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1. I N T R O D U C T I O N  

Difference equations frequently arise in studying biological and chemical models, in the analysis of 
discrete systems, in the discretization methods for differential equations, etc. (for this purpose we 
refer to [1-5]). Therefore, the discussion on the existence, oscillatory, and asymptotic properties 
of their solutions has received considerable attention. Following this trend, in this paper, we 
investigate the second-order nonlinear difference equation 

A(rkAuk )  + qkg(uk+l) = O, (i) 

where {rk} and {qk} are positive real sequences with k C N U {0}, A is the usual forward 
difference operator defined by Auk = uk+l - uk and the nonlinearity g : R ~ R is nonnegative 
and nontrivial. 

First note that equation (1) is in fact a recurrence relation, and hereby, the existence and 
uniqueness of its solution, for every initial value problem (IVP), 

A(rkAuk )  + qkg(uk+l) = O, 

~0 ~ ~, 

Auo = #, 

are guaranteed, for all k E 1N and any real numbers a,/3. We denote it by u ~'#. 

As it is known, several authors investigated the general difference equation 

+ / ( k ,   k+l) = o, (2) 

where T : R -~ R is an homeomorphism such that T(0) = 0 and f : N x ]R --+ ]R satisfies f (n ,  .) 
continuous, increasing and f (n ,  0) = 0 for every n C N (see, e.g., [6-15]). In these quoted papers, 
comparison results were obtained, as well as necessary and sufficient conditions, for the existence 
of solutions with a prescribed asymptotic behavior. Indeed, such a study was mainly devoted 
to the existence of positive monotone and bounded solutions of (2). We also recall [16], where 
a similar analysis was developed in the continuous case. Under some restrictions on T and f ,  
equation (2) becomes half-linear, i.e., its solution space is homogeneous. In [17], it was shown 
that its solutions behave, in many aspects, like those of linear difference equations. 

A lot of further references can be found in [1], especially in Chapter VI. Note that our type 
of nonlinearity g differs from f and this brings quite different dynamical behaviors. Our term g 
derives its motivation from the study of wavefront profiles appearing in several biological and 
chemical models. As far as we know, this is the first investigation, in the discrete case, of such a 
nonlinearity. 

The main aim of this work is to establish existence criteria of bounded increasing solutions 
of (1) with a fixed initial value. More precisely, we give sufficient conditions (and in some cases 
also necessary) in order that  the IVP 

A(rkAuk) + qkg(uk+l) = O, 

/Z 0 ~ ~ ,  

has a bounded increasing solution. According to our needs, we shall take 

g bounded (3) 

and/or 
g continuous. (4) 
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We stress however that ,  for some results, even the continuity of g is not required. As we have 
already mentioned, this nonlinearity g makes our equation, al though looking similarly, of a quite 
different type with respect to (2): in fact, no oscillatory solutions exist and the linear case is not 
included (see Section 2). It  means tha t  different kinds of approaches to its examination must 
be used. We employ, in particular, a shooting argument  and Schauder 's  fixed-point theorem 
(see Theorem 7). Moreover, unlike in the quoted works concerning equation (2), where only the 
asymptot ic  behavior was investigated, our results take into account also the initial value of the 
solution. 

In Section 2, we discuss all possible asymptot ic  behaviors of the solutions of (1). We also 
establish necessary conditions for the existence of bounded solutions in terms of the conver- 
gence/divergence of the series 

j=o r j  j=0  

and 
cc J 1 

8qr = j ~ o q j i ~ o  --"  • = ,= ?'i 

A similar approach was developed in many previous papers. In particular, the results in [8,9,14] 
were obtained according to the convergence or divergence of ~n~__l ~ - l ( 1 / r n ) .  Similarly, under 
assumptions on the behavior of 3r,  in [10,12] the authors prove some comparison theorems and 
give necessary and sufficient conditions for the existence of a positive nondecreasing solution for 

OO a special form of (2). In Section 3, we consider the case when ~ j = 0  1/r j  < c~, while Sections 4 
O<3 and 5 t reat  the case }-]j=0 1/rj  = oc. In both  situations, we obtain sufficient (and sometimes 

also necessary) conditions for the existence of bounded solutions of (1) with u0 = a prescribed. 
When ~ j = o  1/rj  = ec and g(a)  = 0, our existence criterion, contained in Section 5, is for the 
particular equation 

A2uk -- ckAuk + bkg(Uk+l) = 0, (5) 

where A2uk = A(Auk) ,  

0 < e~ _< e, (6) 

0 < b < bk _< b, (7) 

for all k 6 N U {0}, g is continuous and there exists 0 6 (0, 1) such tha t  

g(t) > 0 for t E (0, 1) and g = 0 otherwise. (8) 

Equation (5), but with coefficients {ck}k and {bk}k both constant,  enables to s tudy wavefront 
profiles of the reaction-diffusion equation 

ut = u=~ + g(u), t >_ O, x e R (9) 

(see, e.g., [4]). Of major  interest, in this context, is to connect two s ta t ionary solutions of (9), 
typically u - 0 and u -- 1, by means of a wave solution. In a discrete setting, this translates into 
the boundary  value problem (BVP) on Z 

A2uk -- cAuk + g(uk+l)  ---- O, 

lim uk --- O, 

lim uk = 1. 
k--*+c~ 

(1o) 
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In Section 6 (see Theorem 7), we investigate the existence of increasing solutions of the equation 
in (10) when k E Z \ N. By means of this result and of the techniques previously developed, we 
are able to discuss problem (10) both in the case when g satisfies conditions (8) as well as when 
there are s E (0, 1) and L > 0 such that  

g/(o,~) is strictly increasing and g(t) < Lt  for t E [0, 1], 

g(t) > 0 for t C (0, 1) and g ~ 0 otherwise. 

(11) 

(12) 

It is well known that  there are striking similarities between qualitative theories of differential 
equations and difference equations. Our investigation, both of the general equation (1) and of its 
special type (5), was previously led in the continuous case, respectively, in [18-20]. We remark 
that  the employed techniques in the discrete and continuous case are often quite different. 

We will use the notation 

N,~ = { m , m  + l , m  + 2 , . . .  }, 

and the convention that  

for any sequence {ak}k. 

for some m E Z, 

m-1 rn-1 

E a,  -- 0, I I  = 1, 
j=m j=m 

The following two equalities will frequently occur in the text: a summation of (1) from rn 
to k - 1 yields 

k-1 
a ~  = r ~ m - - 1  _ __1 ~ qjg(~j+l), (13) 

rk rk . J----m 

a summation of (13) from m to k - 1 gives 

k-1 1 1 
~ : ~'~ + ~ . / ' ~ ' ~  Z - - - q ~ g ( ~ + ~ )  (14) 

3 =m rj rj • j = m  i=rn 

2.  P R E L I M I N A R Y  R E S U L T S  

The following statement deals with monotonicity behaviors of all solutions of equation (1) 
when k varies in No. 

PROPOSITION 1. A n y  solution of  (1) is constant on No, or strictly increasing on No, or there 
exists exactly one T E No such that Auk  > 0 for k 6 {0, 1 , . . .  , T  - 1}, A U  T ~ O, and Auk  < 0 
for k E NT+I. Moreover, in the latter case, i f  S t  = oo, then limk-~oo uk = - e c .  

PROOF. Equation (1) is equivalent to the equation 

rk qk 
AUk+l = Auk g(Uk+l), 

rk+l  rk+ l  

from which the first part  of this statement, concerning the monotonicity properties, can be easily 
derived, because of the sign condition on g. 

To prove the last part, using (14) with m = T + 1, we get 

k--1 

Uk ---~ UT't-1 "~-TT+IAUT-I-1 E 2 .  (15) 
/=T+I rj 

Since n~tT+ 1 < 0, we obtain l i m k - ~  uk = - o o .  | 

The next proposition gives a necessary and sufficient condition for the existence of bounded 
solutions when Sr = c~ and Sqr < eo. 
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PROPOSITION 2. Suppose that S~ = oz. 

(i) If u is a bounded solution of (1), then 

,-mAu.~ - ~ qjg(uj+l) = 0, (16) 
j = m  

for all m C No. Moreover, if Sqr < oz and (3) holds, then limk~c~ Uk ~ Uo+Suptee g(t)Sqr. 
(ii) If a solution u of (1) satisfies (16) for some m • No, (3) holds and Sq~ < co, then u is 

bounded. 

PROOF. 

(i) Let u be a bounded solution of (1). It  is not difficult to verify tha t  for any pair of 
sequences {ak}k, {bk}k it holds 

k j - -1  k - 1  k 

E E a ~ b j =  E E a~bj, 
j=h  i=h i=h j= i+l  

where h, k C No and h < k. Using this identity, from (14), with m = 0, we get 

uk+l -= uo + Ek r~l r ° / k u ° - E q i g ( u i + l )  + E q J g ( u j + l )  --ri" (17) 
j=o i=o j j=o i=0 

Suppose, by a contradiction, tha t  there exists T C N0 such that  
oo 

- Z qjg(uj+ ) ¢ 0. 
j = T  

Then, in view of (13), one can find a constant C > 0 and S • NT satisfying ]Auk[ > C/rk 
for k • Ns. Hence, the condition S~ = oz implies limk-~o~ Uk ---- ±oz,  a contradiction, and 
so (16) holds. 

Assuming Sq~ < oz and g bounded and applying the discrete L'Hospital  rule (see [1, 
Theorem 1.7.9]) to (17), we get 

l im  ~-~. ~-~1_ <_ uo + supg(t)Sq~ lim uk+l = uo + qjg(uj+l) ri tE~t 
k-~oo j = 0  i = 0  

and the statement is proved. 
(ii) Let u be a solution of (1) satisfying (16) for some m • N0, Sqr < 0% and (3). Then 

we can apply the discrete L'HospitM rule to (17) and in view of the assumptions we 

get limk~oo uk • • and so u is bounded. | 

We now consider the case when $~ = Sq~ = oz and we give a necessary condition for the 
existence of bounded solutions. 

PROPOSITION 3. If  S q r  ~- ~ r  = O0 and (4) holds, then every bounded solution u of (1) satis- 
fies limk--,oo g(uk) ---- O. Moreover, if u is not a constant, then there exists a sequence {w~}neN, 
w~ --~ limk-~o~ uk as n --~ oz, such that w~ < limk--.~ uk and g(w~) > 0 for n • N. 

PROOF. Let u be a bounded solution of (1). Then S~ = oo implies Auk _> 0 for k • No and 
so there exists limk--.oo uk = Lu. Suppose, by a contradiction, tha t  g(L~) > 0. Hence, we can 
choose T • No such that  g(uk) > g(Lu)/2 for k • NT, because g is continuous. By (16) and (17), 
we have 

 k+l = uo + - qig(U +l) + q g(uj÷l - 
j=0  rj i=k j=o i=0 ri 

> u ° +  g(L~) E 1 
- ~ qJ r~ 

j = T - 1  i=O 

and so Uk --+ +oz  as k --~ oz, a contradiction. 
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Suppose tha t  there exists e > 0 such tha t  g(t) = 0 for all t E [L~ - s, L~]. Choose S E No in 

such a way tha t  uk >_ L~ - s for k E NS+l.  From (16), we get A u s  = 0, which implies uk --- u s  

for k > S, hence, Proposi t ion 1 yields Uk -- US which is a constant  solution. | 

The first par t  of the previous result  holds 

and Sq~ = co as i t  is shown in the  following 

PROPOSITION 4. I f  S t  < co, Sqr = co, and 
of  (1) satisfies l imk- ,~  g(uk) = O. 

also for bounded increasing solutions when Sr < co 

s tatement .  

(4) holds, then every bounded increasing solution u 

PROOF. Fi rs t  observe tha t  $~ < oc and $q~ = oc imply $q = co. Let  u be a bounded increasing 

solution of (1) with lim~--.oo uk = L~. Suppose for a contradict ion tha t  g(L~) > 0. Then one 

can find T E No such tha t  g(uk) >_ g(L~) /2  for k E NT since g is continuous. This yields 
O(3 

~ j = T  qjg(uj+~) = co and according to (13), we obta in  Auk < 0 for all sufficiently large k, which 
is false. | 

3 .  E X I S T E N C E  O F  B O U N D E D  I N C R E A S I N G  

S O L U T I O N  I N  T H E  C A S E  S r  < cx) 

This section deals with the case when $~ < oo. We s tar t  wi th  the  cri terion concerning the 

case Sqr < co, where the  existence of a bounded increasing solution of (1) is guaranteed for every 

initial  value a .  

THEOREM 1. Suppose that  (3) holds. I f  $r < co and Sq~ < co, then (I)  has a bounded increasing 

solution u satisfying the initial condition uo = a, where a E R. 

PROOF. Firs t  observe tha t  the only possibil i ty in the  case when Sr  < co and Sq~ < co is $q < c~. 

Let /3  > $q supte~ g(t) /ro.  We show tha t  every solution u ~,~ is increasing and bounded.  Indeed, 
by (13), with m = 0, we have 

k-1 
/kU~,fi = ro f l _  1 E qJg(UJ+x) 

rk rk j=O 

_> z _  1 supg(t)sq > 0, 
rk rk tEgt 

which implies tha t  {u~'Z}k is increasing on No. On the other hand,  from (15) and $r  < co, we 

conclude tha t  u is bounded.  | 

When  $q~ = co, the  following result,  requiring addi t ional  condit ions on g, can be applied. Two 
cases are considered, according to the posi t ivi ty  or not  of g at the  ini t ial  value of the  solution. In 
the first case, we obta in  a necessary and sufficient condition. In  the second one, like in Section 4, 

only a sufficient condit ion is provided. 

THEOREM 2. Suppose tha t  Sr < co, Sqr = co, and (4) holds. Then we have the following. 

(i) Equation (1) has a bounded increasing solution u satisfying the initial condition uo = a, 

where c~ is such tha t  g(a) > O, i f  and only i f  

there exists w > a such that  g(w) = O. (is) 

(ii) I f  there exists w > a such tha t  g - 0 in [a, w], then (1) has a bounded increasing solution u 

satisfying the initiM condition Uo = a. 

PROOF. 

(i) Let  a ,  w be as in the theorem. Given fl E R, denote u ~,~ with  u ~ and ~ = {/3 > 0 : u~ < w 
for all k E N0}. In view of Proposi t ion 1, u ° is nonincreasing. By vir tue of the  continuous 
dependence on init ial  data,  we find out  t ha t  ~ ~ 0, because no solutions of (1) admit  
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a minimum point, by Proposition 1. Moreover, w - a ~ ~. Hence, we can denote 

with fl := sup(~ M [0, w - a]) E 1~. Now we prove that  u z is a bounded increasing solution 

of (1) such that  Uk ~ < w for k E N0. Clearly, one cannot have T E N0 with U~T > w. In fact, 
if such a T existed, by the continuous dependence on initial data, we would be able to 
find fl E (0, fl) with the property u~T > w. But this contradicts the definition of ft. Hence, 

u~ < w for k e N0. Further, if there existed T E N0 such that  u~ = w, then Au~ = 0, by 

the previous argument. Hence, Au~ = 0 = g(u~T) and the uniqueness of the solution of 

each IVP implies tha t  u fi is a constant solution, which contradicts the fact that  u0 z = a 

and g(a) > 0. Consequently, u~ < w for k E N0. It remains to show that  u fi is increasing 

on N0. If there existed T E N0 such that  Au~ < 0 (with g(uflT) > 0 for Au~ = 0), 

without loss of generality we can suppose that  Au~ > 0 for k E {0, 1 , . . . ,  T -  1}. Then u~ 
is monotone decreasing for k E NT, because of Proposition 1. Hence, the continuous 
dependence on initial data yields the existence of ~ > 0 such that  fi + z E fl, which 
contradicts the definition of/~. 

The necessity of (18) follows from Proposition 4. 
k - - 1  (ii) The sequence defined by uk = a + (~ - a ) / S r  Gj=o 1/rj is a desired solution. I 

REMARK 1. Suppose that  S~ < ~ .  According to Proposition 4, if Sq~ = c~, the  limit of 
any bounded solution of (1) is a zero of the function g, hence, the existence of w E R such 
that  g(w) = 0 is a necessary condition for (1) to have a bounded increasing solution. On the 
contrary, if 8at < c~, Theorem 1 guarantees the existence of a bounded increasing solution of (1) 
even when g(t) > 0 for every t. 

REMARK 2. Suppose that  Sr < c~. It is not difficult to  see that  if u is a bounded increasing 
solution of (1), then L ,  - uk, where L~ = limk--+~ uk, is asymptotic to or of higher order 
than EjC~k 1/rj.  Indeed, first observe that  the sequence rkAuk is positive and nonincreasing, 
and hence, there exists the limit limk--.c~ rkAuk = K~, where K~ E [0, oo). Using the discrete 
L'Hospital rule, we get 

Lu - uk 
lira - K~ 

k--,~ E 1/rd 
j=k 

and so the statement holds. 

4. E X I S T E N C E  OF B O U N D E D  I N C R E A S I N G  
S O L U T I O N  IN T H E  CASE Sr  = ~ ,  g(uo) > 0 

This section deals with the case when Sr = (x~ and g(uo) > 0. We start with a criterion 
concerning the case Sq~ < co, which uses the result of Proposition 2. 

THEOREM 3. Suppose that (3) and (4) hold. I f  Sr = oc and Sq~ < ~z, then (1) has a bounded 
increasing solution u satisfying the initial condition uo = a, where a E • is such that g(a) > O. 

PROOF. Let c~ be as in the theorem. In view of our assumptions, we get Sq < oc. Using this 
oo 

fact together with the boundedness of g, we have the convergence of ~ j = 0  qjg(ud+l) for every 

solution u of (1). Denote u ~,p simply by u ~, where fl E R. Define the functional 7" : IRI --+ R by 
oo 

j=0 

Since g(u °) = g(u °) = g(a) > 0, and g is nonnegative, 7"(0) < 0. If  fl > supte~g(t)$q/ro, 
then 7"(fl) > 0. We prove now that  7" is continuous. Let s > 0 and fi E ]~ be given and J c 
be an open interval containing ft. Take n = n(s) E N0 in such a way tha t  

qJ < 6supg(t~" 
j = n  tEN 
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The uniform continuity of g in any compact  interval implies the existence of a = a(z) satisfy- 
ing Ig ( x l ) -g ( x2 ) [  < s /{3n(maxje(o ,1  . . . . . . .  1) qj)} whenever x l , x 2  e [min{u~ :/3 e Y, 0 < i < n}, 

max{u~ :/~ e J ,  0 < i < n}] and [Xl - x21 < a. By the continuous dependence on initial data, 

it is then possible to find 5 = 5(a) > 0 such that ,  whenever I/3 - /3]  < 5, it follows [u¢ - u~l < cr 
for all j = 0, 1 , . . . , n .  Further,  set p = p(s) = min{~/(3r0),5((r(z))} and t ake /3  e J in order 
tha t  ]fl - fl[ < p. Then we have 

n--1 

÷ I 
j=0  

oo 

j = n  

\j~{0,1 . . . . . . .  1} / \ye{1,2,...,n} 
oo 

+ 2 sup g(t) qj 
t E ~  j = n  

g ~ 5 

<5+~+~=~. 
Hence, T is continuous and there exists/~ with 0 < f~ < s u p t ~ g ( t ) $ q / r o  such tha t  T(~)  -- 0. 
By Proposit ion 2, we get the statement.  | 

When Sqr = oo, we can use the following criterion requiring an additional condition on the 
nonlinearity g, which, however, is also necessary. 

THEOREM 4. Suppose that  (4) holds. I f  $~ = Sq~ = oo, then (1) has a bounded increasing 

solution u satisfying the initial condition uo = a, where a E R is such that  g(a)  > 0, i f  and only 

i f  (18) holds. 

PROOF. The sufficient par t  can be proved like in Theorem 2. The  necessity of (18) follows from 
Proposition 3. | 

REMARK 3. Suppose that Sr -- ec. In the case Sq~ = co, the necessity of (18) comes from 

Proposition 3 (see also Remark I). On the contrary, if Sq~ ~ ~, Theorem 3 and Proposi- 

tion 2 guarantee the existence of a bounded increasing solution u of (I) satisfying u0 -- (~ 

such that limk-~ uk ~_ a ÷ Sq~ suPte~g(t ) also in the case when the function g is positive 

in + g(t)]. 

5. EXISTENCE OF BOUNDED INCREASING 
SOLUTION IN THE CASE Sr = ce, g(uo)= 0 

In this section, we consider equation (5) where (6) and (7) hold and g : R -+ ~ is a nonnegative 

and nontrivial function satisfying (4) and (8). 
k--1 Notice tha t  (5) is a particular case of (1) with $~ = Sq~ = oo given by rk = l-[j=0 (1 + cj) -~ 

a n d  qk = bk ~Ik=0(  l -~ Cj) -1"  

Since for the arguments of g which are outside [0, 1], (5) reduces to an (explicitly solvable) 
equation, outside [0, 1], which can be explicitly solved, Proposit ion 3 and (8) imply tha t  the only 
possible limit at infinity for a bounded increasing solution of (5) is 1. Hence, the problem of the 
existence of solutions for the boundary  value problem on 5t0 

A 2uk -- ck A ul¢ + bkg( ul¢ + l ) : O, 

uo = 0, (19) 

lim uk ---- 1, 
k--*oo 

clearly, Proposit ion 1 guarantees tha t  the solution of (19) is monotone increasing turns out to be 
interesting. 
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THEOREM 5. Suppose that (4), (6)-(8) hold. Then there exists c* > 0 such that (19) has a 
solution for all ~ < e*. 

PROOF. Given/3 C N, denote u °,/3 with u/3 and set f~ = {/3 > 0 : limk__,~ u~ = +c~}. Clearly, 
¢ 13, because [1 - 0 ,+oo)  C fL Take/3 C ~2 and T > 0 such that  u~ < 1 for k C { 0 , . . . , T }  

and Uk ~ _> 1 for k E NT+I. Summing (5) from 0 to T -  1, with the substitution of u/3 for u, we get 

T-1  T-1  

E + E 
j=0 /=0 

Multiplying (5) by u~, with the substitution of u/3 for u, we get 

/3--2 /3 /3 /3 ( ) = 0 .  uk~  u k - CkUkAu ~ + bku~g U~k+l 

It is not difficult to verify tha t  for any sequences {ak}k, {bk}k it holds the formula of summation 
by parts 

k--1 k--1 
E ujAvj  = UkVk- UoVo- E Aujvj+I. (21) 
j=0 j=0 

Hence, summing the last identity from 0 to T - 1 and using the summation by parts, we get 

T--1 T-1  T-1  

o/3 E + = (22) - -  - -  c j  j ~ ~ j  / ~  j j+l"  
j=o j=0 j=o 

Similarly, multiplying (5) by uk+l,/3 with the substitution of u/3 for u, and summing we obtain 

T-1  T-1  T-1  
/3 ~ /3 ~tTA'Lt T -- 0/3 -- E Ci-uj+lz~Itj ~- E bjuflJ+ lg (u~+ 1) ----- E ( A u ~ )  2 . (23) 

j=o j=o j=0 

Hence, subtracting twice (20) from the sum of (22) and (23) and recalling (6)-(8), we have 

T-1  
E Au~ (Au~ + Aug+l) : 2AUNT (u~T - -1 )  + 2/3(1--0) 
j=0 

T-1  
-~ E CJ/~U~ (2 -- 7~j.t_ 113 _ ?~3/3. ) 

j=0 
T--1 

j=0 
T-1  

j=0 

: 2 / 3 ( l - - O ) + ~ { 2 ( U ~ T - - O ) - - [ < u ~ ) 2 - - 0 2 ] }  

_< 2/3(1 - 0) + 2e(1 - 0) 2, 

/3 because 0 < UPT < 1. In the same way, a multiplication of (5) by Auk ~ and Auk+~, with the 
substitution of u ~ for u, and a summation between 0 and T - 1, respectively, yield (noting that  
in the latter equation we have used the formula of summation by parts (21)) 

T-1  T-1  T-1  

j=0 j=0 j=o 
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and 
T-I T-I T-I 

j=0 j=O j=0 

(6), and (24), it follows 

T-1 
E big (U~+l) ( / k ~  -4- AtL~+I) 
j=0 

T-1 
- -  + + 

j=0 
< f12 + 2fl5(1 - 0) + 2e2(1 - 0) 2 

_< 2 [/~ + e (1  - 0)] 2 . 

Therefore, summing (25) and (26), by (7), 

T-1 

j=O 

(26 )  

Thus, 
T-1 

~>-~(i-0)+ ~ Zg 
j=O 

In view of (20), we get that Auf  <__ ~ + ~(1 - 0) for every j = 0 , . . . ,  T, hence, according to the 
definition of the Riemann integral, 

(/0 ) VeE 0,2 g(t)dt 3 J = ~ ( e ) : i f / 3 + ~ ( 1 - 0 ) < J a n d p E f ~ ,  

T-1 1 (28) 

then E g (U~+l) (Au~j + Aug+l) >2 foo g( t)dt-  ~, 
j=O 

with T defined at the beginning of this proof. Let p(~) = i ( b / 2 )  (2 f l  o g(t) dt - ¢). Since we 
can take, with no loss of generality, the function ~(~) increasing, it is possible to find g E 
(0, 2 f~ g(t)dr) such that p(g) < 3(g). Therefore, given ~ < p(g)/(1 - 0) and assuming the 
existence of/3 E f~ N (0, p(~) - ~(1 - 0)), we obtain/3 + ~(1 - 0) < p(g) < 6(g) implying 

j=0  

which yields a contradiction with (27). Therefore, by Propositions 1 and 3, for every • E 
(0, p ( g ) - ~ ( 1 -  0)] the solution u ~ of (5)is either bounded increasing to 1, or eventually decreasing 
to -oc .  In conclusion, the continuous dependence by initial data, applied like in Theorem 2, 
enables us to find c* > 0 such that (19) is solvable for any ~ < c* and the proof is complete. I 

REMARK 4. Recalling the definitions of p and c* given in the previous theorem, for every ¢ 6 

(0,2 f~ g(t)dt), one has p(¢) <_ Ib_.f~ g(t)dt, hence, c* C (0, Cb f~ g(t)dt/(1-0)).  

6. A P P L I C A T I O N S  T O  D I S C R E T E  
B O U N D A R Y  V A L U E  P R O B L E M S  O N  Z 

This part is mainly devoted to some applications of the results in Sections 4 and 5. We 
investigate the equation 

A2uk -- cAuk + g(uk+l) ----- 0 (29) 

on the set Z, whose solutions correspond to discrete wave profiles of the reaction-diffusion equa- 
tion (9). Here c stands for the wave speed and it is a positive constant, while g is continuous and 
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behaves like in (8) or in (11),(12). Notice tha t  (29) is a special type of equation (5) having all its 
coefficients constant. We are interested, in particular, in wavefront profiles connecting the two 
stationary states u - 0 and u - 1 of (9). This problem translates into the BVP (10) associated 
to equation (29). We remark that,  in both cases for the nonlinearity g, Propositions 1 and 3 
imply that  the only possible limit at +c~ for a bounded solution of (29) is, in fact, the value 1. 

We start our investigation with g satisfying condition (8). Since (29) is an autonomous equa- 
tion, it is not restrictive, in this case, to look for solutions of (10) such that  u0 = 0. Consequently, 
problem (10) on Z \ N with n0 = 0 can be reduced to the second-order linear BVP 

/k2Uk -- C/~U k = 0, 

lira uk = 0, (30) 
k---~-oo 

U0 ~ 0, 

which is solvable if and only if c > 0. Therefore, it is natural to require the positivity of c. The 
solution of (30), uk = O(c + 1) k, has the velocity Au0 = cO. Hence, problem (10), up to a 
translation of the origin, is equivalent to 

A2uk - cAuk + g(uk+l) = O, 

I t  0 ~ 8 ,  

An0 = cO, (31) 

lira uk = 1. 
k---*+oo 

The following result holds, which is essentially an application of Theorem 5. 

THEOREM 6. If(4) and (8) hold, then there exists c* > 0 such that for c = c* (10) has a solution. 

PaOOF. In view of the above observation, it is sufficient to prove the existence of c* > 0 such 
that  (31) has a solution. We reason as in Theorem 5. Given c > 0, denote by u c the solution of the 
IVP associated to (29), when u0 = 0 and Au0 = cO and set f~ -- {c > 0 : limk--.+oo u~ = +oo}. 
Clearly, f~ ~ 0, because [ ( 1 - 0 ) / 8 , + o o )  C f~. T a k e n c  E f~, let T > 0 be such that  u~ < 1 
for k C { 0 , . . . , T }  and u~ _ 1 for k c NT+I. By (27), we get 

~ T-1  
1 E g (uj+]) (Auj  + A j+l )  (32) c_> 2 j=0 c c u~ 

and, in view of (20), Au~ < c for every j = 0 , . . .  ,T.  Hence, 

V s E  O, g(t)dt 3 5 = ~ ( s ) : i f c < d ,  then 

1 

j=0 

Since we can assume 5(s) increasing, it is possible to find g C (0, f~ g(t)dt) satisfying 5(g) > 

V / ~  g ( t ) d t - g .  Therefore, taken c_< V / ~  g ( t ) d t -  g, we obtain c < 5(g)implying 

1 E g ( u ~ + l ) ( A u ~ + A u ; + l ) >  g(t) d t - E > c ,  
j=0  

which is in a contradiction with (32). Therefore, u ¢ is bounded increasing to 1 or eventually 

decreasing to - ~  for every c e (0, ~ / f l  g ( t ) d t -  g] and the existence of a solution for (10) 
$ 

follows by the continuous dependence on initial data. | 
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REMARK 5. According to the proof of the previous theorem, it also follows tha t  

0 < c* < g(t) dr, 

We investigate now the case when g satisfies (11) and (12). The  following result states the 
existence of solutions {wk}k of (29) which strictly decrease to zero when k --* - o o .  Precisely 
such tha t  AWk > 0 for all k E Z \ N. By means of it and Theorem 4, we discuss (see Remark  6), 
also in this case, the existence of wavefront profiles for the reaction-diffusion equation (9). 

THEOREM 7. Suppose that (4), (11), and (12) hold. Then, for all c > L + 2v~ ,  equation (29) 
has an increasing solution {wk}k, with k E Z \ N, satisfying limk--,-oo wk = 0. 

PROOF. The  condition c > L + 2v/L implies tha t  both  the solutions A1 and A2 of )~2 + (L - 
c)A + L = 0 are positive real numbers and they are distinct. Take ~, E (O,g(z)/2) and a - 
7 ( c - L ) / e L  E (0,1). According to (11), g(z) <_ L < c L / ( c - L )  implying a E (0, e). For 
k E Z \ N, put  ~k = 7[(A1 + 1) k + (A2 + 1) ~] and consider the closed and convex subset of the 
Banach space ~oo = {{vk}k : supkez\N lvk[ < +e~} defined by 

Q = {{vk}k~z\N : o < vk < 9- I (~k),  vk  e z \ N } ,  

which is well defined, because ~k <- 27 < g(¢). According to the definition of {~k}k and Q, for 
every {vk}k E Q, the operator  

0 
ca - j=E_~ g(v~) 

{T(~)}~ = ~ 7 1 - ~  

0 

E g(~j)(c+ 1)-J ( , j )  
+ j=k+l j 

c(c + 1) -k  + 

k 

is well defined. Denoting by uk = T(vk), for all k E Z \ N, it holds 

0 0 

c ~ -  E g(~J) E g(~j) (c+1)-J 
j = - o o  j = k + l  

A~k = (c + I ) -~ + (~+ l ) -k  (33) 

and this easily implies Au~+l = (I + c)Auk -- g(vk+l). Therefore, the sequence {T(vk)}k is a 
solution of A2uk -- cAuk + g(vk+l) = 0 for k e Z \ N and it satisfies u0 = T(vo) = a. Moreover, 
(4) and the definition of Q yield 

1 -g(vk+1)(c+ 1) - k  1 
- lira = - -  lira g(vk+l)=O. 
e k-~-~ - e ( c  + 1)  - k  c 2 k - ~ - ~  

Hence, possibly applying the discrete L'Hospital  rule, we obtain 

0 
E g(vj)(c+ 1)-J 

lira T ( v k ) =  1 ]~m j=k+l 
k--.-oo c k--.-oo (C + 1) -k  0. 

Consequently, {T(vk)}k is a solution of the BVP 

A2uk -- cAuk + g(vk+l) = 0, 

U 0 ~ OL~ 

lira uk ---- 0. 
k--*-oo 

k~Z\N, 
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Our plan now, in order to complete the proof, is to apply Schauder's fixed-point theorem to the 
operator T on the set Q. For this purpose, we need to show that T is a completely continuous 
operator and it maps Q into itself. First, we show that T(Q)  c Q. Since, for all k E Z \ N, 
(c + 1) -k _> 1, we get 

0 
E g(vy) [ ( c÷  1) - j  - 1] 

O/ j = k + l  
T(~k) = (c + 1)-~ + ~(c + 1)-~ 

k 
[(c+ 1) -~ - 1] E g(v~) 

+ 
c(c + 1) -k 

> > O, 
- ( c  + 1) - k  

for all k ~ Z \ N. On the other hand, according to the definition of {~k}k, for all k < O, we get 
0 

E ~j (c+l ) -J  
j=k+~ 

~(~+l)-k e(c+l)-~ 
_ 7 

c ( c + l )  -k 

1 - ( ( c +  1)/(A1 + 1)) -k  1 - ((c__+_l)/(A2_+_l))-k 1 

[ A1 + 1 A2 + i I 

[(al+ 1) ~+' (a~ + 1)k+' l 

Taking into account that  A1 - c = -A2 - L = -A2(A1 + 1) and similarly A2 - c = -AI(A2 + 1), 

0 
E ~ j ( c +  1) - j  

j = k + l  

we obtain 

( ,1)  
c(c + 1)-~ c(~ + 1)-~ ~ + 

-C~ L(('~I )~2 + 1)k + (A2 ~+ 1) k ]] + 

7(c - L) 7 [)~l(a I ~_ 1)k + k2(k2 + 1) k] 
- ~ l T - ~  + ~  

Since a = 7 (c - L) /cL ,  we can conclude that 

Let - ]  us conslaer, now 
k 

0 
E ~ ( c +  1)-J a y=k+l A~k 

( c +  1) -k -~ c (c+  1) -k = cL " 

0 0 
~J 

j ~ o 0  
E ~J E ~J 

j = - o o  j = k + l  

e c 

( ) _-2c 1 + ~ + 1 + ~ 1  1 _3`c 1 + ~  [1-(~1+1) k] 

~'e ( 1 + ~ 1 ) [ 1 _ ( A 2 + 1 ) k  ] 

-- e - -3 '  ( 1 + ~ l ) ( A 1 + l ) k + - 7  ( 1 + c  ~1)  ( A 2 + l ) k  

---- -c-~Pk + c-L7 [A2(AI + 1) k + At(A2 + 1) k] 

__ (~__.kk jr_ ~ [(C -- L - /~1)( /~1 -~- 1) k + (c -- L - A2)(A~ + 1)k]. 
- -  C eL 

(34) 
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Therefore, it holds 
k 

j= -~  (e+l)~k ~k+l 
c cL cL 

and combining with (34), we obtain 

0 k 

E ~ j ( ~ + l ) - J  E ~J 
O~ j = k + l  j = - c , a  ~ k  

(e + l ) -k  + c(e + l ) - k  + - -  c L 

Since g(vk) <_ (Zk for every k E Z \ N, according to (11) and previous equality, we get 

0 k 

E (flJ(c+l) - j  E ~J 
O~ j = k + l  j=--oo 

T(~k) < (c + 1)-~ + c(c + 1)-k + - - c  (35) 

~9k g ( g - 1  ( ~ k ) )  
g - l ( ~ k ) .  

L L 

Hence, T(Q) c Q. Now we show that T is a continuous operator. For this purpose, let us 
V n  consider {zk}k, {{ k}k}-eN C Q such that supkez\~ t Irk - z k l  -~ 0 when n --~ +oc. We get, for 

every k E Z \ N, 

0 
E Ig (~2) - g(zJ)l 

I T ( ~ D -  T(zk)l < J=-~ 
e 

0 

E Ig (~?) - g(~,)l (~ + 1)-J 
j = k + l  + 

c(c + 1) -k 
k 

V n E fg( j)-g(zJ)l 
+ 

C 
0 

E Ig (~2) - g(zJ)l 
< j=-oo 

C 

0 0 

E Ig(v2)-g(zJ)l E Ig(~2)-g(zJ)l 
j = k + l  j = - - c ~  + + 

c(c + i) c 

o 1 )  
-< ~ Ig (~?) - g(zJ)l + ~(e+ 1-----7 

j ~ - o o  

For every j e Z \ N, we have lim~_,+o~ ]v~ - zjl = 0, so limn-~+c~ Ig(v~) - g(zj)l = 0, by (4). 
0 Moreover, the definition of Q yields Ig(v~)- g(zj) I <_ 2~j. The convergence of ~j=-oo ~J implies 

0 the convergence of ~j=_~ Ig(v~) - g(zj)l. Hence, applying the discrete Lebesgue's dominated 
convergence theorem, we get 

0 0 

lira E Ig(v~)-g(zJ)l= E n~-~lim g(  ~ , ~  - v ~  g(zj)[ ---- 0. 
n--~-}-o~ j=-ec j=-oo 

Therefore, 
lira sup IT ( ~ )  - T(zk)l = O, 

n--~+c~ kEZ\N 
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and so T is continuous. Finally, we show tha t  T(Q) is relative!y compact.  Indeed, according to the 

monotonicity both  o fg  and {~ok}k, it follows tha t  supkez\N Ir(vk)l _< g-l(~/) for every {vk}k E Q, 
which implies tha t  T(Q) is a bounded subset of g~o. Moreover, given z > 0, since l imk-+-~  ~k = 0, 
it is possible to take m E Z \ N  such tha t  ~,~ _< (Lz/2).  Recalling (35), it follows, for every {vk}k E Q 
and every k, i < m, tha t  

]T(vk) - T ( v d l  _< T(vk) + T(v d ___Z.__ ___ff_ <_ ~k + ~ < 2~m 

because {~k}k is increasing, so T(Q) is uniformly Cauchy in g~.  Since T(Q) is also bounded, it is 
relatively compact  (see [11, Theorem 3.3]). Thus, all the hypotheses of the Schauder's fixed-point 
theorem are satisfied and so T has a fixed point {uk}keZ\N C Q which is a solution of 

A2uk - cAuk + g(uk+l)  = O, 

l/, 0 ~ OZ, 

lira uk = 0. 
]g--+-oo 

Finally, according to (33), for all k < - 1  it holds 

k 

c a -  E g(uj) 
Auk > 

(c + 1) -k 

Since {Uk}k C Q, then 0 k Ej=_~g(u j )  converges. Hence, limk-_,_~ E j = - ~  g(uj) = 0 and this 

implies the existence of k C Z \ N such tha t  Auk > 0 for all k _ ft. Therefore, since (29) 
is autonomous,  the sequence {wk}k = {u~+k}k is a strictly monotone solution of (29) satisfy- 
ing l i m k ~ _ ~  wk = 0 and the proof is complete. | 

REMARK 6. Consider the equation A2uk - cAuk + g(uk+l) = 0, with k E Z, c > L + 2 v ~ ,  
and g satisfying conditions (11) and (12). Notice that ,  with no loss of generality, the bounded 
increasing solution {Wk}keZkN of 

A2uk - cAuk + g(uk+l) = O, 

lim uk = 0, 
k - - * - o o  

obtained in Theorem 7 can be taken such tha t  w0 E (0, 1). Moreover, since equation (29) is a 
special case of (1) with rk = (c + 1) 1-k and qk = (c ÷ 1) -k ,  hence, satisfying Sr = Srq = 0% 
according to (12) we can apply Theorem 4 and Proposit ion 3 in order to state the existence of a 
bounded increasing solution {vk}kcr~ of the boundary  value problem 

A2uk  - c A u k  + g(uk+l)  = O, 

Consider now the sequence {uk}keZ defined by 

Uk 
t Vk, 

lim uk = 1. 
k--*+oo 

for k E Z \ N ,  

for k E N. 

Of course it satisfies limk__._~ uk = 0 and limk-.+oo uk = 1. Moreover, it is a solution of (29) 
both  for k c Z \ N and for k E N. In conclusion, though {uk}k is not exactly a solution of the 
boundary  value problem (10) when k varies on all Z, nevertheless it can be seen as a wavefront 
profile for the reaction-diffusion equation (9) which monotonically connects its two stat ionary 
solutions u _= 0 and u - 1. 
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7. C O N C L U D I N G  R E M A R K  

(i) It turns out that  some of the above approaches might be successfully extended to the 
investigation of difference systems with similar types of nonlinearities as the function g is. For 
example, we could consider a nonlinear system of the form 

A(RkAuk) + QkF(uk+l, vk+l) = O, 

A(Pk/Xvk) + SkG(uk+l, vk+l) = 0, 

with F, G nonnegative and nontrivial. Such system appears in studying discrete mathemati- 

cal models, where the existence of bounded solutions is related to the appearance of travelling 

wave solutions. In our opinion, its investigation is interesting also from a purely mathematical 

viewpoint. Hence, it is an object of our examination in future research. 
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