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Analog Perceptrons:
On Additive Representation of Functions

Y. Ugrsaka

NHK Broadcasting Science Research Laboratories, Tokyo, Japan

The theory of computational geometry in Perceptrons (Rosenblatt, 1962),
developed by M. Minsky and S. Papert (1969), is extended to “Analog Percep-
trons’ with real-valued input and out-put. Mathematically, our problem is
to determine the order of a function, i.e., the smallest number of variables
necessary to make an additive representation of the function by employing
partial functions of the smaller number of variables.

Mathematical tools, called the group-invariance theorem, the classification
theorem and the collapsing theorem, are given which are useful for evaluating
the order of analog Perceptrons. These are also applied for several analog
Perceptrons.

I. INTRODUCTION

M. Minsky and 8. Papert (1967, 1969) have developed a fruitful theory of
computational geometry of Perceptrons (Rosenblatt, 1962). The central theme
of their theory is the classification of certain geometrical properties according
to the type of computation necessary to determine whether a given pattern
has them. The computational geometry has been mainly motivated by the
following considerations:

(a) Ina problem of geometrical pattern recognition, to what extent can
one use ‘“local” properties—evidences obtained by looking at small portions
of a pattern—as a basis for judgments about the “global” character of the
pattern ?

(b) What are the essential differences between “‘serial” and “parallel”
computation ? For example, to what degree can a computation be sped-up
by doing several subcomputations at the same time ?

Perceptrons in their theory may be said to be rather “digital” in the sense
that their inputs and output take only two kinds of values, e.g., “0” and “1”.
In the present paper, the aim is to extend the theory of computational
geometry to “ANALOG” Perceptrons, of which inputs and output may take
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arbitrary real values. The motivation of this extension stems from the
following points of view:

(c) In the actual problem of geometrical pattern recognition, it is
desired to deal with figures consisting not only of black picture elements but
also gray ones.

(d) Recently, it has been recognized that the information in a nervous
system is transmitted in a mode of the continuous type, such as the pule
density, rather than of the discrete type. This standpoint stimulates investi-
gation on the analog model of neuron (e.g., Fukushima, 1969). On the other
hand, the Perceptron may be regarded as a simplified model of the neuron.
Thus the question is: What kinds of differences do there exist between the
neuron model of the “digital” type and that of the “analog” type?

As defined below, the output of analog Perceptron is determined by
summing up the values of partial functions. There is no weighting coefficient
in the summing process and no threshold element in the analog Perceptron.
Thus, mathematically, our problem may be reduced to the additive represen-
tation of a function if we employ partial functions of the smaller number of
variables. This may be regarded as a special case of the 13-th problem of
Hilbert (1901).

In Section 11, we shall formulate the analog Perceptron, and introduce the
central concept of order by following Minsky and Papert. As examples, an
elementary method for evaluating the order is demonstrated for simple
analog Perceptrons. In Section III, the fundamental property, called the
group-invariance theorem, which has an advantage for evaluating the order,
is given and is also applied to some analog Perceptrons. In Section IV, a
certain class of analog Perceptrons will be classified according to the order.
This classification makes the determination of the order easy. In addition, the
collapsing theorem (Minsky and Papert, 1969) is verified for the analog
Perceptron.

II. ANALOG PERCEPTRON

We shall conventionally use the following notations: Let E be the set of all
real numbers. A finite set, denoted by R, of real-valued variables #, ,..., x,, is
called a “retina”. An element in E"—i.e., the direct product of nE’s—is
interpreted as a geometrical pattern or a figure described on the retina, and
variables in R may be regarded as picture-elements or visual cells in the retina,

Variables for patterns on the retina are usually denoted by letters X, Y,... .
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It seems natural to associate a mapping ¢ from E” to E with the property of
a pattern X = (¥ ,..., ). Occasionally, it will be convenient to use the
traditional representation of #(X) as a function of n real-valued variables
such as (¥, ,..., %,). In this paper, the word “function” is used to mean only
a mapping from E!Rl to E, where | R | denotes the number of elements in R.
In this context, an expression such as “a function ¢ on R...” will be used for
the sake of simplicity. In other cases, the word “mapping” is employed.

For a function  on the retina R, SIA/(x) denotes a mapping from E to E
which is induced from ¢ by fixing the variables in R — {x}.

DEerINITION 1. A variable x of R is effective to ¢ if and only if there is at
“
least one nonconstant mapping ().
For example, x, is effective to {i(x, , x,) = x%,/x, , but x, is not.

DeriNiTION 2. A support of s, denoted by s(if), is the set of all of effective
variables to .

The support of i means intuitively a set of variables all of
which affect the value of . For instance, s(x; + x,) = {%, , %,}, while
S(x(2y + %p) — 212) = {wy}.

Subsets of the retina R are usually denoted by letters 4, B,.... For 4
included in R, #(A4) denotes a set of functions on R of which supports are
included in 4, i.e.,

F(A) = {f;  : EI® — E and () C 4} 4))

Now we shall define the analog Perceptron.

DeriniTioN 3. Let S be a family of subsets of the retina R. We say that
is an analog Perceptron on R with respect to S if for each member 4 of S
there exists ¢, in F(A4) such that

PX) = Y ealX): 2)

AsS

This is called an additive representation for ¢, and often written more briefly
as = > 4es P4 - We denote by £7(S) the set of all of analog Perceptrons with
respect to S.

Evidently, any function on R is an analog Perceptron with respect to 2%,
where 2% is the family of all subsets of R. Thus, in spite of “analog Perceptron”,
the word “function’ is occasionally employed for short.

The differences from the Perceptron of Minsky~Papert type are that
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(i) Weighting coeflicients are embedded into partial functions ¢,’s,
and that
(if) A threshold element is removed.

The difference (i) is a natural consequence of the generalization such that
inputs and output of the Perceptron can take any real value. In view of (ii) the
number of steps in serial computation or number of layers in the Perceptron
diminishes. Thus, the analog Perceptron may be suitable for considering the
theory of parallel computation, because it becomes more elemental as a
parallel computer.

Next, following Minsky and Papert, we shall introduce the central concept
of order. For a linearly ordered set 4, max A4 or min 4 denotes the maximum
or the minimum element in 4, respectively.

DerFiniTIiON 4. The order of an analog Perceptron i, denoted by o(ih),
is the smallest & for which there is a family .S satisfying that 4 has an additive
representation of ¢ =Y ,_c @, and for every 4 in S, | s(p,4)] < k: that is,

o() = min{M(S); € L(S)}, 3)
where

M(S) = max{| s(¢,)|; 4 & S}. 4)

For example, x;, + - -+ %, is of the order 1. Generally, if there
exist @ ,..., ¢, such that for ¢ = 1,..,n, @, is in F({x;}) and H(X) =
(%) +  + @u(®y,), then o) < 1.

In view of the definition, it is seen that an additive representation of ¢ with
a large order requires at least one partial function that can “look™ a large
portion of the retina. Thus, the property expressed by such ¢ is said to be
“global”. Conversely, if the order of ¢ is small, the property of ¢ is said to be
“local”. This indicates that, in the case of pattern recognition, or processing
by a parallel machine, the concept of the order plays an important role for
considering the relation between the properties of the pattern and the
structure of the machine.

The following form of the definition will be often convenient for evaluating
the order.

TurEOREM 1. For a family S of subsets of R, || S || denotes max{| 4 |; A€ S}.
Then

o) = mindl| Si; € Z(S)}- ®)
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Proof. Suppose that ¢ is in £7(S). Then there is an additive representation
for i such that ¢y == > ,.c ¢, and for 4 of S, s(p,) C 4. Hence,

| sl < TAT <[ SIL (6)

Taking the maximum of the left side of (6) with respect to 4 of .S, we have
that, by the definition of the order,

oY) < max{| s(p,); A€ S} < S|l ™

Taking the minimum of the right side of (7) with respect to .S under the
constraint such that ¢ is in &7(.S), we have that

o) < min{]| S}; b € L(S)}- ®)

Next, suppose that 4 is in 27(T'). Then there is a representation such that
=3 4er @4 Let Ty = {s(p,); 4 € T}. We shall define new partial functions
xz's such that, for each Bin 7,

where

P4, if A = s(ey);
= {the partial function obtained from ¢, by
inserting 0 into variables in 4 — s(p,), if 4 C s(p4).

Pa*

Note that yz is in F(B) and B = s(xp). Since in 4 — s(p,) there is no
effective variable to 4, f = 2per, Xp » and

| B| = [s(xs)| < o()- ©)

Taking the maximum of the left side of (9) with respect to B in T, , we have
that|| 7, || << o(¢). Noting that || T, || = min{|| S [|; $ € «(S)}, we finally have

o(h) = minf]| S; € L(S)}. (10)

Combining (8) with (10), we have (5). Q.E.D.

Let S and T be families of subsets of R. We define a relation such that
S < T if and only if for every A in S there is B in T such that A C B. In
addition, we define as § ~ T'if and only if S << T'and T << S. For each S,
we define

ml(S) = {4; Ac Sand VBe S, B A = BD A). (11)
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For example, let S = {{x; , %y, &g}, {%y , %o}, {%s, %,}} and let T = {{x, , x,},
{2, 2}, {25, %53}, Then T <SS, ml(S) = {{xy , x5, a5}, {05, %,}} ~ S and
ml(T) = T.

LemMa 1. Let S and T be families of subsets of R. Then,

G) if S < T, then o£(S)C #(T);
(i) if S ~ T, then (S) = «(T); and
(i) (ml(S)) = L(S).

Proof. (i) Suppose that i} is in 27(S). Then there is a representation for i
such that ¢ =Y ,.c 94 and for every 4 in S, ¢, is in F(4). Since, by
assumption, for every 4 in S, there is B in T such that B D 4, so for every 4
in S there is B in T such that at least one of the members in F#(B) is identical
tog, . Let Ty = {4; AC B and 4 € §}. Thus, defining each Bin T as

Y @4, if Beml(T) and Ty = z;
AeTp

Xp =
0, otherwise,

we can write b as f = ¥ p.r xp - Hence ¢ is in /(7).
(ii) Since by assumption S < T, #(S) C /(T in view of (i). Similarly,
(S) D A(T). Hence, (S) = 4(T).
(iii) Obvioulsy, ml(S) ~ S. Thus, by (ii) we have the assertion.
Q.E.D.

TurorReM 2. In the definition of the order, we may vestrict the range of S’s
to the family of mi(S)'s. Namely, let M = {ml(S); S C2R}. Then, for every
function s on R,

o() = min{|| Tll; T'e M and 4 € AL(T)}. (12)
Proof. 1t is easily seen that for every Sin 2R, || S| = || mi(S)|. "Thus, the
theorem follows (iii) of the Lemma 1. Q.E.D.

When we want to estimate the order of an analog Perceptron, this theorem
becomes useful for simplifying the job of evaluation. For example, consider a
problem to show that o(¢) = | R|. It is enough, for this purpose, to show
that there is no set of partial functions @, in #(4,),..., g, in F(A4,) such that
b = ¢ + - + @, , where 4; = R — {%},..., 4, = R — {x,}. In fact, if the
order of s were smaller than | R |, then there would be an additive represen-
tation for ¢ such that y =Y, s @4 and || S| < | R |. In view of Theorem 2,
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we may choose {4, ,..., 4,} as S satisfying that || S| < | R|. Thus, there
exists a set of ¢; in F(4,),..., ¢, in F(4,) such thaty =, ¢, , and thisis a
contradiction.

The following examples demonstrate an elementary method for evaluating
the order of simple analog Perceptrons.

ProposITION 1. An analog Perceptron defined as

mult(X) = %, - %, (13)
is of order n.

Proof. By induction on #. Initial step is obvious. Inductive step: Suppose
that the order of mult on R = {x, ,..., x,,} is smaller than n. Then, in view of
Theorem 2, mult must be in &7(S), where S = {R — {x},..., R — {x,}}. In
other words, there exist ¢, in F(R — {x}),..., 9, in F(R — {x,}) such that

mult(X) = @ (%5 ,e0es ¥,) + @y, X5 5eney %)
+ e (Pn(xl yerey xn—l)' (14)

Inserting 1 or O into «x,, of (14), we have, respectively, that

mult(®y ,ey %,_3) = @(®g 40eey Xpg , 1)
+ e + ‘P'n—l(xl yeres g s 1) + (P'/L(xl Iy xn—l)?
(15)

or

0 = (Pl('x2 yrey X1 s 0) + + (Pn—l(xl yeors Xpog s 0) + ?)n(xl ERRA xn—l)' (16)

Subtracting sidewise (16) from (15), we have a representation for mult on

{%g yoeey X430
mult(y ey Xp_g) = x2(%g yeees Xq) + 0 F Xpea(®y 5ees ¥ps)y  (17)
where fori = 1,...,n — 1
X310 Vng) = @ P15 Ynz > 1) — @1 000 Yz » 0)-
Equation (17) shows that the order of mult on {x, ,..., x,_;} is smaller than

n — 1, and this contradicts to the inductive hypothesis. Thus, the proof
completes by induction. Q.E.D.
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ProposiTiON 2. Analog Perceptrons defined as

max(X) = max{x, ,..., %,},

(18)

min(X) = min{x, ,..., #,}
are both of order n.

Proof. First we shall show the above in the case that the domain of max is
restricted to [0, 1]% In induction on #, the initial step is obvious. Inductive
step: Suppose that the order of the restricted max on R = {x, ,..., %,} is
smaller than z. Then, similarly as in the proof of the Proposition 1, there is
an additive representation for max such that

max(X) = @&y yoeey ¥5) + Q%15 X5 yees %) + 0 F @ulHy ey X y)-
(19)

Inserting O or 1 into x, of (19), we have, respectively, that

max(¥y ..y Xp_g) = @1(Xa yerey Xpg 5 0)
+ + ¢n~1(‘xl ey Xng s O) _I_ (Pn(xl yerry xn—l)a
(20)

or

1 = @u(®g yeeey Fpeq > 1) = F @ g(%5 yees Bng, 1)+ @ul%y ey #0g). (21)

Subtracting sidewise (21) from (20), we have a representation for max on

{%y yeeny Xp_q}t
MAX(Xy yovey Xpg) = X1(Kz seer Xng) + 7+ Xnea(Xg sy Xn0) + 1, (22)

where for7 = 1,...,n — 1

Xi(yl yors V) == ‘Pz(yl yeory Ymmg > 0) — @Y1 500y Vs 1)

Equation (22) shows that the order of the restricted max on {x; ,..., X, 4} is
smaller than # — 1, and this contradicts to the inductive hypothesis. Hence
the restricted max is of the order | R |.

Now we shall remove the restriction on the domain of max. Suppose that
the order of max on R = {x, ,..., X,} is smaller than n. Then, there is a
representation such as (19); and, furthermore, for 0 < %y ,..., ¥py < 1,
(20) and (21) should hold. Thus, in view of (22), the order of the restricted
max should be smaller than | R |. This contradicts the result above. Thus the
proof is complete, similarly as in case of the function min. Q.E.D.
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IT11. GroUP-INVARIANCE THEOREM

In this section, the group-invariance theorem corresponding to the
Theorem 2.3 in Minsky-Papert (1969), which is powerful for estimating the
order of several analog Perceptrons, is given.

For a subset 4 of the retina R, we denote by m(4) the set of all permutations
formed up from variables in 4. For example, when 4 = {x; , %, , %5},

m(A) = {(%, %y, K), (%1, Xy, %), (¥, ¥y , ¥),

(xz ) X35 xl)a (x3 » %15 .X'g), (xs » Xg xl)}
Members of #(A) are usually denoted by letters o, 7,... . In addition, if 4 is
in #(4) and for ¢ in 7(4), o = (x; ..., %, ), then (o) means ¢(x; ,..., x, ).
Consider a group G of permutations on the retina R = {xy ,..., ¥,}. When g

in Gis

(= (BT,

x“ ‘e xln

then we write for £ = 1,..., n as gx,, = ®, For a subset 4 of Rand g in G,
the set g4 is defined as

gA = {gx; x € 4}. 23)

For subsets A, B of R, we introduce a relation ~ such that 4 ~ Bif and only

if there is a member g in G for which g4 = B. It is easily seen that ~ is an
equivalent relation. When o in 7(4) is (%, ..., %; ), we denote (gw; ..., gx; )
by go.

Let A and B be subsets of R. Let ¢ be in #(4). Then, by n(4 — B, o)
we mean a set of go’s such that g4 = B and g is in G
w(A— B, o) = {go; gA = B and g € G}. (24)
For g in G, we define as
gr(d— B, o) = {gr; ren(4 — B, o)}. (25)
We introduce a relation ~as follows: m(A4 — B, 0) ~ n(A4’ —> B', o') if and

only if there is a member g in G for which gn(4d — B, o) = w(4' — B', ¢').

Levmma 2. Let A and B be subsets of R. If A ~ B, then for every subset C
of R and o in =(C), m(C — A, o) ~ 7(C — B, o).

643/19/1-4
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Proof. 1If either w(C — A, o) or n(C — B, o) is empty, then so is the other.
Thus, in this case, the lemma trivially holds.

Let 7 be in #(C — A, o). Then, by notation, there is £ in G such that
hC = A and 7 = ho. Since by assumption there is g in G such that g4 = B,
gr=(gh)o is in #(C— B,o). In fact, (gh)C = g4 = B. Hence
gn(C — A4, o) Cn(C - B, o).

Let 7 be in #(C — B, ¢). Then by notation there is # in G such that
hC = B and T = ho. Noting that G is a group, r = g(g~'h)o is in
gn(C— A4, 6) for the above g. In fact, (g-1)C = g7'B = A. Hence
gm(C — 4, 6) 2 w(C — B, o). QE.D.

As an immediate consequence from the above, we have the following.

Lemma 3. Let A and B be subsets of R. Let i be a mapping from E'4! to E.
Ifa ~ B, then for every subset C of R and o in w(C), there is g in G such that

Y e = Y #0) (26)

T€T(C>A4,0) ren(C-B,0)

Using this lemma, we shall show the group-invariance theorem for
the analog Perceptron.

DeriNrTioN 5. Let S be a family of subsets of the retina R. Let G be a
group of permutations on R. We say that S is closed under G if for every 4
in S and g in G, the set g4 is also in S.

DEerINITION 6. Leti be a function on R. Let G be a group of permutations
on R. We say that i is invariant under G if for every g in G and X on R,

(g X) = H(X), where gX = (g% ..., g%,).

TueEoREM 3. Let (i) G be a group of permutations on R,
(it) S be a family of subsets of R and closed under G, and
(iif) + be in o/(S) and invariant under G.

Then, there exists an additive representation for i such that =Y 4 ¢ 9, and
the partial function ¢ 4 depends only on the G-equivalence classes of S. Namely,
we can choose the partial functions such that, for o and @, if 4 ~ B, then
there is g in G for which p (gX) = @a(X).

Proof. Since ¢ is in 27(S), there is an additive representation for  such
that

H(X) = Z xc(X) = Z xc(oc),

CeS CeS§
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where o is in 7(C). Furthermore, since i is invariant under G, for every g
in G,

PX) = $(gX) = Y xc(g00)-

CeS

Summing sidewise up this equation for all g in G, we have that

| G| (X) = Z Z xc(goc) = Z Z xc(goc)i- @7
se6 (Ces ces geG
Noting that for every 4 and C in S, and for every o in #(C)
m(C— 4, 0c) = {goc ; g€ G} N w(A)
and
U #(C— 4, 0c) = {goc ;8¢ G},
Aes
we see that
2. xc(goc) = 2 > Xc(7);-
9eG AeS \ren(Cod,o0)
Applying this to (27), we have a new representation for ¢ such that
‘;‘ = Z Pa s
A4S
where
1
eaX) =T X X xm) (28)
I ] CeS \ren(Co4d,00)

It remains only to show that for every 4 and B in S if A ~ B, then there
is g in G such that ¢ (gX) = @u(X). In view of Lemma 3, “there is gin G
such that, for every C in S and p in #(C),

Y xlg) = ¥  xco.

7€7(C>A4,0) 1€7{C->B,p)

Hence, from (28), we have

2 Xc(gT)g

T€7(C4,0()

Z xc(7)

767 (C->B,0¢)

= pp(X). QED.
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Now we shall demonstrate with examples how to apply the group-
invariance theorem to the evaluation of the order.

TureoreM 4. Let G be a transitive group—i.e., for every pair of variables x, y
in R there is at least one g in G such that gx = y—of permutations on R. Let i
be a function on R and invariant under G. Then, o(}) < 1 if and only if, for
CVEry Xy ..., Xy

(e yerey %) = Py sy 2) F 00 A P(Hy 5een, X)- (29)

Proof. In view of the definition of the order, the “if”’ part is obvious.
Suppose that o(tf) < 1. Then there is a set of ¢,;’s such that s(p,) C {x,} for
1 = 1,...,, n, and ¢ can be written as

HX) = @u(x) + =+ palwn).

Let S = {{x;},..., {¥,}}. Since G is transitive, S is closed under G and
S/rEJ ~ {S}. Hence, by the group-invariance theorem, we can choose the
identical function @ as @y ,..., @y, :

LG ¥p) = plxg) + - + P(x)- (30)
Inserting x into x; of (30), we have that p(x) = t(#,..., x)/n. Thus, using (30)
again, we obtain (29). Q.E.D.

By this result it is easily seen that the order of functions (x; 4 -~ + x,)™
(m = 2), | % + - + x, |, sign(e; + -+ + #,),... etc. are larger than 1.
Next we discuss a Perceptron that determines the uniformness of a pattern:
Let “uniform” be a function on R defined as
1 if w =+ =ux,;

" uniform(X) == ()’ otherwise.

(31)

LemMA 4. Let R, be a set of variables yy ..., ¥,y . By prop(k) we mean
a proposition such that some k variables in R, take the same value a, and the
values of the residual variables and a are mutually distinct. If there is a mapping
from E"Y to E such that

uniform(X) = (% ..., £,) + P(Xy 5 X 5oy X)) + 0 @(%g 5eees Xnq),  (32)

then, for k = 1,...,n — 1, prop(k) implies

N

] (33)

(P(yl yrey yn—l) = (_l)n—
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Proof. By induction on k=n—1,n—2,.,1. Initial step: Let

%, = -+ = x, = x1n (32). Since uniform(X) = 1, we see that ¢(,..., ®) = 1/a.
Hence (33) holds for & == n — 1. Inductive step: Let &, = -+ = %, = «
in (32) for some k. Then (32) becomes
uniform(,..., ®, Xy iq ooy Xp)
%
- k(;o(x: Xy Xy 50e0s n) + QD(.X’ o Xy Xprg - xn)
e

—I—go(x o %y Xpyq s Kiopg veees n) e e e e
Ic

+<P(x s X5 Xty 500y Xpg s n) _IL‘;D(‘X' > Xy gy yeens n——l)'

Suppose that prop(k) holds. Then, by the inductive hypothesis,

PHyerey B, Hprg yeusy Xy) = *0 = (p(x v Xy Xprq yeres Xpg)
% %
. wepy (m— kR — 1) R!
A A R
and, by definition, uniform(x,..., x, #,,; ,..., %,) = 0. Hence we have that
s
— 1! Al
0 = ko(%,..., X, Xppiq yeey X)) + (—1)77F- 1@—}?'—'—1)—]?— ,
D ” n!
w1
or equivalently
_ — — I — 1!
P(Hyerey B, Xprq eey &) = (— 1) B-D-1 (n — (k l)n' D (& — D! .

k-1

(34)

Noting that ¢ is invariant under the permutation group on R, , in view of
Theorem 5 which will be shown later, (34) confirms the validity of (33) for
k — 1. This completes the inductive proof. Q.E.D.

ProrosiTION 3. o(uniform) = | R |.

Proof. Suppose that o(uniform) << | R |. Then, by the group invariance
theorem, there is an additive representation for uniform such as (32). Thus,
letting #, ..., #, be mutually distinct, in view of Lemma 4,

@iy 5eees X, ) = (—1)"*(n — 2)!fnl,

where 1 <4 < - <,y < n. But, in this case, obviously uniform(X) = 0
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Hence
[the left side of (32)] =0 # 7 X (—1)"%(n — 2)!/n! = [the right side of (32)],

and this is a contradiction! Q.E.D.

IV. CLASSIFICATION THEOREM

Through in this section, by G we mean the group of all permutations on
the retina R. A problem of classifying Perceptrons which are invariant under
G will be discussed from the order point of view. The classification theorem
follows several lemmata which gives the necessary and sufficient condition
that the order of G-invariant Perceptron is smaller than or equal to a given
number, An application of this theorem will demonstrate that the orders of
the Perceptrons discussed already are more easily determined. In addition,
after giving the collapsing theorem, we shall discuss a few analog Perceptrons.

Let ¢ be a mapping from E™ to E, where E is the set of all of real numbers.
For the sake of simplicity, we use the following notation: For integers 7, s
such that7 = 1,...,mand » < s,

izp,[a] = Z PRy, yeey X5, 5 Gyeeey @), (35)

I0dy <o <, 8 m—r
where a is a constant number. When r = 0, for s = 1, 2,...,

Zs:qoo[a] = ¢(a,..., ).

For example, in case of m = 3,

Z ‘7’1[“] = (P(xl > 4, a) + (P(x2 > @y a)’

2
Z (P2[a] = (P(xl > Xz a)’
Y @ol5] = g1 , %, 5) + @@y, 25, 5) + (%, %5, 5),

4
Z oglal = @(a; , 25, 25) + Py, g 5 4) + P(xq , %3, %) + P(xs 5 X5 , Xy),
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LemmMa 5. Let i be a function on R. If theve is an additive representation for
i such that f = 3 " @,la], then for k =0, 1,..., m

k n — k k

B e s s @) = 31O Y ol (36)
where
n .

[”]:%(m) fomzm (37)

" 0, if n<<m

Proof. By notation

P(xq yeury Xy) = y Xz, 5eeer Xy,)- (38)

1Kl < <y

Insert a into X1, ¥pe9 ..., ¥, Of (38). Then, we can see that in
the right side of (38), there exist [n%] @(%; yoes &y 5 @,..., a)’s; that for

m—k
1<ty < o <dgy < By thereexist [0 ] @&, ey Xy Gevey G)'S, e e o ;
m—k+1
and that there exist [";*] ¢(,...,a)’s. Thus, by notation, we have the
representation (36). Q.E.D.

Lemma 6. Let ¢ be a mapping from E™ to E. Let x(x, ..., ¥;) = >.° ¢, [a].
Then, for every integers s, t and v such that 0 <v < s < tand v < m,

Yudd = (7)ol 39)

Proof. For the sake of simplicity, we write @(%;,..., %,, &,..., @) as
m—n
@(1,..., n). By [#] we mean a set of integers 1, 2,..., #. By I we mean a set of

mappings from [r] to [£] such that for 7 in I, i(1) < === < i(r), i.e.,
I={i:[r]—[f] and i(1) < - < i(r)}.
Similarly, we define as follows:

J =147 :[r1—[s] and j(1) < - <j(r)},
K = {k; & : [s] — [t] and E(1) < - < E(s)}.

L s —% 3

\_/

r]
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Note that | 1] = (1), | J| = (§) and | K| = (). We denote by &2* a mapping
induced from k& in K by restricting the domain of % to the image of j, denoted
by Im( ). Then, for every jin [ and & in K, £*j is a mapping from [#] to [¢].
Using these notations, we may write (39) as follows:

S X k50 B0) = (L)Y g1 i)). (40)

keK jeJ i€l

Thus we shall show this equation.

For a given ¢ in I we estimate the number of £%’s, denoted by N(), such
that k*j = 4. Since every 7, j and & are one-to-one, there exists j such that
k*j =1 if and only if Im(k) includes Im(:), or, equivalently, [{] — Im(7)
includes [f] — Im(k). Hence, N(), i.e., the number of £’s satisfying this, is
obtained by a simple combinatorial calculation as

s (7m0 (2 - ()
for every ¢ in I.

frd [s] [tl

D\ K [+1-Im (k) %
) [t J-im (4

Im (})
k*
Im (1}

This means that the left side of (40) has (:=7) ¢(i(1),..., i(r))’s for every i in I,
of which the total number, i.e.,

> N6 = (7))

is equal to the total number of ¢’s in the left side of (40), because

(226 = Q) =171

Hence the left side of (40) is exactly equal to the summation of
My @(i(1),..., i(r))’s. This completes the proof. Q.E.D.

LemMa 7. Forn=1,2,3,...andm = 1,...,n — 1,

Nn, m) — go(—l)l Wik ;i: l] —o. (41)
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Proof. Case (i):n/2 > m > 1. First, form = 1,
Iyym—1 Iy —2
N 1) = (0)(n 0 ) - (1)(n 0 ) =0
Next, using the well-known relation
()= G20 @

N(n, ) is rewritten as
L [y R L (i

Furthermore, applying the relation (%279 = (%,%7%) + (".%°) for the Ist term
of the above, we have that

Vo = 5 o ("2

2=0

ST e (250
_mz_l(_l)z( )(n;iTi):N(n—l,m—l).
Hence,

Nmn,m) =Nn—1,m—1)=Nn—2,m—2) =
=Nn—m-+1,1)=0.

Case (ii): n > m > n/2. In this case N(n, m) is written as
; —1—
v = S (0517

Let n — m = r. Then,

N(n, m) — M(r, m) — ; =1y ()"~ lj;’ - Z)

m
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Thus, it is enough for proof to show that M(r, m) = 0 form > r = 1. First,

for r = 1, M(1, m) = (P)(,™y) — ()@ = 0. Next, using (42), M(r, m) is
rewritten as

M(r,m) = Z (—1y ( )(m —r;: i_lr - ’)

T Y (!

Furthermore, applying the relation (™) = (™2™ -+ (™27 %) for the
1st term in the above, we have

Mem =3 -0 ("))

Sen ez

—E (N T T = e — 1w,
Hence,

ME,m)y=M@r—1,m—1)=Mr—2,m—2) = -
=MQ1,m—r+1)=0. Q.E.D.

Lemmva 8. Let ¢ be a function on R. If there is a mapping ¢ from E™ to E
by which i is represented as Y(X) = 3" py[al, then, conversely, o is expressed
by i as

m

Py yerny X)) =

k=0

(43)

. NI

Proof. For 1 <4y < - < 4 < m, inserting K yeees By, into %, ,..., %, of
(36), respectively, and summing sidewise up, we have that

%

Suda =3 {743 S eta) 1}

=0
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In view of Lemma 6, the above is rewritten as

e e [ LR e O LR R A £

where

¥, = Z ulal and D, = Z @;la]
for &, j =0, 1,..., m. Thus we have a linear equation ¥ = A®, where
Yt = (¥, ¥ ey Py

= (@0 ) ng [ARLS] @m),
and
gy 0
40 %
n — kym—nh
4= ’ a"”:[m—h](k——h)'
2mo  Gm1 7T Omm

Let B be the inverse of A. Then the m-th row of B is given by

(b B e bn) = (0 — i (C O 1) (ag)

n— 1 n—m

In fact, the (m, j)-element of B4, denoted by c,,; , is written as

= E s = E o= L2

m—jii\t —]

Thus, ¢y = 1. Forj =0, 1,...,m — 1,

Hence, in view of Lemma 7, forj = 0, 1,..., m — 1,

s (LT

- —J j—1
— S (U T
= (—1yni ’:n:”; N(n —j,m —j) = 0.
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Using (44), we have finally

(P(xl ey 'xm) = (pm = Z bmkq]k

k=0

—m

— §:¢k[a]§. Q.E.D.

Il
P13

G

n
n

B
I
=

THEOREM 5. Let ¢ be a function on R and invariant under G. Let m be an
tnteger such that 0 < m < | R | — 1. If there is a mapping ¢ from E™ io E by
which i is representable as § = 3" ¢,[a], then ¢( ¥y ..., V) 15 tnvariant under
the group G, of all permutations on {yy ,..., ¥,.}.

Proof. In view of (43) in Lemma 8, it is enough for proof to show that,
for k = 0, 1,..., m, > ™y Ja] is invariant under G, . We denote by [m] a set
of integers 1, 2,..., m and by G,, the group of all permutations on [m]. For
a given &, let S be a family of sets {i; ,..., &} such that 7, ,..., #; are in [m] and
mutually distinct. We regard g in G,, as a mapping from S to S such that
gty oy By = {88 .., g1z}, Then, since g is a permutation on [m], every g
in G, is a one-to-one and onto mapping from S to S. This concludes that
Sy Ja] is invariant under Gy, because of ¢ being invariant under G.

Q.E.D.

This theorem was used for proof of Lemma 4. Now we shall give the

classification theorem.

THEOREM 6. Let ¢ be a function on R and invariant under G. Then, for
m=0,1,., | R|— 1, o}) < m if and only if, for every x, ..., x,, and a,

o e = A0 (U L Sl @9
Specially, in case of m = n — 1, (45) becomes
s ) = (17 3 DY, ] (#6)

Proof. Noting that by notation for &£ =0, 1,...,m, o3 " {[a]) < &,
the “if”” part is obvious. We shall prove the “only if” part. Since ¢ is invariant
under G, in view of the group-invariance theorem, there is a mapping ¢
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from £™ to E by which ¢ is representable as f = > " ¢,,[a]. Thus, by Lemma 8,
@ 1s expressed as follows:

ot o ) = 3 Y= Y il

By inserting all of X, ooy Xy such that 1 <4 < - <4, < minto %, ..., &y,
of the above, respectively, and summing sidewise up, we have that

HE) = Snfil = 3~ 5 S (Sl Lalf

Employing Lemma 6 and the relation
n—mm—~k n—1—k
n—k(m—k):( m— k )’

We finally obtain (45). Q.E.D.

As an application of this theorem, we shall give shorter proofs for mult,
max, min and uniform being all of order | R |. Since all of these Perceptrons
are invariant under G, the classification theorem is applicable. Suppose that
the order of those is smaller than | R |. Then, for every x4 ,..., #, and a, (46)
must hold.

Case (i): ¢ = mult. Letxy ,..., x,belandleta = 0. Then mult(X) = |
and, fork =0, 1,.. on— Lmult(x; .., %, ,a..,a = 0,where | i <-
< 4, << n. Hence, in (46) [the left side] = 1 0 = [the right side], and
this is a contradiction.

Case (ii): ¢ = max. Let # = - =x, =b << a. Then max(X) =125
and for 2 =0, 1,...,n — 1, max(ac,-1 yooes Xi_y Gyenr, @) = a, Where 1 <4y <C -
<< 1, << n. Hence, in (46) [the left side] = b and

. . el . (n
he right side] = ) )(—1)=1-%
[the right side] p) (( ) (k) a

= (=1 ta

3 —1y (M) — —1 "}» =a
X (0 () =
This shows a contradiction.

Case (ii1): f = min. Let x; = - = &, == b > q. Then, the similar
1 n ’
argument as in case of max leads to a contradiction.



62 UESAKA

Case (iv): y = uniform. Let x,,..,x, and & be mutually distinct.
Then uniform(X) = 0, uniform(a,...,a) =1 and for & =1,.,n—1,
uniform(ocl.1 ooy % @y, @) = 0, where 1 <4 < - <1, < n. Hence, in
(46) [the left side] = 0 = (—1)"! = [the right side], and this a contra-
diction.

Next we shall show that both of the two Perceptrons, equal(X; P) and
tolerance(X; P, ¢), are of the order | R |, where, letting P = (p, ,..., p,) be a
pattern on R,

N if fori=1,.,n % =p;;
equal(X; P) = 30, otherwise,
, if fori=l,.,m o —p;| <e¢

tolerance(X; P, ¢) = % otherwise

S -

Before evaluating the order, we discuss about the change of order which is
induced by the transformation of a retina. By E!®l we mean the set of all
patterns on R. Let R, = {x%,..., x,} and R, == {y; ,..., ¥p}. We write a
mapping f from E®il to ElRal as follows: For X in ElRil

Y = (y1,00¥m) = (fl(X)""’fm(X)) :f(X)

Let i, be a function on R, . We define 4, as

$u(X) = $aY) = hao(f(X))-

Then, we say that i, is a function on R, induced by f from a function ¢, on R, .

TreoreM 7. Let i be a function on R, induced by f : E\Ral — EiRsel from
a function g, on R, . If for i = 1,..., m, | s(f3)| << 1, then o(hy) << o(ihy).

Proof. Let there be an additive representation for i, such that
$o(Y) = Xper xa(Y)- Let

S ={4; 4 = s(xa(f(X))) and Be T},

and, for 4 in S, ¢, be defined as follows: If 4 = s(yp(f(X))), then,
@(X) = z(f(X)). Then i, can be written as ¢;(X) = 3 15 p4(X). From
this definition, if ¢ 4(X) == xz(f(X)), then s{p,) CJ; s(f;), where | ); means a
summation with respect to ¢ such that y; is in s(x). Hence | s(p4) | << X5 Is (£,
where 3; means the same as | J; . Since by assumption | s(f;)] << 1, we obtain
finally that

| s(@)l < | s(xa)l < o(ihe)-
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Taking the maximum of the left side in the above with respect to 4 in S,
we have that o(if;) << o(ify). Q.E.D.

This theorem corresponds to the collapsing theorem by Minsky-Papert
(1969).

CoroLLARY 1. Let iy be a function on R, induced by f : E\R1l — EiR2| from
a function i, on R, . If

(1) fis one-to-one and onto,
@ity fori=1,..,m, |s(f) <1, and
(i) forj = 1,..,n |s(f7H <1,
then o(iby) = o(i,), where {1 is written as follows: For Y in EIR:|

X = (15 ) = (fT (V) f21(Y)) = fTHT).

Proof. Applying Theorem 7 for f and f~1, we obtain, respectively, that
(1) < o(fz) and that o(thy) < o(y). QE.D.

ProrositioN 4. o(equal) = | R|.

Proof. Leteq(X) = equal(X; 0), where 0 = (0,..., 0). First we shall show
that o(eq) = | R|. Note that eq is invariant under G, while equal is not.
Thus, supposing that o(eq) < | R|, for every x, ,..., x,, and @, Eq. (46) of the
classification theorem holds. Let x; = --* = x, % 0 and let a = 0 for (46).
Then

eq(X) =0, eq(a,..,a) =1 and for k= 1,.,n—1,

eq(#®; 5., ¥y, @ @) = 0, where 1 < © < i < n. Hence in (46)
[the left 51de] = 0 # (—1)71 = [the rlght s1de] and this is a contradiction,

Next, let R = {3, ,..., ¥,}. We regard eq as a function on R. Defining
f:ERl — ERi g5 follows: For i = 1,..

:fZ(X) = Xy _Pi’

equal(X; P) = eq(Y), i.e., equal is a function on R induced from eq by f.
Since obviously f is one-to-one and onto, and for i = 1,...,n, | s(f))| =
[s(f7H =1, in view of Corollary 1 o(equal) = o(eq) = | R| = | R].

Q.E.D.

ProrosITioN 5. o(tolerance) = | R |.

Proof. Let tol(X;e) = tolerance(X; 0, ¢). First, we shall show that
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o(tol) = | R |. Note that tol is invariant under G, while tolerance is not. Thus,
supposing that o(tol) < | R|, for every x,,..., x, and @, Eq. (46) holds.
Let o, | < 6.y | %, | <eand | @] > e for (46). Then tol(X;e) = 1 and
for 2 =0,1,...,n—1, tol(xl1 ooy Ky s By @5 €) = 0, where 1 <4 < -
< 4, << n. Hence in (46) [the left side] = 1 5% 0 = [the right side], and this
is a contradiction.

Next, let R = {; ,..., ¥} We regard tol as a function on R. Defining
f:ER — ERl as follows: Fori = 1,..., n

Vi :fz(X) =X; — Do

by similar argument to Proposition 4 we can conclude that oftolerance) =
ofto) = |R| = | R|. Q.E.D.

V. ConNcLUuDING REMARKS

It is investigated the kinds of mathematical tools that are effective for
evaluating the order of analog Perceptrons. As a result, the group-invariance
theorem, the classification theorem, and the collapsing theorem are given,
which were applied to several Perceptrons.

Mathematically, the evaluation of the order is deeply concerned with the
13-th problem of Hilbert. So, some of the contributions to the problem—e.g.,
Kolmogorov (1958)—will be usefull for the analysis of multilayered analog
Perceptrons.

From the pattern-recognition point of view, it is desired to expand our
theory to the analog Perceptrons that express the geometrical property of
“two-dimensional” figures. On the other hand, from the computational point
of view, it may give an insight into the theory of computation if we connect
our theory with the complexity of computation appearing in the theory of
serial computation, e.g., Winograd (1965, 1967) or Spira (1969).
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