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a b s t r a c t

In this paper, the ( G′

G )-expansion method with the aid of Maple is used to obtain a gener-
alized soliton solution for the generalized Regularized LongWave (RLW) equation. Each of
the obtained solutions, namely hyperbolic function solutions and trigonometric function
solutions contain an explicit linear function of the variables in the considered equation.
It is shown that the proposed method provides a powerful mathematical tool for solving
nonlinear wave equations in mathematical physics and engineering problems.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The world around us has been inherently nonlinear. For instance, nonlinear evolution equations (NLEEs) are widely used
as models to describe complex physical phenomena in various fields of sciences, especially in fluid mechanics, solid state
physics, plasma physics, plasma waves and biology. One of the basic physical problems for those models is to obtain their
traveling wave solutions. Particularly, various methods have been utilized to explore different kinds of solutions of physical
models described by nonlinear PDEs. In the numerical methods [1], stability and convergence should be considered, so
as to avoid divergent or inappropriate results. However, in recent years, a variety of effective analytical and semi analytical
methods have been developed considerably to be used for nonlinear PDEs such as the homotopy perturbationmethod [2–4],
the variational iteration method [5–7], the parameter-expansion method [8], the Exp-function method [9–17], the inverse
scattering method [18], the sine–cosine method [19,20], the extended tanh-method [21,22], and others.

Recently, the ( G′

G )-expansionmethod, firstly introduced byWang et al. [23], has becomewidely used to search for various
exact solutions ofNLEEs [23–30]. The value of the ( G′

G )-expansionmethod is that one treats nonlinear problems by essentially
linear methods. The method is based on the explicit linearization of NLEEs for traveling waves with a certain substitution
which leads to a second-order differential equation with constant coefficients. Moreover, it transforms a nonlinear equation
to a simple algebraic computation.

The aim of this paper is to apply the ( G′

G )-expansion method [30] to find new hyperbolic and trigonometric solutions of
the Regularized Long wave (RLW) equation [16]:

ut + ux + a(u2)x − buxxt = 0 a, b ∈ R. (1)

2. Application of the ( G′

G )-expansion method for the RLW equation

In this section, we apply the proposed method to obtain new and more general exact solutions of Eq. (1), which arises in
several physical applications including ion sound waves in a plasma.

∗ Corresponding author. Tel.: +98 936 404 3348.
E-mail address: kabir.mehdi@gmail.com (M.M. Kabir).

0898-1221/$ – see front matter© 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2010.08.064

http://dx.doi.org/10.1016/j.camwa.2010.08.064
http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
mailto:kabir.mehdi@gmail.com
http://dx.doi.org/10.1016/j.camwa.2010.08.064


M.M. Kabir et al. / Computers and Mathematics with Applications 61 (2011) 2044–2047 2045

Let us assume the traveling wave solution of Eq. (1) in the form

u = U(ξ), ξ = kx + ωt, (2)

where k, ω are arbitrary constants. Using the wave variable (2), the Eq. (1) is carried to ordinary differential equation (ODE)

(ω + k)U ′
+ 2akUU ′

− bk2ωU ′′′
= 0. (3)

Integrating Eq. (3) once with respect to ξ and setting the integration constant as zero, we obtain

(ω + k)U + aU2
− bk2ω2U ′′

= 0. (4)

Suppose that the solution of the ODE (4) can be expressed by a polynomial in ( G′

G ) as follows:

U(ξ) =

m−
i=1

αi


G′

G

i

+ α0, αm ≠ 0, (5)

where α0, and αi, are constants to be determined later, G(ξ) satisfies a second order linear ordinary differential equation
(LODE):

d2G(ξ)

dξ 2
+ λ

dG(ξ)

dξ
+ µG(ξ) = 0, (6)

where λ and µ are arbitrary constants. The positive integerm can be determined by considering the homogeneous balance
between the highest order derivative u′′ and nonlinear term u2 appearing in (4).

m + 2 = 2m, (7)

so that

m = 2. (8)

We then suppose that Eq. (4) has the following formal solutions:

U = α2


G′

G

2

+ α1


G′

G


+ α0, α2 ≠ 0, (9)

where α2, α1, and α0, are positive integers which are unknown to be determined later.
Substituting Eq. (9) along with Eq. (6) into Eq. (4) and collecting all the terms with the same power of ( G′

G ) together,
equating each coefficient to zero, yields a set of simultaneous algebraic equations for k, ω, α0, α1, and α2, as follows:

G′

G

0

: bk2ωα1λ
2µ − ωα1µ − kα1µ − 2kaα0α1µ + 6bk2ωα2λµ2

+ 2bk2ωα1µ
2

= 0,
G′

G

1

: −2ωα2µ + 14bk2ωα2λ
2µ + bk2ωα1λ

3
− kα1λ − ωα1λ − 2kα2µ − 2kaα2

1µ

− 4kaα0α2µ − 2kaα0α1λ + 16bk2ωα2µ
2
+ 8bk2ωα1λµ = 0,

G′

G

2

: 7bk2ωα1λ
2
− 2kα2λ − ωα1 − kα1 − 2ωα2λ − 6kaα2α1µ − 2kaα2

1λ − 4kaα0α2λ

− 2kaα0α1 + 8bk2ωα2λ
3
+ 8bk2ωα1µ + 52bk2ωα2λµ = 0,

G′

G

3

: −2kaα2
1 − 2ωα2 − 2kα2 − 4kaα2

2µ − 6kaα2α1λ − 4kaα0α2 + 12bk2ωα1λ

+ 40bk2ωα2µ + 38bk2ωα2λ
2

= 0,
G′

G

4

: −4kaα2
2λ − 6kaα2α1 + 54bk2ωα2λ + 6bk2ωα1 = 0,

G′

G

5

: −4kaα2
2 + 24bk2ωα2 = 0.

(10)

Solving the set of algebraic Eq. (10) by use of Maple, we get the following results:

α2 =
6bkω
a

, α1 =
6bkωλ

a
, α0 =

bk2ωλ2
− ω − k + 8bk2ωµ

2ka
, (11)

where k, ω, λ and µ are arbitrary constants. Substituting (11) into (9), we obtain
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U =
6bkω
a


G′

G

2

+
6bkωλ

a


G′

G


+

bk2ωλ2
− ω − k + 8bk2ωµ

2ka
. (12)

Substituting the general solutions of (6) into Eq. (12), we obtain two types of traveling wave solutions of Eq. (1):
When λ2

− 4µ > 0, we obtain hyperbolic function solutions:

uhypr(x, t) =
6bkω
a


λ2 − 4µ


C1 sinh


1
2


λ2 − 4µξ


+ C2 cosh


1
2


λ2 − 4µξ


2


C2 sinh


1
2


λ2 − 4µξ


+ C1 cosh


1
2


λ2 − 4µξ

 −
λ

2

2

+
6bkωλ

a


λ2 − 4µ


C1 sinh


1
2


λ2 − 4µξ


+ C2 cosh


1
2


λ2 − 4µξ


2


C2 sinh


1
2


λ2 − 4µξ


+ C1 cosh


1
2


λ2 − 4µξ

 −
λ

2


+

bk2ωλ2
− ω − k + 8bk2ωµ

2ka
, (13)

where ξ = kx + ωt , and C1, C2, are arbitrary constants.
When λ2

− 4µ < 0, we obtain trigonometric function solutions:

utrig(x, t) =
6bkω
a


4µ − λ2


−C1 sin


1
2


4µ − λ2ξ


+ C2 cos


1
2


4µ − λ2ξ


2


C2 sin


1
2


4µ − λ2ξ


+ C1 cos


1
2


4µ − λ2ξ

 −
λ

2

2

+
6bkωλ

a


4µ − λ2


−C1 sin


1
2


4µ − λ2ξ


+ C2 cos


1
2


4µ − λ2ξ


2


C2 sin


1
2


4µ − λ2ξ


+ C1 cos


1
2


4µ − λ2ξ

 −
λ

2


+

bk2ωλ2
− ω − k + 8bk2ωµ

2ka
, (14)

where ξ = kx + ωt , and C1, C2, are arbitrary constants.
Now, to obtain some special cases of the above solutions, we set C2 = 0, then hyperbolic function solution (13) becomes

u(x, t) =
3bkω
2a


(4µ − λ2)sech2


1
2


λ2 − 4µξ


− 4µ


+

bk2ωλ2
− ω − k + 8bk2ωµ

2ka
, (15)

where ξ = kx + ωt , and λ, µ are arbitrary constants.
If we set C1 = 0, then hyperbolic type solution (13) becomes

u(x, t) =
3bkω
2a


(λ2

− 4µ)csch2

1
2


λ2 − 4µξ


− 4µ


+

bk2ωλ2
− ω − k + 8bk2ωµ

2ka
, (16)

where ξ = kx + ωt , and λ, µ are arbitrary constants.
Similarly, setting C2 = 0, and using trigonometric function solution of (14), we have

u(x, t) =
3bkω
2a


(4µ − λ2)sec2


1
2


4µ − λ2ξ


− 4µ


+

bk2ωλ2
− ω − k + 8bk2ωµ

2ka
, (17)

where ξ = kx + ωt , and if we get again C1 = 0, then Eq. (14) becomes

u(x, t) =
3bkω
2a


(4µ − λ2)csc2


1
2


4µ − λ2ξ


− 4µ


+

bk2ωλ2
− ω − k + 8bk2ωµ

2ka
, (18)

where ξ = kx + ωt , and λ, µ are arbitrary constants.

3. Conclusions

This study shows that the ( G′

G )-expansion method is quite efficient and practically well suited for use in finding exact
solutions for the RLW equation. The reliability of the method and the reduction in the size of computational domain give
this method a wider applicability. Though the obtained solutions represent only a small part of the large variety of possible
solutions for the equations considered, theymight serve as seeding solutions for a class of localized structures existing in the
physical phenomena. Furthermore, our solutions are in more general forms, and many known solutions to these equations
are only special cases of them. With the aid of Maple, we have assured the correctness of the obtained solutions by putting
them back into the original equation. We hope that they will be useful for further studies in applied sciences.
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