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Neural stem cell implantations have been extensively investigated for treatment of brain diseases such as
stroke. In order to follow the localization and functional status of cells after implantation noninvasive
imaging is essential. Therefore, we developed a comprehensive multi-modality platform for in vivo
imaging of graft localization, density, and survival using 19F magnetic resonance imaging in combination
with bioluminescence imaging. We quantitatively analyzed cell graft survival over the first 4 weeks after
transplantation in both healthy and stroke-damaged mouse brain and correlated our findings of graft
vitality with the host innate immune response. The multi-modality imaging platform will help to
improve cell therapy also in context other than stroke and to gain indispensable information for clinical
translation.

� 2013 The Authors. Published by Elsevier Ltd. Open access under CC BY-NC-ND license.
1. Introduction

Transplantation of stem cells is an appealing strategy for a more
efficient treatment of stroke since the disease leads to widespread,
irreversible cell loss. Neural stem cells (NSCs) are of particular in-
terest for therapy since they can differentiate into all neural cell
types without tumorigenic potential. NSCs isolated from embry-
onic, fetal and adult mammalian tissue and derived from embry-
onic or induced-pluripotent stem cells have been used in
experimental stroke therapy [1,2]. Functional recovery was asso-
ciated to some extent with NSC migration and integration.
Furthermore, modulation of inflammation, angiogenesis, cell death,
and plasticity have been described [2]. However, before stem cells
can be used for the treatment of patients, the timing, route of de-
livery, implantation site, and dosage need to be optimized in animal
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studies [3]. To this end, noninvasive imaging provides information
about the spatio-temporal dynamics of cells after transplantation
and ideally about their functional state. Thus far, the imaging mo-
dality of choice to study cell migration in deep tissues with high
resolution is 1H magnetic resonance imaging (MRI) of cells that
have been pre-labeled with superparamagnetic iron oxide (SPIO)
particles [4]. However, the contrast generated by SPIO-labeled cells
is ambiguous against non-homogenous background tissue and cell
quantification is extremely difficult. Recently, we and others
demonstrated NSC imaging using perfluorocarbon (PFC)-based cell
labels, which are detectable via fluorine magnetic resonance im-
aging (19F-MRI) [5e7]. 19F-MRI provides highly specific informa-
tion on the localization of cells due to absence of 19F in biological
tissue. Moreover, it allows quantification of cell numbers in vivo [8].
However, both SPIO- and PFC-based MRI do not provide informa-
tion on cell viability or functionality. In recent studies, this was
overcome by combining SPIO labels with a genetic “label”, the
luciferase gene [9e11]. Luciferases, in the presence of their sub-
strate, generate a natural form of chemiluminescence called
bioluminescence. The luciferase gene can be expressed in
mammalian cells, which allows the tracking of genetically modified
cells in the living animal quantitatively and noninvasively by
bioluminescence imaging (BLI). Since the light is generated from
within the living animal and there is no endogenous background
signal, BLI is very sensitive. For the experiments reported here, a
 license.
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modified click beetle luciferase (CBG99) was used, which emits
light at 543 nm and is particularly favorable for in vivo BLI due to its
high quantum yield [12].

In previous invasive experiments, a large fraction of cells was
reported to die after implantation to the brain [13e15] and the
number of surviving cells could not be improved by implanting
more cells in a model of stroke [16]. Exact mechanisms and the
temporal profile of this cell loss are largely unknown since invasive
studies provide only snapshot data from single animals. The
rejection by the host innate immune system is thought to be a key
player particularly in allogeneic and xenogeneic grafts [17,18].
Interestingly, global cerebral ischemia transiently enhances NSC
graft survival in immunocompetent mice [19] indicating that the
balance between trophic and inflammatory signals is shifted to-
ward improved cell viability.

Since similar cues associated with neuroinflammation may also
be active after focal cerebral ischemia and direct comparison of NSC
graft survival in healthy and stroke-damaged tissue is still pending,
we developed a quantitative framework to assess transplanted
stem cell graft localization and survival in vivo using 19F-MRI and
BLI. To lower the risk of rejection and in order to focus on the
impact of the innate immune system on graft survival we used T-
lymphocyte deficient Nu/Nu mice. Using our newly developed 19F-
MRI-optical imaging platform in mice that received an NSC implant
after focal cerebral ischemia we aimed to i) follow the spatio-
temporal dynamics of NSCs in a quantitative manner (19F-MRI)
and assess graft survival (BLI), ii) compare survival of NSCs in the
naïve and stroke-damaged brain (BLI) and iii) correlate graft sur-
vival with the innate immune system response using antibody
staining of activated microglia and astrocytes.

2. Materials and methods

2.1. Study design

NMRI-Foxn1nu/Foxn1nu mice (age 8e10 weeks, 25e30 g, male from Janvier,
Saint Berthevin Cedex, France) were divided into the following groups: naïve mice
that received implantations of multi-labeled NSCs (n ¼ 7), pure 19F agent (n ¼ 3),
nonlabeled NSCs (n ¼ 12), or HBSS (n ¼ 3) and mice that underwent middle cerebral
artery occlusion (MCAO) and received implantation of multi-labeled NSCs (n ¼ 4).
Animals underwent sequential BLI and MRI up to four weeks. All experiments were
conducted according to the guidelines laid out in the German Animal Welfare Act
and approved by the local authorities. Numbers represent final numbers after
exclusion of animals that did not show significant signal in one of the imaging
modalities at the first imaging session. Stroke animals that did not have a lesion on
T2-weighted MR images 24 h after surgery or that lost more than 20% bodyweight
were also excluded. These criteria were agreed on before the study. One stroke
animal was excluded retrospectively since 19F MR images showed strong signal
from directly underneath the skin. This indicated a failed transplantation during
which cells were pushed back through the injection canal. Replicates are indicated
throughout the text and were always true experimental replicates.

2.2. Generation of cell line

Radial glia-like NSCs were derived from the murine embryonic stem cell line
CGR8 (generous gift from Prof. A. Sachinidis, Institute for Neurophysiology, Uni-
versity at Cologne, Germany) by adaption of existing protocols [20,21]. The click
beetle luciferase CBG99 from pGL3-CBG99 (Promega, Madison, USA)was cloned into
the multiple cloning site (MCS) of the lentiviral expression vector pRLL-PGK [22]
(kind gift of Prof. Hoeben, Leiden University Medical Center, Leiden, The
Netherlands) by the restriction enzymes NheI and XbaI. N2EuroCBG99 cells were
generated by lentiviral-vector mediated transduction [22]. For detailed description
see Supplementary materials and methods.

A gene marker profile analysis via reverse transcription polymerase chain re-
action (RT-PCR) of 20 genes was performed. For the complete protocol and list of
primer pairs (Table S1) see Supplementary materials and methods.

2.3. Cell labeling

Cells were seeded (63,000 cells/cm2) 4 h before labeling on 6-well plates
(Greiner Bio-One, Germany). A PFC nanoemulsionwith or without fluorescence label
(CS-1000 or CS green, Celsense Inc., Pittsburgh, USA) was added at 25 ml/ml for 42 h.
A subgroup of 19F-labeled cells received an additional permanent, intracellular
fluorescence label (CellTracker Orange e CTO, Life Technologies, Carlsbad, USA)
according to the manufacturer’s protocol. (Multi-)Labeled cells and unlabeled con-
trol cells were harvested with Accutase (PAA Laboratories GmbH, Cölbe, Germany)
and centrifuged at 250 � g for 3 min, washed 3� with PBS (PAA) to remove label
excess and counted by the trypan blue exclusion method to determine the viable/
dead ratio. For further experiments the labeled cells were subsequently prepared in
one of the following ways: i) dissolved in HBSS (Life Technologies) for trans-
plantation (150,000 cells/ml), ii) fixed with paraformaldehyde (PFA) to determine
19F/cell with MR spectroscopy as previously described [6], or iii) plated for cell
characterization.

2.4. Characterization of multi-labeled NSCs

To assess possible adverse effects of the multi-labeling on cell function, we
performed extensive in vitro tests of viability, migration, proliferation, differentia-
tion, and luciferase expression on single-labeled (19F or CTO) andmulti-labeled (19F
and CTO) CBG99 þ NSCs. Wildtype (WT) and unlabeled cells served as controls.
These assays are described in Supplementary materials and methods.

2.5. Middle cerebral artery occlusion

Focal cerebral ischemia was induced using the filament model as described by
Bahmani et al. [23]. Briefly, mice were anesthetized with 1e2% isoflurane in a O2/
N2O (30:70%) and received a subcutaneous (s.c.) injection of 4 mg/kg buprenorphin
(Temgesic, Merck, Darmstadt, Germany) for analgesia. A silicon rubber-coated fila-
ment with a tip diameter of 170 mm (Doccol Corporation, Sharon, MAUSA) was used
to block the blood flow to the middle cerebral artery (MCA). Animals were allowed
to recover during the 30 min occlusion and subsequently reanesthetized to initiate
reperfusion by filament removal. The common carotid artery (CCA) was perma-
nently ligated. 24 h after MCAO, animals were scanned with T2-weighted MRI in
order to delineate the lesion and to determine stereotactic coordinates for peri-
infarct implantations at 48 h post stroke.

2.6. Cell implantation

Implantation as described in detail elsewhere [24] was applied 48 h after MCAO.
T2-weighted MRI of the peri-infarct zone 24 h after MCAO was used to determine
implantation coordinates. Briefly, micewere anesthetizedwith Isoflurane in O2:N2O
(30:70%), and 4 mg/kg Carprofen (Pfizer, Berlin, Germany) was injected s.c. for
analgesia. During surgery, mice remained fixed in a stereotactic frame (Stoelting,
Dublin, Ireland). For all naïve and stroke animals, the following coordinates relative
to bregma were selected using a stereotactic instrument (Stoeltin): AP þ0.5; L þ2.0;
DV �3.0. 300,000 NSCs were injected into the brain through a Hamilton syringe
(26G needle) using a micropump system.

2.7. Bioluminescence imaging

Animals were anesthetized with 2% Isoflurane in 100% O2, injected with 150mg/
kg D-Luciferin sodium (Synchem, Felsberg, Germany) i.p. and placed on a custom-
made holder with two side view mirrors. The time lag between substrate injec-
tion and acquisition was recorded for each experiment and used for time-line
correction. Bioluminescence data was acquired in list mode for 30 min with the
Photon Imager (Biospace Lab, Paris, France) and analyzed by calculations on dynamic
time curves with 5 and 60 s temporal resolution [25]. BLI signal change is expressed
in % in relation to the data from the first week (day 1 or 7) after transplantation. For
multimodal imaging experiments, animals were allowed to recover for at least 6 h
before 19F-MRI to ensure wash-out of Isoflurane from the earlier BLI experiment.

2.8. Magnetic resonance imaging

MRI was carried out on a Biospec 11.7 T animal scanner system (Bruker BioSpin,
Ettlingen, Germany). For radiofrequency transmission and reception, we used a
custom-built, inductively coupled, single-loop surface coil of 20 mm, tunable from
470 MHz for 19F up to 500 MHz for 1H. Anesthesia was initiated using Ketamine/
Xylazine (100 mg kg�1/10 mg kg�1 i.p.) and prolonged after 40 min by Ketamine
(25 mg kg�1 s.c. every 15 min). Respiration rate was monitored using a pressure
sensitive pad placed under the thorax, body temperature was maintained at 37 �C
with an in-house feedback-controlled system, and 100% oxygen was delivered
through a nose cone. Animals were fixed with ear bars in standard animal holders
(Bruker BioSpin). Anatomical 1H MRI was performed with a turbo spin echo
sequence (repetition time/effective echo time ¼ 2.2 s/42.8 ms, 8 echoes per exci-
tation, number of averages ¼ 4, 20 consecutive, coronal, 0.5 mm thick slices, field of
view ¼ 2.28 * 1.92 cm2, 192 * 128 matrix, acquisition time ¼ 2:21 min,
bandwidth ¼ 50 kHz). 19F images were acquired with the same sequence and
matching geometry but slightly different parameters: effective echo time ¼ 10.5 ms,
number of averages ¼ 256, 10 consecutive, 1 mm thick slices, 72 * 48 matrix,
BW ¼ 15 kHz, TA ¼ 56:19 min). The imaging session did not exceed 1.5 h. Total
integrated 19F signal-to-noise ratio (SNR) of each graft was analyzed as described
previously [6]. To study NSC migration, images were registered with an affine
transformation to a template mouse brain (average of high resolution T2-weighted
MR images from 6 Nu/Numice) using FMRIB Software Library (http://www.fmrib.ox.
ac.uk/fsl/).

http://www.fmrib.ox.ac.uk/fsl/
http://www.fmrib.ox.ac.uk/fsl/
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Fig. 1. In vitro characterization of multi-labeled cells. (A) Fluorescence images of multi-labeled cells counterstained with Hoechst show colocalization of 19F agent CS-green and
CellTracker Orange (CTO) in the cytoplasm. Scale bar represents 10 mm (BeC) Trypan blue exclusion assay showed no effect on cell viability but reduced survival rate of cells labeled
with the 19F agent in relation to unlabeled control. (D) Directly after 19F labeling, CBG99 cell proliferation was significantly reduced compared to control cells before labeling. (E)
Migration assessed via scratch assay was similar for all cell types and labeling conditions. Only for CBG99 cells a slight effect of 19F labeling on wound size after 28 h was found. (F)
Highly sensitive PrestoBlue cell viability assay showed a long-term effect of the 19F agent, CTO, and the multi-label on cell viability at 14 days. (G) The impact of the single- and
multi-labeling on CBG99 mRNA level was validated by qPCR. Only the combination of both labels induced a reduction of CBG99 transcription in cells passaged for 14 days. (H) Glial
(GFAPþ) and neuronal (DCXþ) differentiation potential was not affected by the 19F agent. */**: Significance level p � 0.05/0.01, all values presented as mean � standard deviation.
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2.9. Histology

Cells were fixed with 4% PFA before immunocytochemistry (ICC), which was
performed as described in detail elsewhere [24]. Antibodies are listed in Table S2.
The nuclei were counterstained by Hoechst 33342 (SigmaeAldrich) and the cells
finally mounted within Aquamount (Life Technologies). ICC was visualized under a
40� objective on a fluorescence microscope (Keyence, Neu-Isenburg, Germany) and
analyzed with ImageJ. Doublecortin (DCX) and glial fibrillary acidic protein (GFAP)
positive cells were quantified by counting cells manually on 5 randomly chosen
fields of view.

For immunohistochemistry (IHC), mice were perfused transcardially under
Isoflurane anesthesia with saline followed by 4% PFA. The brains were removed and
freshly frozen in �40 �C cold 2-methylbutane and stored at �80 �C. 10e14 mm thick
sections were cut in the coronal plane using a cryostat (Leica, Wetzlar, Germany).
IHC was performed on the basis of a previously described protocol [14]. Antibodies
are listed in Table S2. For Iba1, Ki67 antigen retrieval with 10 mM citrate buffer and
fixation in acetone was applied. For Iba1 staining, HRP-DAB detection was used by
applying a secondary antibody coupled to horseradish peroxidase (HRP) and 3,30

diaminobenzidine tetrahydrochloride (DAB).
2.10. Statistics

All statistical analyses were carried out in SPSS (Version 20, IBM SPSS statistics,
Ehningen, Germany). For longitudinal investigations repeated measures ANOVAwas
used followed by post hoc pairwise comparison with Bonferroni correction. For
single time point experiments a Student’s t-test was used for the comparison of
experimental groups. A p-value �0.05 was considered to be significant. qPCR results
were statistically analyzed with REST calculation as previously described [24]. All
values are expressed as mean � standard deviation.
3. Results

3.1. Generation and in vitro characterization of multi-labeled NSCs

The stable proliferating murine NSC line derived from embry-
onic stem cells was previously characterized as radial glia-like [21].
In agreement, we confirmed that NSCs are BLBPþ/GFAP� and show
an NSC expression pattern with Nestinþ/Sox1�/Sox2þ/
Musashi1þ/Prominin-1þ. In addition, the oligodendrogenic marker
Olig2 and GalC are present. Contamination with pluripotent
(Oct4þ/Nanogþ/5T4�), mesodermal (Brachyuryþ) and endo-
dermal (Gata6þ) cells was excluded. The cells can be differentiated
into neurons and glia, shown by the onset of DCX and GFAP
expression and corresponding immuno-stainings (Fig. S1A, C).
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For in vivo imaging NSCs were transduced with a lentiviral-
vector to constitutively express the CBG99 luciferase (Fig. S1B).
Cells were incubated with a 19F agent consisting of a PFC emulsion
and additionally labeled with the permanent intracellular fluores-
cent probe CTO. Fluorescence microscopy revealed intracellular
uptake of these markers (Fig. 1A).

To assess possible adverse effects of the multi-labeling on cell
function, we performed extensive in vitro tests. CBG99 expression
and 19F labeling had no effect on viability as measured with
Trypan blue assay (Fig. 1B). However, after incubation with the 19F
label, the survival rate decreased to 61.4% � 26.2% (WT) and
64.1% � 19.6% (CBG99) compared to unlabeled controls (Fig. 1C),
which could be attributed to a significantly increased doubling
time of 44.0 h � 11.0 h compared to 26.8 h � 1.5 h for unlabeled
CBG99 cells (Fig. 1D, t-test, t(10) ¼ �2.684, p ¼ 0.023). However,
this slowing of proliferation by the 19F label normalized after one
passage. Migratory capacity was similar between different labeling
conditions but slightly less efficient wound healing was observed
after 28 h for 19F-labeled CBG99 (17.2% � 2.2% wound size)
compared to CBG99 19F-unlabeled cells (9.9% � 3.0%, Fig. 1E, t-
test, t(7) ¼ �3.667, p ¼ 0.008). In order to study the long-term
effect of the different labels and their combination, we per-
formed a more sensitive enzyme assay of cell viability and
measured CBG99 mRNA levels up to 2 weeks e a similar time scale
we later used for in vivo experiments (Fig. 1F þ G). Shortly after
labeling, cell viability was decreased for 19F-labeled, CTO labeled,
and multi-labeled CBG99 cells compared to unlabeled controls
(one-way ANOVA, F(3,20) ¼ 163.412, p < 0.001, Bonferroni cor-
rected post hoc p < 0.001 for all). 7 days later, a significant effect
was only found for 19F (p < 0.001) and CTO (p ¼ 0.004) whereas
long-term viability at 14 days was again influenced by all labeling
strategies (19F: p ¼ 0.002, CTO: p < 0.001, multi-label: p < 0.001).
CBG99 mRNA levels in single-labeled (19F or CTO) or multi-labeled
transgenic NSCs were not altered except for a decrease at 14 days
for the multi-labeled by a factor 0.292 (s.e. range 0.189e0.465,
REST calculation). The differentiation capacity into neurons and
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Fig. 3. Stem cell localization and viability after implantation. BLI and 19F-MRI signal after implantation into naïve mice and stroke animals that underwent MCAO 48 h before. (A)
BLI signal in both naïve (n ¼ 5) and stroke (n ¼ 4) animals decreased rapidly over 4 weeks indicating impaired graft survival. (B) 19F SNR in naïve and stroke animals persisted with
more scatter in the stroke group. (C) To better resolve the decrease in BLI signal, a separate group of naïve animals (n ¼ 6) underwent BLI one day after implantation and up to 2
weeks after. The onset of decreased graft survival was found at 7 days. */**: Significance level p � 0.05/0.01, all values presented as mean � standard deviation.
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and naïve mice were not significant (F(1,7) ¼ 0.202, p ¼ 0.667). No
NSC migration could be resolved by 19F MR images.

We attributed the persisting 19F-MRI signal to a limited clear-
ance of the PFC when cells die and release the agent to the sur-
rounding. In order to assess this clearance from the brain, we
injected 2 mL of the undiluted PFC emulsion in the striatum of naïve
mice (n ¼ 3). Animals were imaged with 19F-MRI and sacrificed for
histology at different time points. After four weeks, 55% of the
initial 19F signal at 24 h was still detectable in the animal that
survived the longest (Fig. S3).
To better resolve the temporal profile of graft survival in the
early phase after implantation we implanted 300,000 NSCs in the
striatum of naïve mice (n ¼ 12). Animals were scanned repetitively
with BLI on days 1e4, 7, 10, and 14 and sacrificed for histology after
the last experiment (n ¼ 6) or were sacrificed for histology already
on days 4 (n¼ 3) and 7 (n¼ 3). To exclude any negative effect of the
external labels (19F and/or CTO) on NSC viability, unlabeled
CBG99 þ NSCs were used. BLI signal remained stable within the
first 4 days (Fig. 3C). More scatter was observed for the first mea-
surements, which is likely due to healing of the implantation
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wound that affects the light penetration properties of tissue.
However, full closure of the wound and resolution of edema was
observed in all animals latest at day 7. BLI signal, thus cell graft
viability, was for the first time significantly reduced at 7 days after
implantation (repeated measures ANOVA, main effect of time
F(6,30) ¼ 15,284 p < 0.001, Bonferroni corrected posthoc compar-
ison of 7 days to 1 day, p < 0.001) and further decreased for the 14
day time point (Bonferroni corrected posthoc comparison to 7 days,
p ¼ 0.023).

3.3. Immunohistochemistry

NSC grafts were qualitatively investigated for the number of
Nestin positive cells in the graft, cell proliferation, glial scar for-
mation upon transplantation and immune response. The temporal
profile of BLI signal was correlated with histological findings in a
series of naïve animals whereas a comparison of healthy and stroke
animals was carried out at the 4 week time point (Fig. 4). Resem-
bling the BLI signal decrease, the number of Nestin positive NSCs in
the graft location decreased over time to a minimal number of cells
detectable after 4 weeks (Fig. 4A). In naïve animals, cell division
remained active in cells of the graft border zone until 14 days after
transplantation as assessed by positive Ki67 staining. However,
single dividing cells were still detectable 4 weeks post trans-
plantation in the stroke group (Fig. 4B). No clear evidence of NSC
differentiation was found, apart from a small number of Nestin/
GFAP double positive cells at the graft border (data not shown). In
naïve animals, the host reaction upon allograft transplantation
became visible by an increased GFAP reactivity in astrocytes sur-
rounding the transplantation canal. From day 7 on, the reactive
astrocytes started to form a dense glial scar shielding the graft from
the host tissue. Strong GFAP reactivity around the needle tract was
also found in a control group of naïve animals 7 days after saline
implantation (data not shown). In contrast to the healthy group,
astrocyte reaction in the stroke group remained spread widely on
the complete hemisphere ipsilateral to the infarct without a cor-
responding glial scar formation (Fig. 4C). The temporal pattern of
immune reaction in healthy animals was similar to that of GFAP
reactivity. Iba1 staining for microglia and macrophages showed an
accumulation of immune cells surrounding the NSC graft from day
7 on. Immune reaction in stroke animals was much more pro-
nounced. In both healthy and stroke animals, colocalization of
intracellular graft label CTO with Iba1 indicated phagocytosis of
grafted cells by microglia/macrophages (Fig. 4D). In agreement
with 19F-MRI data, no migration was detected, even in the context
of stroke, despite a characteristic distribution of cells in the trans-
plantation tract and the adjacent corpus callosum.

4. Discussion

Using a combination of 19F-MRI and optical imaging, this study
investigates NSC viability in a living brain that underwent focal
cerebral ischemia compared to healthy one. Our data demonstrate
that graft survival is heavily impaired independent of this tissue
status. Noninvasive imaging identified a critical time point of w7
days for the onset of graft rejection. A pivotal role of the innate
immune system in this process is suggested since mice deficient in
the adaptive immune system were used and the imaging markers
correlated well with microglial and astrocytic response.

Despite the use of non-phagocytic NSCs, efficient labeling with
both 19F and fluorescent label CTO is possible without the help of
transfection agents. Expression levels of CBG99 in genetically
engineered NSCs are sufficient for BLI detection in deep tissue. In
general, few effects of external and genetic labels on cell function
were seen. However, an effect of 19F labeling on migratory and
proliferation capacity was found and more sensitive enzymatic
tests and qPCR revealed long-term effects in culture. These results
are not surprising considering more recent literature on adverse
effects of SPIO-based MRI labels on stem cells [26,27]. Expectedly,
for SPIOs these effects were concentration dependent and similarly,
a more detailed optimization of intracellular 19F doses in terms of
cell MR-detectability and functionality is pending. Since the first
19F-MRI labels are entering the clinic in the context of cancer
vaccines using dendritic cell implantations (press release, April 11
2013, Celsense Inc., Pittsburgh, USA), broader studies on possible
adverse effects on cell function are urgently needed. In agreement
with previous studies on stem cells [5e7,28,29], we found
extremely low toxicity of PFCs in vitro considering the high payload
of PFC per cell. Genetic labels are the preferred choice since external
labels can be released or remain in tissue when cells die and in
consequence even be transferred to other cells in the surrounding
[30]. Our data indicate that the use of a multi-labeling strategy is
necessary in order to cross-validate and rightfully interpret results.
CTO is a versatile fluorescent label [31,32] and in our hands much
more sensitively detected on histological slices than genetic labels
such as green fluorescent protein (data not shown). However, we
found CTO in microglia around the graft after 4 weeks indicating
phagocytosis of dead cells or released label. Without Iba-1 co-
staining these microglia cells would falsely be identified as living
cells of the graft. Furthermore, we detected remaining 19F-MRI
signal after cell transplantation despite impaired graft survival. This
is in agreement with a study on SPIO MRI labels, for which per-
sisting image contrast could be found up to 93 days although the
graft was rejected much earlier [9]. These challenges could be
overcome by the use of MRI reporter genes such as ferritin or
peptides detectable via chemical exchange saturation transfer.
However, the sensitivity and specificity for in vivo stem cell tracking
in the brain has yet to be shown [33,34]. Positron emission to-
mography of herpes simplex virus thymidine kinase expressing
NSCs was recently used to verify function of the graft in stroke rats
[35] but challenges include the need for extensive radiochemistry
infrastructure. Alternatively, in small animals, luciferases are a
versatile genetic label to track transplanted stem cells. We used the
PGK promoter in order to avoid down-regulation of CBG99 lucif-
erase expression upon NSC differentiation since this phenomenon
is known for the broadly used cytomegalovirus promoter [36].
Sensitivity of BLI of intraparenchymal transplants can further be
improved by the use of a cranial window [19] or by optimization of
luciferin doses and anesthesia as we have shown recently [25].
Genetic luciferase labeling to monitor graft function is therefore an
emerging modality in rodents. It is complementary to 3D visuali-
zation of the graft and its cell density using 19F-MRI and overcomes
many of the problems of external labels. Along these lines, our
study shows that 19F-MRI is extremely helpful in the control of
transplantation procedures but BLI appears more suited for reliable,
unambiguous long-term cell tracking. We never observed NSC
migration in the present study, which is coherent with other im-
plantation experiments in rodents [14,17,37,38]. This may me-
chanically be explained by formation of an astrocytic scar
encapsulating the graft and thus preventing (long distance) cell
migration. Cell locomotionwas also absent in stroke animals where
glial scarring was much less pronounced thus indicating the ex-
pected lack of migratory cues for NSCs as the graft had been placed
already next to the lesion target zone. Although we chose the
timing, cell numbers, and site of implantation based on previous
reports [13] to optimize graft survival, NSC viability dramatically
decreased after transplantation. The phenomenon was observed in
a large number of studies [13,14,18,19,37,39] and multiple contrib-
uting factors are hypothesized. The transplantation procedure itself
can damage host tissue and lead to scarring and bloodebrain
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barrier breakdown although the latter did not correlate with cell
graft survival in a recent study [17]. Along these lines we saw glial
scarring in the brains of mice one week after sham saline implan-
tations. When low infusion rates and thick needles are used, direct
mechanical damage to grafted cells through shear stress is unlikely,
which is supported by significant BLI signal up to 4 days in the
present study and presence of NSCs of normal morphology on
histological sections from one day after implantation. Within the
first 24 h after transplantation, hypoxia, insufficient vascular sup-
port and lack of neurotrophic cues are believed to be the most
significant contributors to cell death [40,41]. Since we imaged mice
with BLI earliest at 24 h after implantation, cell death within this
early time window could not be assessed. However, similarly to a
previous study [41], an innate immune response started between
day 4 and day 7 and correlated with a decrease in cell vitality as
assessed by BLI. In agreement, the major fraction of host cells that
contribute to graft rejection were shown to belong to the innate
immune system whereas a considerably smaller fraction of cells of
the adaptive immune system were found in another study [17].
Most importantly, our study indicates that innate immune reaction
in response to the stroke does not further facilitate cell death
compared to healthy tissue. Independent of these mechanistic as-
pects for the graft vitality, it is of note that this study answers an
ongoing discussion whether a graft location adjacent to the
ischemic territorymay be considered sufficiently supportive for the
graft survival. Our results show that cell survival in the peri-infarct
zone is equivalent to that in the healthy hemisphere (comparable to
the contralateral hemisphere in stroke animals).
5. Conclusion

NSCs bear hope to improve stroke tissue not only through cell
replacement but also through release of trophic factors that can
stimulate residing cells and neuroinflammation. However, a posi-
tive long-term effect is only to be expected when graft survival can
be improved dramatically. Since the multiple factors that
contribute to cell death follow different temporal profiles, only a
fine-tuned combination of strategies such as the delivery of anti-
apoptotic, neurotrophic or angiogenic compounds [42], enhanced
structural support of cells using scaffolds [43], or suppression of the
innate immune system through irradiation [37] may be successful.
The multimodal imaging methods developed in this study will help
to define relevant time points for interventions and to control their
efficacy, also in contexts of cell therapy other than in stroke.
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