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Analog Perceptrons: 
On Additive Representation of Functions 

Y. UESAKA 

N H K  Broadcasting Science Research Laboratories, Tokyo, Japan 

The theory of computational geometry in Perceptrons (Rosenblatt, 1962), 
developed by M. Minsky and S. Papert (1969), is extended to "Analog Percep- 
trons" with real-valued input and out-put. Mathematically, our problem is 
to determine the order of a function, i.e., the smallest number of variables 
necessary to make an additive representation of the function by employing 
partial functions of the smaller number of variables. 

Mathematical tools, called the group-invariance theorem, the classification 
theorem and the collapsing theorem, are given which are useful for evaluating 
the order of analog Perceptrons. These are also applied for several analog 
Pereeptrons. 

I. INTRODUCTION 

M. Minsky and S. Papert (1967, 1969) have developed a fruitful theory of 
computational geometry of Perceptrons (Rosenblatt, 1962). The  central theme 
of their theory is the classification of  certain geometrical properties according 
to the type of computation necessary to determine whether a given pattern 
has them. The  computational geometry has been mainly motivated by the 
following considerations: 

(a) In  a problem of geometrical pattern recognition, to what extent can 
one use "local" properties--evidences obtained by looking at small portions 
of a pat tern--as  a basis for judgments about the "global" character of the 
pattern ? 

(b) What are the essential differences between "serial" and "parallel" 
computation ? For example, to what degree can a computation be sped-up 
by doing several subcomputations at the same time ? 

Perceptrons in their theory may be said to be rather "digital" in the sense 
that their inputs and output take only two kinds of values, e.g., "0"  and "1".  
In  the present paper, the aim is to extend the theory of computational 
geometry to " A N A L O G "  Perceptrons, of which inputs and output may take 
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arbitrary real values. The motivation of this extension stems from the 
following points of view: 

(c) In the actual problem of geometrical pattern recognition, it is 
desired to deal with figures consisting not only of black picture elements but 
also gray ones. 

(d) Recently, it has been recognized that the information in a nervous 
system is transmitted in a mode of the continuous type, such as the pule 
density, rather than of the discrete type. This standpoint stimulates investi- 
gation on the analog model of neuron (e.g., Fukushima, 1969). On the other 
hand, the Perceptron may be regarded as a simplified model of the neuron. 
Thus the question is: What kinds of differences do there exist between the 
neuron model of the "digital" type and that of the "analog" type ? 

As defined below, the output of analog Perceptron is determined by 
summing up the values of partial functions. There is no weighting coefficient 
in the summing process and no threshold element in the analog Perceptron. 
Thus, mathematically, our problem may be reduced to the additive represen- 
tation of a function if we employ partial functions of the smaller number of 
variables. This may be regarded as a special case of the 13-th problem of 
Hilbert (1901). 

In Section II, we shall formulate the analog Perceptron, and introduce the 
central concept of order by following Minsky and Papert. As examples, an 
elementary method for evaluating the order is demonstrated for simple 
analog Perceptrons. In Section III, the fundamental property, called the 
group-invariance theorem, which has an advantage for evaluating the order, 
is given and is also applied to some analog Perceptrons. In Section IV, a 
certain class of analog Perceptrons will be classified according to the order. 
This classification makes the determination of the order easy. In addition, the 
collapsing theorem (Minsky and Papert, 1969) is verified for the analog 
Perceptron. 

II. ANALOG PERCEPTRON 

We shall conventionally use the following notations: Let E be the set of all 
real numbers. A finite set, denoted by R, of real-valued variables x: ..... xn is 
called a "retina". An element in En--i.e., the direct product of nE's--is 
interpreted as a geometrical pattern or a figure described on the retina, and 
variables in R may be regarded as picture-elements or visual cells in the retina. 

Variables for patterns on the retina are usually denoted by letters X, Y,.... 
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It  seems natural to associate a mapping ~b from E ~ to E with the property of 
a pattern X = (xa .... , x~). Occasionally, it will be convenient to use the 
traditional representation of ~b(X) as a function of n real-valued variables 
such as ~b(x a ,..., x,~). In  this paper, the word "function" is used to mean only 
a mapping from EIRI to E, where ] R [ denotes the number of elements in R. 
In  this context, an expression such as "a function ~b on R.. ."  will be used for 
the sake of simplicity. In  other cases, the word "mapping" is employed. 

For a function ~b on the retina R, ~(x) denotes a mapping from E to E 
which is induced from ~b by fixing the variables in R - -  {x}. 

DEFINITION 1. A variable x of R is effective to $ if and only if there is at 
least one nonconstant mapping ~(x). 

For example, x 1 is effective to ~(x 1 , x~) = XxX~/Xz, but x2 is not. 

DEFINITION 2. A support of ~b, denoted by s(~b), is the set of all of effective 
variables to ~b. 

The  support of  ~b means intuitively a set of variables all of 
which affect the value of ~b. For instance, s(x 1 + x 2 ) =  {xl, x2} , while 
,(xl(xl + - xlx ) = 

Subsets of the retina R are usually denoted by letters A, B ..... For A 
included in R, o~-(A) denotes a set of functions on R of which supports are 
included in A, i.e., 

• (A)  = {~b; ~b : EIRI -+ E and s(~b) C A}. ( 1 )  

Now we shall define the analog Perceptron. 

DEFINITION 3. Let S be a family of subsets of the retina R. We say that 5b 
is an analog Perceptron on R with respect to S if for each member A of S 
there exists 9A in ~-(A) such that 

~(X)  = • q~A(X). (2) 
A ~ S  

This is called an additive representation for ~b, and often written more briefly 
as ~b ~- ~]A~S ~°A • We denote by d ( S )  the set of all of analog Perceptrons with 
respect to S. 

Evidently, any function on R is an analog Perceptron with respect to 2 R, 
where 2 R is the family of all subsets of R. Thus, in spite of"analog Perceptron", 
the word "function" is occasionally employed for short. 

The  differences from the Perceptron of Minsky-Papert  type are that 
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(i) Weighting coefficients are embedded into partial functions ~oA's , 
and that 

(ii) A threshold element is removed. 

The  difference (i) is a natural consequence of the generalization such that 
inputs and output of the Perceptron can take any real value. In view of (ii) the 
number of steps in serial computation or number of layers in the Perceptron 
diminishes. Thus,  the analog Perceptron may be suitable for considering the 
theory of parallel computation, because it becomes more elemental as a 
parallel computer. 

Next, following Minsky and Papert, we shall introduce the central concept 
of order. For a linearly ordered set _d, max A or min A denotes the maximum 
or the minimum element in A, respectively. 

DEFINITION 4. The  order of an analog Perceptron ~b, denoted by o(~b), 
is the smallest k for which there is a family S satisfying that 4~ has an additive 
representation of ~b = ~2~s 9A and for every A in S, I s(gA)l ~ k: that is, 

where 

o(~) = min{M(S); ~ E d (S)} ,  

M(S) = max(I s(~oA)l; A ~ S}. 

(3) 

(4) 

For example, x 1 + " . . - ] -x~ is of the order 1. Generally, if there 
exist of 1 ,..., 9~ such that for i = 1,..., n, 9i is in ff({xi}) and ~b(X)= 
(pl(Xl) -[- "" + 9n(xn), then o($) ~. 1. 

In view of the definition, it is seen that an additive representation of $ with 
a large order requires at least one partial function that can "look" a large 
portion of the retina. Thus, the property expressed by such $ is said to be 
"global". Conversely, if the order of ~b is small, the property of $ is said to be 
"local". This indicates that, in the case of pattern recognition, or processing 
by a parallel machine, the concept of the order plays an important role for 
considering the relation between the properties of the pattern and the 
structure of the machine. 

The  following form of the definition will be often convenient for evaluating 
the order. 

THEOREM 1. 
Then 

For a family S of subsets of R, II s II denotes max(] A I; A ~ SL 

o(~) = min{I I S I[; ~h ~ d (S)} .  (5) 
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Proof. Suppose that ~b is in ~ ( S ) .  Then  there is an additive representation 
for ¢ such that ¢ == ~2Ass ~°A and for A of S, s(~oA) C A. Hence, 

I S(~A)I ~< I / I  ~< II sIf. (6) 

Taking the maximum of the left side of (6) with respect to A of S, we have 
that, by the definition of the order, 

o(¢) <~ max{[ s(cpA)[; A G S} ~< ]1S ll- (7) 

Taking the minimum of the right side of (7) with respect to S under the 
constraint such that ~b is in ~ ( S ) ,  we have that 

o(¢) ~< min{ll S[[; ¢ G ~(S)} .  (8) 

Next, suppose that ~b is in d ( T ) .  Then  there is a representation such that 
~b = ZA~T ~°A • Let  T O = {s(~oA); A G T}. We shall define new partial functions 
XB'S such that, for each B in To, 

B s(~o A) 

where 

(~ox, if A = s(~oA); 
~A* = I the partial function obtained from ~o A by 

k inserting 0 into variables in A --  s(~oA), if A C s(~oA). 

Note that )/B is in ~ ( B )  and B = S(XB). Since in A -  s(~oA) there is no 
effective variable to ¢, ¢ = ~B~T0 X~, and 

I BI  = [ S(XB)I ~< O(¢). (9) 

Taking the maximum of the left side of (9) with respect to B in T O , we have 
that 11 T O 1] ~< o(¢). Noting that I] To [1 ~> min{[] S []; ¢ G z~'(S)}, we finally have 

o(¢) ~> min{ll S 11; ¢ G d(S)} .  (I0) 

Combining (8) with (10), we have (5). Q.E.D. 
Let  S and T be families of subsets of R. We define a relation such that 

S < T if and only if for every A in S there is B in T such that A C B. In 
addition, we define as S ~ T if and only if S < T and T < S. For each S, 
we define 

ml(S) = {A; A E S and VB G S, B @ A ~ B ~) A}. (11) 
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For example, let S = {{x 1 , x 2 , xa}, {Xx, x~}, {x 2 , x4} ) and let T = {{x 1 , x~}, 
{x~, xa}, {x 2 , x4} }. Then  T < S, ml(S) = {{x~, xa,  xs}, {x~, x4} } ~-~ S and 
ml(T) = T. 

LEMMA 1. 

(i) 
(ii) 

(iii) 

Proof. 

Let S and T be families of subsets of R. Then, 

if  S < T, then d ( S )  C d ( T ) ;  
if S ~ T, then d ( S )  = d ( T ) ;  and 
d(ml(S))  = d ( S ) .  

(i) Suppose that 4 is in d ( S ) .  Then  there is a representation for 4 
such that  4 = ~Ass ~°A and for every A in S, ~o~ is in o~(A). Since, by 
assumption, for every A in S, there is B in T such that B D A, so for every A 
in S there is B in T such that at least one of the members  in o~(B) is identical 
to ~A • Let  TB = {A; A C B and A ~ S}. Thus,  defining each B in T as 

XB 

t ; ~A, if B ~ m l ( T )  
A B 

0, otherwise, 

and T B = N ; 

we can write 4 as 4 = ZB~TXB • Hence 4 is in ~ ( T ) .  
(ii) Since by assumption S < T, ~ ( S )  C d ( T )  in view of (i). Similarly, 

d ( S )  D d ( T ) .  Hence, d ( S )  = d ( T ) .  
(iii) Obvioulsy, ml(S),-o S. Thus,  by (ii) we have the assertion. 

Q.E.D. 

THEOREM 2. In the definition of the order, we may restrict the range of S's  
to the family of ml(S)'s. Namely, let M = {ml(S); S C 2R}. Then, for every 
function 4 on R, 

0(4 ) = min{[] T I1; T E M and 4 ~ d ( T ) } .  (12) 

Proof. I t  is easily seen that for every S in 2 R, H S [[ = II ml(S)][i Thus,  the 
theorem follows (iii) of the Lemma  1. Q.E.D. 

When we want to estimate the order of an analog Perceptron, this theorem 
becomes useful for simplifying the job of evaluation. For example, consider a 
problem to show that 0(4 ) = ]R  [. I t  is enough, for this purpose, to show 
that there is no set of partial functions ~D 1 in ~'(A1) ..... ~% in ~ ' (An)  such that  
4 = ~1 + "'" + % ,  where A 1 = R - -  {xl} ..... An = R -- {x~}. In  fact, if the 
order of 4 were smaller than ] R ], then there would be an additive represen- 
tation for 4 such that 4 = ~ n s s  ~°A and II S II < I R I. In  view of Theorem 2, 
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we may choose {A a ..... An} as S satisfying that [[ S t[ < [ R i. Thus, there 
exists a set of ~01 in o~(A~),..., % in o~(A~) such that ~ = ~ i  ~i ,  and this is a 
contradiction. 

The  following examples demonstrate an elementary method for evaluating 
the order of simple analog Perceptrons. 

PROPOSITION 1. A n  ana log  P e r c e p t r o n  de f ined  as 

mult(X) = x 1 ""  x n (13) 
is of order n. 

P r o o f .  By induction on n. Initial step is obvious. Inductive step: Suppose 
that the order of mult on R = {x 1 , . . . ,  x~} is smaller than n. Then, in view of 
Theorem 2, mult must be in d ( S ) ,  where S = {R - -  {xa},... , R - -  {Xn}}- In  
other words, there exist ~01 in ~-(R - -  {xl} ) ..... % in ~ ( R  - -  {xn}) such that 

mult(X) = (pl(X2 . . . . .  x~) -~- 1~o2(Xl , x 3 . . . . .  xn)  

+ "'" + ~o.(xl ..... x._O. (14) 

Inserting 1 or 0 into x~ of (14), we have, respectively, that 

mult(x a ..... x~_l) = Cpl(X 2 . . . . .  X ,n_ l  , 1) 

-[- "'" -]- ~On_l(X 1 . . . .  , Xn_2 ,  1) + ~On(X 1 , . . . ,  Xn_l)  , 

0 5 )  
o r  

0 = ~o~(x 2 ,..., x ~ _ l ,  O) + -.- + q~_a(x a .... , x , _ 2 ,  O) + %(x~  ..... x ,_~) .  (16)  

Subtracting sidewise (16) from (15), we have a representation for mult on 
{x~ ..... x~_3: 

mult(x 1 . . . . .  x , _ l )  = Xl(X2 , . . . ,  Xn_l)  -~  "'" -~- Xn_I(Xl . . . .  , X,~_2), (17)  

where for i =- 1 ..... n - -  1 

XdYl ..... Y.-2) = ~ i ( Y l  . . . . .  Y n - 2  , 1 )  - -  ~oi(y I . . . . .  Y,~-2 , 0) .  

Equation (17) shows that the order of mult on {x 1 ,..., x~_l} is smaller than 
n -  1, and this contradicts to the inductive hypothesis. Thus,  the proof 
completes by induction. Q.E.D. 
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PROPOSITION 2. Ana log  Perceptrons defined as 

m a x ( X )  = max{xa ,..., x~}, 

m i n ( X )  = min{x 1 ,..., x~} (18) 

are both o f  order n. 

Proof .  Fi r s t  we shall  show the above in the case tha t  the doma in  of m a x  is 
res t r ic ted  to [0, 1] ~*. In  induc t ion  on n, the  init ial  s tep is obvious.  Induc t ive  

step:  Suppose  tha t  the  o rder  of the  res t r ic ted  max  on R = {x I ..... x~} is 
smal ler  than  n. Then ,  s imi lar ly  as in the  p roof  of the  Propos i t ion  1, there  is 

an addi t ive  represen ta t ion  for max  such tha t  

m a x ( X )  = ~Ol(X 2 .... , x~) + 92(xl ,  x a ,..., x~) + "-" + 9~(x x ,..., x~_l). 
(19) 

Inse r t ing  0 or 1 into x~ of (19), we have, respect ively,  tha t  

max(x1 ,..., x~- l )  = ~1(x2 ..... x~_ l ,  O) 

+ ... + ~ _ ~ ( x ,  ,..., x~_~, O) + ~o~(xl ,..., x~_~), 

or  

(20) 

Subt rac t ing  sidewise (21) f rom (20), we have a represen ta t ion  for m a x  on 

{X 1 ,..., Xn--1}: 

max(x 1 . . . . .  x~_l)  = Xl(0C2 ..... x~_l)  ~-  "'" -}- Xn_l(Xl ..... xn -2)  -t- 1, (22)  

where  for i = 1,..., n - -  1 

X , ( Y l  . . . . .  Y+-2) -~ c¢+(Yl .... , Y,~-2 , O) - -  ++(Yl , . . . ,  Y,~-m , 1). 

Equa t ion  (22) shows tha t  the  order  of the  res t r ic ted  m a x  on {x 1 ,..., x~_l} is 
smal ler  than  n - -  1, and  this contradic ts  to the  induct ive  hypothesis .  Hence  
the res t r ic ted  max  is of  the order  [ R ]. 

N o w  we shall  remove  the res t r ic t ion on the doma in  of max.  Suppose  tha t  
the  order  of m a x  on R = {x 1 ,..., x~} is smal ler  than  n. T h e n ,  there  is a 
represen ta t ion  such as (19); and,  fu r thermore ,  for 0 ~ x I , . . . ,  x , _  1 ~ 1, 

(20) and (21) should  hold.  Thus ,  in view of (22), the  o rder  of the  res t r ic ted  
max  should  be smal ler  than  I R I. Th i s  contradic ts  the  resul t  above. T h u s  the  
p roof  is complete ,  s imilar ly  as in case of the funct ion min.  Q .E .D.  

1 = ~OI(X 2 . . . .  , X n _ l ,  1) "~- "'" 27 ~n_l (Xl  ,..., Xn_2,  1) -~- (JO~(X 1 ,.. . ,  Xn_l).  (21)  
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I I I .  GROUP-INVARIANCE THEOREM 

In  this section, the group-invariance theorem corresponding to the 
Theorem 2.3 in Minsky-Paper t  (1969), which is powerful for estimating the 
order of several analog Perceptrons, is given. 

For  a subset A of the retina R, we denote by 7r(A) the set of all permutat ions 
formed up from variables in A. For  example, when A = {x 1 , x2, x~}, 

7r(A) = {(Xl,  x2 ,  x3) , (Xl ,  x3 ,  x2) , (x2 ,  X l ,  x3) , 

(x2, x~, xl), ( ~ ,  x l ,  x2), ( ~ ,  x2, xl)). 

Members  of rr(A) are usually denoted by letters a, %.. . .  In  addition, if ¢ is 
in ~ ( A )  and for cr in 7r(A), a = (x~l ,..., x , ) ,  then ~b(a) means ¢(x~. ,..., x~,,). 

Consider a group G of permutat ions on the retina R = {x 1 ..... x~}. When g 
in G is 

( " " x n )  xl 
g ~- X~I X~ ' 

then we write f o r k  = 1 .... , n a s g x  k = x , ~ . F o r a s u b s e t A o f R a n d g i n G ,  
the set gA is defined as 

gA = {gx; x ~ A}. (23) 

For  subsets A, B of R, we introduce a relation ~ such that A ~-~ B if and only 
G G 

if there is a member  g in G for which gA = B. It  is easily seen that  ,-~ is an 
G 

equivalent relation. When cr in ~r(A) is (x~t .... , x~) ,  we denote (gxq ,..., gx~,~) 
by ge. 

Let  A and B be subsets of R. Let  e be in zr(A). Then,  by 7r(A --+ B, or) 
we mean a set o fga ' s  such that gA = B a n d g  is in G: 

~r(A --+ B, a) = {ga; gA = B and g ~ G}. (24) 

For  g in G, we define as 

g~(A -~  B, ~) = {g~; ~ E ~(A ~ B, ~)). (25) 

We introduce a relation ~-~ as follows: ~v(A -+  B, e) ~-~ 7r(A' - ~  B',  # )  if and 
G G 

only if there is a member  g in G for which g~-(A --~ B, a) = rr(A' -+ B', #) .  

LEMMA 2. Let A and B be subsets of R. I f  A ~,~ B, then for every subset C 
G 

of R and cr in ~(C), zr(C --+ .4, a) ~ 7r(C ~ B, a). 
(7 

643/ I9 / I -4  
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Proof. If  either 7r(C --+ A, a) or rr(C --~ B, a) is empty, then so is the other. 
Thus, in this case, the lemma trivially holds. 

Let z be in 7r(C--+ A, a). Then, by notation, there is h in G such that 
hC = A and r = ha. Since by assumption there is g in G such that gA = B, 
gr = (gh) a is in rr(C--+B,a). In fact, (gh) C = g A  = B. Hence 
g (C A, a) C B, a). 

Let ~" be in 7r(C-+ B, a). Then by notation there is h in G such that 
h C = B  and • = h a .  Noting that G is a group, ~ - = g ( g - l h ) a  is in 
gTr(C--+ A, a) for the above g. In fact, ( g - l h ) O = g - l B  = A .  Hence 
grr(C --+ A, a) D rr(C --+ B, a). Q.E.D. 

As an immediate consequence from the above, we have the following. 

LEMMA 3. Let A and B be subsets of R. Let ¢ be a mapping from EIAJ to E. 
I f  A ~d" B, then for every subset C of R and a in ~r(C), there is g in G such that 

~', ¢(g~) = Z ¢(r). (26) 
~Err(C~A,~) r~TrlC~B,a) 

Using this lemma, we shall show the group-invariance theorem for 
the analog Perceptron. 

DEFINITION 5. Let S be a family of subsets of the retina R. Let G be a 
group of permutations on R. We say that S is closed under G if for every A 
in S and g in G, the set gA is also in S. 

DEFINITION 6. Let ~b be a function on R. Let G be a group of permutations 
on R. We say that ¢ is invariant under G if for every g in G and X on R, 
¢(gX)  = ¢(X), where g X  = (gx 1 ... .  , gXn). 

THEOREM 3. Let (i) G be a group of permutations on R, 
(ii) S be a family of subsets of R and closed under G, and 

(iii) ¢ be in d ( S )  and invariant under G. 

Then, there exists an additive representation for ¢ such that ¢ = ~A~s ~°a and 
the partial function go A depends only on the G-equivalence classes of S. Namely, 
we can choose the partial functions such that, for 9A and ~ , if A ~ B, then 
there is g in G for which ~ o A ( g X  ) = ~ B ( X ) .  

Proof. Since ¢ is in d ( S ) ,  there is an additive representation for ~b such 
that 

¢(X) = ~ Xc(X)= T, Xc( a& 
CES C~S 
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where cr c is in 7r(C). Furthermore, since ~b is invariant under G, for every g 
in G, 

4,(X) = ~b(gX) = • Xc(gcrc). 
C~S 

Summing sidewise up this equation for all g in G, we have that 

Noting that for every A and C in S, and for every a c in 7r(C) 

7r(C ~ A,  ac) = {gcrc ; g E G} n rr(A) 

and 

we see that 

U zr(c --> A, (~c) = {g(zc ;g ~ G}, 
A~S  

g~G AES .'rezdC->A,~c) 

Applying this to (27), we have a new representation for ~b such that 

where 
A e S  

1 (28) 

It  remains only to show that for every A and B in S if .,4 ~.~ B, then there 
is g in G such that cpA(gX ) = q~B(X). In  view of Lemma 3, there is g in G 
such that, for every C in S and p in ~(C), 

x c ( g  "r) = Z Xc(Z)  • 
"r~-(C-~A,p) "r~Tr(C~B,o) 

Hence, from (28), we have 

1 

1 I  1 
~'~r(C~B,e c )  

Q.E.D. 
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N o w  we shall  demons t ra te  wi th  examples  how to app ly  the  g roup-  
invariance theo rem to the evaluat ion of the order .  

THEOREM 4. Let  G be a transitive group--i .e . ,  for  every pah" o f  variables x, y 
in R there is at least one g in G such that gx  = y - - o f  permutations on R.  Le t  ~b 

be a function on R and invariant under G. Then, 0(4 ) ~ 1 i f  and only if, for  

every x 1 ,..., x~ , 

n4~(x~ .... , x~) = ~(xl  ,..., x~) -1- ... -1- ~b(x~ ,..., x~). (29) 

Proof. In  view of the  defini t ion of the order ,  the  " i f "  pa r t  is obvious.  
Suppose  tha t  o(~b) ~ 1. T h e n  there  is a set of ~ ' s  such tha t  s(%) C {x~} for 

i = 1,..., n, and  ~b can be wr i t ten  as 

~ ( x )  = ~ ( ~ )  + ... + ~(~). 

L e t  S = {(Xl} ..... {x~}}. Since G is t ransi t ive,  S is closed under  G and 
S/, '~ ~ - { S } .  Hence,  by  the  group- invar iance  theorem,  we can choose the  

G . 
ident ical  funct ion 9 as 91 ,.-., 9n : 

~(x~ .... , x~) = ~(xl)  + "" + ~(x~). (30) 

Inse r t ing  x into xi of (30), we have tha t  qo(x) = 4J(x,..., x)/n. Thus ,  us ing  (30) 

again,  we obta in  (29). Q .E .D.  

By this resul t  it  is easily seen tha t  the o rder  of funct ions  (x 1 q- "-- q- x . )  ~ 
(m > / 2 ) ,  I xl  q- "" q- x~ ], sign(x 1 q- "'" q- x,) , . . ,  etc. are larger  than  1. 

Nex t  we discuss a Pe rcep t ron  tha t  de te rmines  the  un i formness  of a pa t te rn :  

L e t  " u n i f o r m "  be a func t ion  on R def ined as 

l l ,  i f  x 1 -  - - x ~ ;  (31) 
un i fo rm(X)  = 0, otherwise.  

LEMMA 4. Let  R 1 be a set of  variables Yl  ,..., Y~-a • B y  prop(k)  we mean 
a proposition such that some k variables in R 1 take the same value a, and the 
values o f  the residual variables and a are mutually distinct. I f  there is a mapping 

f rom  E ~-1 to E such that 

un i fo rm(X)  = ~o(x 2 ..... x~) + 9(x 1 , xz ,..., x . )  + ' "  + ? (x  t ,..., x~_l), (32) 

then, ,for k = 1,..., n - -  1, prop(k)  implies 

?(Yl  y~_l)  = (_1)~_~_ ~ (n - -  k - -  1)[ kt (33) 
" ' "  n [  
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Proof. By induc t ion  on h = u - - 1 ,  n - - 2 , . . . ,  1. Ini t ia l  step: Let  

x 1 = ' - "  = x .  = x in (32). Since un i fo rm(X)  = 1, we see that  q~(x,..., x) = 1/u. 
Hence  (33) holds for h = n -  1. Induc t ive  step: Let  x I - -  - -x lc  = x 
in (32) for some k. T h e n  (32) becomes 

uni form(x  ..... x, xk+ 1 ,..., x~) 

= h~(x, . . . ,  ~, x~+l .... , x~) + ~(x, . . . ,  x, x~+~ .... , x~) 

+ ~ ( x , . . . ,  x ,  x ~ + l ,  xk+a , . . . ,  Xn) + . . . . . . . . . . . . . . .  

k 

+ ~(x  ..... x, X~+l ,..., x , _ ~ ,  x~) + ~(x, . . . ,  x, x~+~ ,..., x~_~). 
k k 

Suppose that  prop(k) holds. T h e n ,  by  the induct ive  hypothesis,  

~ ( x , . . . ,  x ,  x~+~ , . . . ,  x ~ )  . . . . .  ~ ( x , . . . ,  x ,  x~+~ . . . .  , x , _ l )  
k k 

= ( _ l ) n _ ~ _  ~ (n  - -  h - -  1)! k!  
n! 

and,  by  definition, uniform(x, . . . ,  x, xk+ 1 .... , x~,) = 0. Hence  we have that  
/c 

0 = kq~(x,..., x, Xk+a ,..-, x~) + ( - -1 )  ~-k-~ (n - -  h - -  1)[ k! 
k_~--vi ~ n! ' 

or equivalent ly  

~ ( x , . . . ,  ~ ,  x ~ + ,  . . . .  , x ~ )  = ( - 1 ) ~ - ( ~ - , - ~  (n  - (k  - 1) - 1)! (k  - 1)! 
k-'-"~- n! 

(34) 

Not ing  that  q0 is invar iant  u n d e r  the pe rmuta t ion  group on R~,  in view- of 
T h e o r e m  5 which will be shown later, (34) confirms the validity of (33) for 
k - -  1. T h i s  completes  the  induct ive  proof. Q.E.D.  

PROPOSITION 3. o(uniform) = [ R  1. 

Pro@ Suppose that  o(uniform) < [ R  [. T h e n ,  by  the group invar iance 
theorem, there is an addit ive representa t ion for un i fo rm such as (32). Thus ,  
let t ing x 1 ,..., x~ be mutua l ly  distinct,  in view of L e m m a  4, 

q~(xq .... , xe._,) = (--1)~-2(n - -  2)!/nl, 

where 1 ~< i 1 < "" < i,~_ a ~< n. But, in  this case, obviously un i fo rm(X)  ~= 0. 
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Hence 

[the left side of (32)] ---- 0 v~ n X ( - -  1)~-2(n - -  2) !/n ! ~- [the right side of (32)], 

and this is a contradiction! Q.E.D. 

IV .  CLASSIFICATION THEOREM 

Through in this section, by G we mean the group of all permutations on 
the retina R. A problem of classifying Perceptrons which are invariant under 
G will be discussed from the order point of view. The  classification theorem 
follows several lemmata which gives the necessary and sufficient condition 
that the order of G-invariant Perceptron is smaller than or equal to a given 
number.  An application of this theorem will demonstrate that the orders of 
the Perceptrons discussed already are more easily determined. In  addition, 
after giving the collapsing theorem, we shall discuss a few analog Perceptrons. 

Let  ~ be a mapping from E m to E, where E is the set of all of real numbers. 
For the sake of simplicity, we use the following notation: For integers r, s 
such that r ~- 1,..., m and r ~ s, 

$ 

99~[a] = ~ ~o(xil ,..., x# ,  a,...,._._~a), (35) 

where a is a constant number. When r = 0, for s = 1, 2,..., 

~q~o[a] = q)(a,..., a). 

For  example, in case of m ~- 3, 

2 
~ l [ a ]  =-~(Xl ,  a, a) -]--~(x2, a, a), 

2 

Y] ~2[ a] = ~°(Xl , '%'5' a), 

~,215] = ~(xl, x2,5) + ~(xl, x3,5) + ~o(x2, x3,5), 

4 

y~ ~%[a] --  m(x~, x~, x,) + ~o(x,, ~ ,  x,) + re(x,, x~, x,) + ~o(x~, x~, x,), 

...... , etc. 
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LEMMA 5. 
¢ such that ¢ = Y.~ 9~[a] ,  then for k = O, 1,..., m 

¢ ( x l  .... ,x~ ,a , . . . ,_ .  ~) = m - j  ~;[~]  ' 
n--k j=0 

Proof. 

where 

Let ¢ be a function on R. I f  there is an additive representation for 

(36) 

[ : ]= t ( : )  ;j . > m ;  (,,) 
[0,  i f  n < m .  

By notat ion 

~(Xl  ''")XqT) --- Z ~o(Xil )..., X,m ), ( 3 8 )  
1 < i  1 < -.. < arn<n 

Inser t  a into xk+ 1,xk+2, . . . ,x  ~ of  (38). T h e n ,  we can see that  in 
the  r ight  side of  (38), there  exist n-k Ira-k] 9(xl  ,-.., x k ,  a,..., a) ' s ;  tha t  for 

¢;¢--k 
1 ~ i 1 < "'" % ik_ 1 ~ k, there  exist [~--~+1] 9(Xil ,---, xik_~, a,..., a) 's ,  . . . . . . . . .  ; 

m - k + l  
and that  there  exist [n~]  9(a,. . . ,  a) 's .  Thus ,  by  notat ion,  we have the  
representa t ion  (36). Q .E .D.  

LEMMA 6. Let qa be a mapping from E '~ to E. Let X(X1 . . . . .  Xs ) - -  ~ s  {or[a]" 
Then, for every integers s, t and r such that 0 <~ r ~ s <~ t and r <~ m, 

t t 

X,~[a] = ( ~ -  ~) ~ qQa].  (39) 

Proof. For  the  sake of simplici ty,  we wri te  ~0(xa ,..., x~,  a,...,_ a) as 
m--n 

~o(1,..., n). By [n] we m e a n  a set  of  integers  1, 2,..., n. By I we mean  a set  of  
mapp ings  f rom Jr] to It] such that  for i in I ,  i(1) < -'- < i(r), i.e., 

I = { i ; i :  [r] --+ [t] and i(1) < -'- < i(r)}. 

Similarly,  we define as follows: 

j = { j ; j :  [r] --~ [s] and j(1) < "" < j ( r ) } ,  

K = {k; k : [s] --+ [t] and k(1) < "-" < k(s)}. 
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Note that I l l  = (~), I Y l = (g) and ] K [  = (~). We denote by k* a mapping 
induced from k in K by restricting the domain of k to the image of j, denoted 
by Im(j) .  Then, for everyj  in J and k in K, k*j is a mapping from [r] to [t]. 
Using these notations, we may write (39) as follows: 

~ ~o(k*j(1),..., k*j(r))= ( ~ -  ; ) ~  9(i(1),...,i(r)). (40) 
k e K  ~ d  gel 

Thus we shall show this equation. 
For a given i in I we estimate the number of k*j's, denoted by N(i), such 

that k*j = i. Since every i, j and k are one-to-one, there exists j such that 
k*j = i if and only if Im(k) includes Im(i), or, equivalently, [t] -- Im(i) 
includes [t] -- Ira(k). Hence, N(i), i.e., the number of k's satisfying this, is 
obtained by a simple combinatorial calculation as 

N(i) = [lit] -- Im(i)l] -- -- 
\ ] [ t ] -  Im(k)l] = (; ;) : (: ;) 

for every i in 1. 

[ r ]  Is] [1] 

[f ] - l rn( t )  

This means that the left side of (40) has t-~ (8-~) ~o(i(1),..., i(r))'s for every i in I, 
of which the total number, i.e., 

N(i) = (~ ~ ~)(~) 
i~ l  

is equal to the total number of qo's in the left side of (40), because 

( ; - r ) 0  = ' t 

Hence the left side of (40) is exactly equal to the summation of 
(s-~) qo(i(1),..., i(r))'s. This completes the proof. Q.E.D. 

LEMMA 7. For n = 1, 2 , 3 , . . . a n d m =  1 ..... n - -  1, 

N(n, m) = ~ (--1) ~ (7) [  n - - 1 T  i] = O. 
i=O m - -  

(41) 
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Proof. Case(i):n/2>~m >~ 1. First, fo rm = 1, 

~(",')  = (o)(" o o : o .  
- 1 ) _  (1)(n - 2) 

Next, using the well-known relation 

(m) : ( m - - ~ ) ~ m - - , ~  
i + \ i - - 1 1 '  (42) 

N(n, m) is rewritten as 

NOv/, m) = ~1(__1)  i ( m -  1 ) ( n - - 1  l i )  
i=o i m + 2 (--1)' (m----~)(" -- 1 -- i)" - -  i=1 m - -  1 

Furthermore, applying the relation (~11i) = (~_2]-i) + (~2_~i) for the 1st term 
of the above, we have that 

I m--1 
N(n, m) = Z 

~=0 

(~) ,  (m ~ m)(.~m, ;) 

~n--1 I _/ ~ ( _ , ) i  (m -- l ) (n  --  2 i 
~o / m ~ )  

m--I 
- -  ~ (--1)* (m--;~ 1) (n m-- 2_ l i) : N(n-- 1,m-- 1). 

g=0 

Hence, 

N(n,m) = N(n--  1, m- -  1) : N ( n - - 2 ,  m - - 2 )  . . . .  

= N ( n - - m +  1,1) =0.  

Case (ii): n > m > n/2. In this case N(n, m) is written as 

q~--m 
N(n, m ) =  ~ (--1) i (m)(n--1--i) 

~,=o m - -  1 " 

Let n --  m = r. Then, 

NCnm) = ~J~r m)= i ( ' ) '  (m)(m ~+r ;) 
i=0 m - -  I " 
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Thus, it is enough for proof to show that M(r, m) = 0 for m > r ) 1. First, 
- -  (1)(m--i) = 0. Next, using (42), M(r, m) is for r = 1, M(1, m) = (~)(~n~l) m ~-1 

rewritten as 

M(r,m) = ~ (--1) i ( m - i  1 ) (m- - lm_l+r - - i )  
i=0 

(m -- 1][m -- 1 + r - - i )  
+ ~ ( - - 1 ) ~ \ i - - 1 ] \  m - - 1  " 

/= l  

Furthermore, applying the relation ttm-l+*-i~m-1 J = tt~-2+r-*~-i J + ~tm-~+r-ix~-t j for the 
1st term in the above, we have 

M(r, m ) =  1~  1 (--1) * (m -- 1)(m - - 2  + r - - i )  
~i=o i m - -  1 

-]- ~, (__1) i (m 1/\m 
i=o i m - -  2 

__ ~ (__1) i (m--i 1) (m -- 2m _ r -- i) ~_ M ( r - -  1, m - -  l). 
i=0 

Hence, 

M(r,m) = M ( r - -  1 , m - -  1) = M ( r - - 2 ,  m - - 2 ) - - - - " "  

= M(1, m - -  r + 1) = 0. Q.E.D. 

LEMMA 8. Let ¢ be a function on R. I f  there is a mapping ~ from E "~ to E 
by which ¢ is represented as ¢(X) = ~2" ~o,n[a], then, conversely, ~o is expressed 
bye  as 

q~(Xl,...,X~)= ~ l ( - - l ) m - k n - - m ~  I ~=o n -- k ¢~[a] . (43) 

Proof. For 1 ~ i  x < " "  < i k  ~ m ,  insertingxil  .... ,x i~intox 1 .... , x k o f  
(36), respectively, and summing sidewise up, we have that 

s ~Eol f~I ° - ~  = ~:o [m _ ;] f, (s ~,ro~),~ Ea~ t. 
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In view of Lemma 6, the above is rewritten as 

. . . .  k) q~k 
~U k = [n k ] (k)~b  ° + [n  ~](k---- 11)(]~1 "~-"" -+- [~/~,/ ~](m 0 

m 

where 

~Pk = ~, ~bk[a] and ~,  = ~ %-[a] 

for k , j  = O, 1 ..... m. Thus we have a linear equation 7 z = A~,  where 

~/t = (~¢o, ~1 , . ,  }I/m), 

(pt = ((~0' (~1 ' ' '"  (~m), 
and 

A = t 
aoo 0 ) 
a lo  a l l  

\amo aml "'" atom 

Let B be the inverse of A. Then the m-th row of B is given by 

i ( -  1)~ ( -  1)~-1 bma b ~ )  (n m) 
1 )  

- ° 

n - - m  

In fact, the ( m , j ) - e l e m e n t  of B A ,  denoted by Cm~, is written as 

(44) 

~,  ~ n - - m  r . -  { ] ( m - s t  
c , j  = b ' i a i j  = (--1)m-i n - -  i t m  - -  f l  ~ i - -  j j 

i=j  i=~ 

Thus, c~m = 1. For j = O, 1,..., m --  1, 

n --  i --  m - - j  m - - j  --  

Hence, in view of Lemma 7, f o r j  = 0, 1,..., m --  1, 

_ n - -  m (m - - j t [ .  - - i - -  
i=j  

,m-j . -m (m i) [n -- j -- -- /] 
= (--1)m-J m - - j  E (--1) '  7 m 3 1 

i=0 

n - - m  
= (--1) m-j . N ( n  - - j ,  m - - j )  = O. 

m - - ]  
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Using (44), we have finally 

~o(xl ,..., xm) = ¢% = ~ b~kg"k 
k = 0  

~=o 7~ - ~ y '  ¢ ~ [ a ]  . 
Q.E.D. 

THEOREM 5. Let  ¢ be a function on R and invariant under G. Let  m be an 

integer such that 0 ~ m ~ I R I - -  1. I f  there is a mapping ~o from E ~ to E by 

which ¢ is representable as ¢ = ~'~ ~%[a], then cp(y I ,..., y~ )  is invariant under 

the group G o of  all permutations on {Yl  ,..., Ym}. 

Proof. In  view of (43) in Lemma 8, it is enough for proof to show that, 
for h = 0, 1 ..... m, ~ '~ ¢~[a] is invariant under G O . We denote by [m] a set 
of integers 1, 2 ..... m and by G~ the group of all permutations on [m]. For 
a given k, let S be a family of sets {i 1 ,..., ik} such that i 1 ,..., ie are in [m] and 
mutually distinct. We regard g in G~ as a mapping from S to S such that 
g{i 1 .... , i~} = {g i  1 ,..., gie}. Then, since g is a permutation on [m], every g 
in G m is a one-to-one and onto mapping from S to S. This concludes that 
~2 ~ Ck[a] is invariant under Go, because of ¢ being invariant under G. 

Q.E.D. 

This theorem was used for proof of Lemma 4. Now we shall give the 
classification theorem. 

THEOREM 6. Let  ¢ be a function on R and invariant under G. Then, for  

m = 0 , 1  .... , I R I - -  1, o(¢) <~ m i f  and only if, for  every x 1 ..... x~ and a, 

/¢=0 r n . - -  
(45) 

Specially, in case of  m = n - -  1, (45) becomes 

= t k = 0  

(46) 

Proof. Noting that by notation for h = 0, 1 .... ,m, o ( ~ ¢ ~ [ a ] ) ~ <  h, 
the "if" part is obvious. We shall prove the "only if" part. Since ¢ is invariant 
under G, in view of the group-invariance theorem, there is a mapping qo 
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f rom E '~ to E by  which  ¢ is representab le  as $ = ~ go~[a]. Thus ,  by  L e m m a  8, 
go is expressed  as follows: 

. . . . .  ~=o ; ~ -  ~ ¢ ~ [ a ] .  

By inser t ing  all of x~ ..... xi~ such tha t  1 ~< i 1 < --" < i~ ~< n into x 1 .... , x~ 
of the  above,  respect ively,  and s u m m i n g  s idewise up,  we have tha t  

° i l  i ( i  ) ¢ ( x )  = y ,  gore[a] = ( - - 1 ) ~ - ~  n - -  m t 
~=o ~ - ~ ¢~[a] m [a] t. 

Employ ing  L e m m a  6 and the re la t ion 

n h m - - k  m - - k  ' 

W e  finally obta in  (45). Q .E .D.  

As  an appl ica t ion  of this  theorem,  we shall  give shor te r  proofs  for mul t ,  
max,  min  and un i fo rm being  all of o rder  / R [. Since all of  these Percep t rons  
are invar iant  unde r  G, the classification t h eo rem is appl icable .  Suppose  tha t  
the  order  of those  is smal le r  than  [ R [. Then ,  for every  x 1 , . . . ,  X n and a, (46) 
mus t  hold.  

C a s e  (i): ¢ = mult .  Le t  x I ,..., x~ be  1 and let a = 0. T h e n  m u l t ( X )  = 1 
and,  for  h = 0, 1 .... , n - -  1, mul t (x i l  ..... x ~ ,  a,..., a) = 0, where  1 ~< il  < "'" 
< i~ ~ n. Hence,  in (46) [the left side] = 1 @ 0 = [the r ight  side], and  
this  is a contradic t ion.  

C a s e  (ii): ¢ = m a x .  Le t  x 1 -  - - x n  = b  < a .  T h e n  m a x ( X ) = b  
and for h = 0, 1 ..... n - -  1, max(x/1 . . . .  , x i k ,  a . . . . .  a )  = a,  where  1 ~< i 1 < "" 
< ie ~< n. Hence ,  in (46) [the left side] = b and 

f*--I 

[the r ight  side] = k__~ ° {{(--1) n - l -~  ( ~ ) a  I 

= ( - 1 )  - - 1  a ( - 1 )  ~ - ( - 1 ) "  = a.  

T h i s  shows a contradic t ion.  

C a s e  (iii): ¢ = m i n .  Le t  x 1 -  - - x ~  = b  > a .  Then ,  the s imilar  
a r g u m e n t  as in case of max  leads to a contradic t ion.  
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Case (iv): ¢ = uniform. Let x I ,... ,x n and a be mutually distinct. 
Then  u n i f o r m ( X ) =  0, nniform(a ..... a) = 1 and for k = 1,..., n - - 1 ,  
uniform(xq ,..., Gk , a,..., a) = 0, where 1 ~ i 1 < "" < i~ ~ n. Hence, in 
(46) [the left side] = 0 :~ (--1) n-1 = [the right side], and this a contra- 
diction. 

Next we shall show that both of the two Perceptrons, equal(X; P)  and 
tolerance(X; P, E), are of the order ] R I, where, letting P = ( P l  , . - . ,  Pn) be a 
pattern on R, 

equal(X; P ) =  l~: 

t 1, tolerance(X; P, e) = O, 

if f o r i =  1 .... ,n,  x i = p i ;  
otherwise, 

if for i = l,..., n, l x i - - p i [ < ~ ;  
otherwise. 

Before evaluating the order, we discuss about the change of order which is 
induced by the transformation of a retina. By EIRI we mean the set of all 
patterns on R. Let R l = { x  1,...,xn} and R 2 ~ -{y l  .... ,y~}. We write a 
m a p p i n g f  from EIRII to EIR~I as follows: For X in eln~l, 

Y = (Yl ,..., Ym) = (fx(X),..., fro(X)) = f (X) .  

Let Cz be a function on R~. We define ¢1 as 

¢1(X) = ¢2(Y) = ¢2(f(X)). 

Then, we say that ¢1 is a function on R 1 induced b y f  from a function ¢2 on R~. 

THEOREM 7. Let ¢1 be a function on R 1 induced by f : EIRll --~ EIR~I from 
a function ¢~ on Rz. 1f for i = 1,..., m, I s(f3l ~< 1, then o(¢1) <~ o(G). 

Proof. Let there be an additive representation for ¢2 such that 
¢2(Y) = ~B~T xB(Y). Let 

S = {A; A = S(XB(f(X)) ) and B e T}, 

and, for A in S, ~o A be defined as follows: I f  A = s (xB( f (X) ) ) ,  then, 
~oA(X) = ~oB(f(X)). Then ¢1 can be written as ¢1(X) = ~A~s 9A(X). From 
this definition, if ~A(X) = XB(f(X)), then s(~oA) C Ui s(fi), where Ui means a 
summation with respect to i such thaty~ is in s(XB ). Hence [ s(~0a) 1~< ~ Is (A)I, 
where ~ i  means the same as Ui .  Since by assumption ] s(fi)] ~ 1, we obtain 
finally that 

I s(~0AI ~< I s(xB)l ~< o(G). 
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Taking  the max imum of the left side in the above with respect to A in S, 
we have that  o(¢1) ~ 0(¢2). Q.E.D.  

This  theorem corresponds to the collapsing theorem by Minsky-Paper t  
(1969). 

COROLLARY 1. Let  ¢1 be a function on R 1 induced by f : EIRlr --~ EIR~l f rom 

a function ¢2 on R 2 . I f  

(i) f is one-to-one and onto, 

(ii) for  i = 1,..., m, I s(fi)[ ~< 1, and 
(iii) for  j = 1 ..... n, ] s(f71)[ ~< 1, 

then o(¢1) = o(¢2) , where f -1 is written as foUows: For Y in EIR21 

X ~-- (x 1 ,..., x , )  = (f-~a(y) ..... f-~X(y)) = f - ~ ( y ) .  

Proof. Applying  T h e o r e m  7 for f and f - l ,  we obtain, respectively, that  
o(¢1) ~< 0(¢2) and that o(¢2) ~ o(¢2). Q.E.D.  

PROPOSITION 4. o(equal) = I R l- 

Proof. Let  eq(X)  = equal(X; 0), where 0 = (0 ..... 0). First we shall show 
that  o(eq) = I R ] .  Note  that  eq is invariant under  G, while equal is not. 
Thus ,  supposing that o(eq) < ] R I, for every x 1 ,..., x~ and a, Eq. (46) of the 
classification theorem holds. Let  x 1 = "" = x~ va 0 and let a = 0 for (46). 
T h e n  

eq(X) = 0, eq(a,..., a) =- 1 and for k = 1,..., n - -  1, 

eq(x~. I .... ,x iT ,a , . . . , a )  = 0 ,  where 1 ~ i  1 < ' "  < i c O n .  Hence  in (46) 
[the left side] = 0 =/= ( - -  1) ~-1 = [the right side], and this is a contradiction. 

Next,  let /~ = {ya ,..., y~}. We  regard eq as a funct ion on /~. Defining 
f : EFRI - -  EJ~I as follows: For  i = 1,..., n, 

y ,  = A ( x )  = x i  - p i  , 

equal(X;  P )  = eq(Y), i.e., equal is a funct ion on R induced f rom eq b y f .  
Since obviously f is one- to-one and onto, and for i = 1,..., n, I s(fl)l = 
Is(f71)] = 1, in view of Corollary 1 o(equal) = o(eq) = I /~I  = ] R l. 

Q.E.D.  

PROPOSITION 5. o(tolerance) = ] R  ]. 

Proof. Let  tol(X; e) = tolerance(X; 0, E). First, we shall show that  
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o(tol) = ] R I. Note that tol is invariant under G, while tolerance is not. Thus,  
supposing that o(tol) < J R  I, for every x 1 ..... x.  and a, Eq. (46) holds. 
Let I XlL <~ e,..., ]x~ I ~< • and I a l > • for (46). Then  tol(X; •) = 1 and 
for k = 0 , 1  ..... n - -  1, tol(x h ,..., x;, , a,..., a; E) = 0 ,  where 1 ~<il < " "  
< i~ ~ n. Hence in (46) [the left side] --  1 =/: 0 = [the right side], and this 
is a contradiction. 

Next, let /~ = {Yl ,..., Y.}. We regard tol as a function on /?. Defining 
f : EIRI - -  E li~[ as follows: For i = 1 ..... n 

y ~  = L ( x )  = x i  - p ,  , 

by similar argument to Proposition 4 we can conclude that o(tolerance) = 

o(tol) = 1/~ = I R l- Q.E.D. 

V. CONCLUDING REMARKS 

It is invesngated the kinds of mathematical tools that are effective for 
evaluating the order of analog Perceptrons. As a result, the group-invariance 
theorem, the classification theorem, and the collapsing theorem are given, 
which were applied to several Perceptrons. 

Mathematically, the evaluation of the order is deeply concerned with the 
13-th problem of Hilbert. So, some of the contributions to the problem--e.g. ,  
Kolmogorov (1958)--will be usefull for the analysis of multilayered analog 
Perceptrons. 

From the pattern-recognition point of view, it is desired to expand our 
theory to the analog Perceptrons that express the geometrical property of 
"two-dimensional" figures. On the other hand, from the computational point 
of view, it may give an insight into the theory of computation if we connect 
our theory with the complexity of computation appearing in the theory of 
serial computation, e.g., Winograd (1965, 1967) or Spira (1969). 
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