉 = 0.88 GeV4.

The Borel window is determined by analysing the OPE con-
vergence and the pole contribution. To determine the minimum
value of the Borel mass we impose that the contribution of the
dimension-8 condensate should be smaller than 20% of the total
contribution.

In Fig. 1 we show the contribution of all the terms in the
OPE side of the sum rule. From this figure we see that for M2 �
2.3 GeV2 the contribution of the dimension-8 condensate is less
than 20% of the total contribution. Therefore, we fix the lower
value of M2 in the sum rule window as M2

min = 2.3 GeV2.
The maximum value of the Borel mass is determined by impos-

ing that the pole contribution must be bigger than the continuum
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Fig. 1. The OPE convergence for the D∗
s D∗

s molecule in the region 2.2 � M2 �
3.2 GeV2 for

√
s0 = 4.6 GeV. We plot the relative contributions starting with the

perturbative contribution (long-dashed line), and each other line represents the rel-
ative contribution after adding of one extra condensate in the expansion: +〈s̄s〉
(dashed line), +〈g2G2〉 (dotted line), +m2

0〈s̄s〉 (dot-dashed line), +〈s̄s〉2 (line with
circles), +m2

0〈s̄s〉2 (line with squares).

Table 1
Upper limits in the Borel window for the D∗

s D∗
s state obtained from the sum rule

for different values of
√

s0.
√

s0 (GeV) M2
max (GeV2)

4.4 2.49
4.5 2.68
4.6 2.87
4.7 3.06

contribution. In Table 1 we show the values of M2
max. In our nu-

merical analysis, we will consider the range of M2 values from
2.3 GeV2 until the one allowed by the pole dominance criterion
given in Table 1.

The continuum threshold is a parameter of the calculation
which, in general, is connected to the mass of the studied state,
H , by the relation s0 ∼ (mH + 0.5 GeV)2. Therefore, to choose a
good range to the value of s0 we extract the mass from the sum
rule, for a given s0, and accept such value if the obtained mass
is in the range 0.4 GeV to 0.6 GeV smaller than

√
s0. Using these

criteria, we obtain s0 in the range 4.5 � √
s0 � 4.7 GeV. However,

because of the complex spectrum of the exotic states, some times
lower continuum threshold values are favorable in order to com-
pletely eliminate the continuum above the resonance state. There-
fore, here we will also include the result for the scalar meson mass
for

√
s0 = 4.4 GeV.

In Fig. 2, we show the scalar meson mass, for different val-
ues of

√
s0, in the relevant sum rule window, with the upper

and lower validity limits indicated. From this figure we see that
the results are very stable as a function of M2. We see also that
for

√
s0 = 4.4 GeV, we get a very narrow Borel window, and for√

s0 = 4.3 GeV there is no allowed Borel window.
Using the Borel window, for each value of s0, to evaluate the

mass of the scalar meson and then varying the value of the
continuum threshold in the range 4.4 � √

s0 � 4.7 GeV, we get
mD∗

s D∗
s
= (4.14 ± 0.08) GeV.

Up to now we have kept the values of the quark masses and
condensates fixed. To check the dependence of our results with
these values we fix

√
s0 = 4.55 GeV and vary the other parameters
Fig. 2. The scalar meson mass, described with a D∗
s D∗

s molecular current, as a func-
tion of the sum rule parameter (M2) for

√
s0 = 4.4 GeV (dotted line),

√
s0 = 4.5 GeV

(solid line),
√

s0 = 4.6 GeV (dot-dashed line) and
√

s0 = 4.7 GeV (dashed line). The
crosses indicate the upper and lower limits in the Borel region.

Table 2
Values obtained for mD∗

s D∗
s

, in the Borel window 2.38 � M2 � 2.72 GeV2, when the
parameters vary in the ranges showed.

Parameter mD∗
s D∗

s
(GeV)

mc = (1.23 ± 0.05) GeV 4.15 ± 0.08
ms = (0.13 ± 0.03) GeV 4.14 ± 0.02
〈q̄q〉 = −(0.23 ± 0.03)3 GeV3 4.14 ± 0.03
m2

0 = (0.8 ± 0.1) GeV2 4.15 ± 0.07
0.5 � K � 2 4.14 ± 0.03

in the ranges: mc = (1.23 ± 0.05) GeV, ms = (0.13 ± 0.03) GeV,
〈q̄q〉 = −(0.23 ± 0.03)3 GeV3, m2

0 = (0.8 ± 0.1) GeV2. In our calcu-
lation we have assumed the factorization hypothesis. However, it
is important to check how a violation of the factorization hypoth-
esis would modify our results. For this reason we multiply 〈s̄s〉2

in Eqs. (9) and (10) by a factor K and we vary K in the range
0.5 � K � 2. (See Table 2.)

Taking into account the uncertainties given above we finally ar-
rive at

mD∗
s D∗

s
= (4.14 ± 0.09) GeV, (11)

in an excellent agreement with the mass of the narrow structure
Y (4140) observed by CDF.

One can also deduce, from Eq. (7), the parameter λ defined in
Eq. (3). We get:

λ = (4.22 ± 0.83) × 10−2 GeV5. (12)

From the above study it is very easy to get results for the D∗ D̄∗
molecular type current with J P C = 0++ . For this we only have to
take ms = 0 and 〈s̄s〉 = 〈q̄q〉 in Eqs. (9), (10). This study was already
done in Ref. [15] considering 4.5 � √

s0 � 4.7 GeV. Although in the
case of the D∗D∗ scalar molecular current we get a worse Borel
convergence than for the D∗

s D∗
s scalar molecular current, as can

be seen by Fig. 3, there is still a good OPE convergence for M2 �
2.5 GeV2.

If we allow also for the D∗ D̄∗ current values of the contin-
uum threshold in the range 4.4 � √

s0 � 4.7 GeV we get mD∗ D∗ =
(4.13 ± 0.11) GeV. Therefore, from a QCD sum rule study, the dif-
ference between the masses of the states that couple with scalar
D∗

s D̄∗
s and D∗ D̄∗ currents, is consistent with zero. The mass ob-
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Fig. 3. Same as Fig. 1 for the D∗ D∗ current for
√

s0 = 4.6 GeV.

Fig. 4. The relative ratio between the masses of the scalar states mD∗
s D∗

s
and mD∗ D∗

for
√

s0 = 4.55 GeV.

tained with the D∗ D̄∗ scalar current is about 100 MeV above the
D∗D∗(4020) threshold. This could be an indication that there is a
repulsive interaction between the two D∗ mesons. Strong interac-
tions effects might lead to repulsive interactions that could result
in a virtual state above the threshold. Therefore, this structure may
or may not indicate a resonance. However, considering the errors,
it is not compatible with the observed Y (3940) charmonium-like
state.

In Fig. 4 we show the relative ratio (mD∗
s D∗

s
− mD∗ D∗)/mD∗

s D∗
s

as
a function of the Borel mass for

√
s0 = 4.55 GeV. From this figure

we can see that the ratio is very stable as a function of M2 and
the difference between the masses is smaller than 0.5%. Although
the ratio is shown for

√
s0 = 4.55 GeV, the result is indiscernible

from the one shown in Fig. 4 for other values of the continuum
threshold in the range 4.4 � √

s0 � 4.7 GeV.
This result for the mass difference is completely unexpected

since, in general, each strange quark adds approximately 100 MeV
to the mass of the particle. Therefore, one would naively expect
that the mass obtained with the D∗

s D∗
s current should be around
200 MeV heavier than the mass obtained with the D∗D∗ current.
This was, for instance, the result obtained in Ref. [14] for the vec-
tor states described with the molecular currents Ds0 D̄∗

s and D0 D̄∗ ,
where the masses obtained were: mDs0 D̄∗

s
= (4.42 ± 0.10) GeV and

mD0 D̄∗ = (4.27 ± 0.10) GeV.
For the value of the parameter λ we get:

λD∗ D∗ = (4.20 ± 0.96) × 10−2 GeV5. (13)

Therefore, comparing the results in Eqs. (12) and (13) we conclude
that the currents couple with similar strength to the corresponding
states, and that both, D∗

s D̄∗
s and D∗ D̄∗ scalar molecular currents

describes scalar mesons with masses compatible with the recently
observed Y (4140) narrow structure. The fact that the Y (4140) was
observed in the decay Y (4140) → J/ψφ, could indicate that the
D∗

s D̄∗
s assignment is more compatible with its quark content. How-

ever, the D∗ D̄∗ assignment cannot be excluded since they have the
same quantum numbers. Another interesting interpretation is that
the Y (4140) could be a mixture of these two molecular states.

In conclusion, we have presented a QCDSR analysis of the two-
point function based on D∗

s D̄∗
s and D∗ D̄∗ molecular type currents

with J P C = 0++ . Our findings indicate that the Y (4140) narrow
structure observed by the CDF Collaboration in the decay B+ →
Y (4140)K + → J/ψφK + can be very well described by using a
scalar D∗

s D̄∗
s current or a scalar D∗ D̄∗ current. Therefore it is even

possible that the Y (4140) be a mixture of these two molecular
states.

Although the authors of Ref. [4] interpreted the Y (4140) as a
D∗

s D̄∗
s molecular scalar state and the Y (3930) as a D∗ D̄∗ molec-

ular scalar state, we have obtained similar masses for the states
that couple with the scalars D∗

s D̄∗
s and D∗ D̄∗ currents. Therefore,

from a QCD sum rule point of view, the charmonium-like state
Y (3930), observed by Belle and BaBar Collaborations, has a mass
around 200 MeV smaller than the state that couples with a D∗ D̄∗
scalar current and, therefore, cannot be well described by such a
current.

While this work has been finalized, a similar calculation was
presented in Ref. [20]. However, the author of Ref. [20] arrived to
a different conclusion.
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