Tradeoffs in the Inductive Inference of Nearly Minimal Size Programs

Keh-Jiann Chen*
Computer Science Department, State University of New York at Buffalo, Amherst, New York 14226

Abstract

Inductive inference machines are algorithmic devices which attempt to synthesize (in the limit) programs for a function while they examine more and more of the graph of the function. There are many possible criteria of success. We study the inference of nearly minimal size programs. Our principal results imply that nearly minimal size programs can be inferred (in the limit) without loss of inferring power provided we are willing to tolerate a finite, but not uniformly, bounded, number of anomalies in the synthesized programs. On the other hand, there is a severe reduction of inferring power in inferring nearly minimal size programs if the maximum number of anomalies allowed is any uniform constant. We obtain a general characterization for the classes of recursive functions which can be synthesized by inferring nearly minimal size programs with anomalies. We also obtain similar results for Popperian inductive inference machines. The exact tradeoffs between mind change bounds on inductive inference machines and anomalies in synthesized programs are obtained. The techniques of recursive function theory including the recursion theorem are employed.

1. Introduction

While doing more and more experiments, a scientist may be able to infer a correct theory or explanation for a phenomenon he is investigating. What are the theoretical capabilities and limitations of this inference process if the scientist is a robot or machine? In order to answer this question, inductive inference machines have been defined formally (Blum and Blum, 1975; Gold, 1967) as follows.
N denotes the set of natural numbers.

Definition 1.1. An inductive inference machine (abbr: IIM) is an algorithmic device, with no a priori bounds on how much time or memory resource it shall use, which takes as its input the graph of a function from N to N an ordered pair at a time, and which from time to time, as it is receiving its input, outputs computer programs.

[^0]We assume without loss of generality all IIMs are order independent (Blum and Blum, 1975; Case and Smith, 1978).

There are many ways to define what it means for an IIM to succeed at eventually synthesizing a correct program. For example, we say that, for $a \in$ $N \cup\{*\}$, an IIM $M E X^{a}$-identifies f iff M fed f outputs a non-empty finite sequence of computer programs the last of which computes f except on at most a anomalous inputs (if $a={ }^{*}$, except for finitely many inputs). What we call $E X^{0}$-identification was the first criterion of success proposed and is essentially due to Gold (1967). The $a=^{*}$ case was first proposed by Blum and Blum (1975) and they refer to it as a.e. identification. The other cases are due to Case (Case and Smith, 1978, 1979). Each IIM may $E X^{a}$-identify some functions but fail to $E X^{a}$-identify others. $E X^{a}$ is defined to be the class of all sets \mathscr{S} of recursive functions such that some IIM $E X^{a}$-identifies each function in \mathscr{S}. In (Case and Smith, 1978, 1979), the introducing of anomalies is motivated by the fact that physicists sometimes employ explanations with anomalies and it is shown that $E X^{0} \subset E X^{1} \subset \cdots \subset E X^{*}$. Hence, allowing anomalies in explanatory programs enables individual IIMs to infer explanations for a broader class of phenomena. In this paper we focus on the succinctness of the explanatory programs themselves. Since the quality of a scientific explanation is determined in part by its succinctness (Occam's Razor), we consider the effect on inferring power of restricting the final output programs to be of small, nearly minimal, size (Blum, 1967).

2. Preliminaries

Let $\tilde{N}=\left(N \cup\left\{^{*}\right\}\right)$, where $(\forall n \in N)\left[n<{ }^{*}\right] . \in, \subseteq$, and \subset denote, respectively, membership, containment, and proper containment for sets. We let e, $i, j, k, l, m, n, p, s, x$, and y range over N and a, b, c, d range over \widetilde{N}. We let f, g, h, v, w, z, and G (with or without subscripts) range over total (number theoretic) functions. ψ (with or without subscripts) ranges over partial (number theoretic) functions. φ (with or without 's) ranges over acceptable numberings (Machtey and Young, 1978; Rogers, 1958, 1967) of the partial recursive functions. φ_{n} is the partial recursive function computed by program n in the acceptable numbering φ; we then speak of n as being a φ program or φ index. In what follows φ should denote a fixed acceptable numbering and when no explicit reference to a particular acceptable numbering is made, φ will be the numbering referred to. For example, then, $\min (\psi)$ denotes $\min _{\varphi}(\psi)$, the minimal φ program of $\psi . \Phi$ denotes an arbitrary Blum complexity measure (Blum, 1967) associated with $\varphi . \mathscr{R}$ denotes the class of recursive functions. $\mathscr{A}, \mathscr{B}, \mathscr{S}$ (with or without subscripts) range over classes of recursive functions. We define $\psi \mid x=\{(y, \psi(y)) \mid y<x\} . \operatorname{Card}(A)$ denotes the cardinality of the set $A . \psi_{1}={ }^{n} \psi_{2}$ means that $\operatorname{Card}\left\{x \mid \psi_{1}(x) \neq\right.$
$\left.\psi_{2}(x)\right\} \leqslant n$, and $\psi_{\mathrm{I}}=* \psi_{2}$ means that $\operatorname{Card}\left\{x \mid \psi_{1}(x) \neq \psi_{2}(x)\right\}$ is finite. $\psi_{1} \subseteq^{n} \psi_{2}$ means that $\operatorname{Card}\left\{x \mid \psi_{1}(x) \neq \psi_{2}(x), x \in\right.$ domain $\left.\left(\psi_{1}\right)\right\} \leqslant n . \lambda x[\psi(x)]$ denotes ψ (Rogers, 1967). i_{φ} denotes a fixed program for $\lambda x[0]$ in $\varphi . \lambda x[\uparrow]$ denotes the everywhere undefined function. We define $\varphi_{i}^{s}=\left\{\left(y, \varphi_{i}(y)\right) \mid y<s\right.$ and $\left.\Phi_{i}(y) \leqslant s\right\}$. M (with or without subscripts or 's) ranges over inductive inference machines. τ ranges over finite functions; whereas, σ ranges over finite functions with domain an initial segment of $N . M(\sigma)$ denotes M 's last output (if any) just after it has been fed all of σ. For Sections 3 through 5 we adopt (without loss of generality) the convention that any given IIM M outputs i_{φ} before being fed any input so that for all $\sigma, M(\sigma)$ is defined. $M(\tau)$ denotes $M(\sigma)$, where $\sigma \subseteq \tau$ and domain of σ is the largest initial segment of the domain of $\tau . M(f)$ denotes M 's last output, on input f, if M has a last output; else, $M(f)$ is undefined. $\lambda i, j[\langle i, j\rangle]$ denotes the pairing function such that $\langle i, j\rangle=[(i+j+1)(i+j) / 2]+i$ (Rogers, 1969). ψ is limiting partial recursive iff there exists a partial recursive function ψ^{\prime} such that, for all x, limit $_{y} \psi^{\prime}(x, y)=\psi(x)$ (Schubert, 1974). f is limiting recursive iff f is limiting partial recursive and total. Any unexplained notation or terminology is from Rogers (1967).

3. Inferring Nearly Minimal Size Programs

Freivald (1975) considered the problem of $E X^{0}$-identification of minimal size programs but was able to show that this notion of inference is acceptable numbering dependent, i.e., what can be done depends on the particular acceptable numbering employed. Freivald also considered $E X^{0}$-identification of programs which are of minimal size module a recursive (fudge) factor. This notion, precisely defined below, turns out to be acceptable numbering independent. We generalize it below to the anomaly hierarchy of Case and Smith (1978, 1979).

DEFINITION 3.1. (a) An IIM $M M E X^{a}$-identifies \mathscr{S} (written: $\mathscr{S} \subseteq M E X^{a}(M)$) iff there is recursive function h such that for all $f \in \mathscr{S}$, $M E X^{a}$-identifies f and $M(f) \leqslant h(\min (f))$. (b) $M E X^{a}=\{\mathscr{S} \mid(\exists M)[\mathscr{S} \subseteq$ $\left.\left.M E X^{a}(M)\right]\right\}$.

To facilitate showing that $M E X^{a}$-identification is acceptable numbering independent, we say that for an acceptable numbering φ^{\prime} and recursive function h, an IIMM $\operatorname{MEX}^{a}\left(h, \varphi^{\prime}\right)$-identifies \mathscr{S} (written: $\mathscr{S} \subseteq$ $\left.M E X^{a}\left(M, h, \varphi^{\prime}\right)\right)$ iff h witnesses that $M M E X^{a}$-identifies \mathscr{S} in the numbering $\varphi^{\prime} . \operatorname{MEX}^{a}\left(h, \varphi^{\prime}\right)$ is defined to be $\left\{\mathscr{S} \mid(\exists M)\left[\mathscr{S} \subseteq \operatorname{MEX}^{a}\left(M, h, \varphi^{\prime}\right)\right]\right\}$. It suffices to show that for every $\varphi^{\prime}, \bigcup_{h \in \mathscr{R}} M E X^{a}(h, \varphi)=\bigcup_{h \in \mathscr{R}} M E X^{a}\left(h, \varphi^{\prime}\right)$.

Without loss of generality, we assume from now on that h is monotone
nondecreasing: Suppose $\mathscr{S} \subseteq M E X^{a}(M, g, \varphi)$ and $h(x)=\max \{g(y) \mid y \leqslant x\}$; clearly $\mathscr{S} \subseteq M E X^{a}(M, h, \varphi)$ and h is monotone nondecreasing.

Theorem 3.1.

$$
(\forall h \in \mathscr{R})\left(\forall \varphi^{\prime}, \varphi^{\prime \prime}\right)\left(\exists h^{\prime} \in \mathscr{R}\right)\left[M E X^{a}\left(h, \varphi^{\prime}\right) \subseteq M E X^{a}\left(h^{\prime}, \varphi^{\prime \prime}\right)\right] .
$$

Proof. Since both φ^{\prime} and $\varphi^{\prime \prime}$ are acceptable numberings, there exist recursive functions w_{1} and w_{2} such that for every $i \in N, \varphi_{i}^{\prime}=\varphi_{w_{1}(i)}^{\prime \prime}$ and $\varphi_{i}^{\prime \prime}=$ $\varphi_{w_{2}(i)}^{\prime}$. Suppose $\mathscr{S} \subseteq M E X^{a}\left(M, h, \varphi^{\prime}\right)$, where h is recursive and monotone nondecreasing. We define an IIM M^{\prime} thus. On input f, M^{\prime} simulates M, and, whenever M outputs a program i, M^{\prime} outputs $w_{1}(i)$. Let $h^{\prime}(x)=\max \left\{w_{1}(y) \mid\right.$ $\left.y \leqslant h\left(w_{2}(x)\right)\right\}$. Clearly, $\quad h^{\prime}$ is recursive. We claim that $\mathscr{S} \subseteq$ $M E X^{a}\left(M^{\prime}, h^{\prime}, \varphi^{\prime \prime}\right)$. To see this, suppose $f \in \mathscr{S}$. Since h is monotone nondecreasing, $M(f) \leqslant h\left(\min _{\omega^{\prime}}(f)\right) \leqslant h\left(w_{2}\left(\min _{\omega^{\prime \prime}}(f)\right)\right) . M^{\prime}(f)=w_{1}(M(f))$ $\leqslant \max \left\{w_{1}(y) \mid y \leqslant M(f)\right\} \leqslant \max \left\{w_{1}(y) \mid y \leqslant h\left(\min _{\varphi^{\prime}}(f)\right)\right\} \leqslant \max \left\{w_{1}(y) \mid y\right.$ $\left.\leqslant h\left(w_{2}\left(\min _{\varphi^{\prime \prime}}(f)\right)\right)\right\}=h^{\prime}\left(\min _{\varphi^{\prime \prime}}(f)\right)$.

Corollary 3.2.

$$
\left(\forall \varphi^{\prime}, \varphi^{\prime \prime}\right)\left[\bigcup\left\{M E X^{a}\left(h, \varphi^{\prime}\right) \mid h \in \mathscr{R}\right\}=\bigcup\left\{M E X^{a}\left(h, \varphi^{\prime \prime}\right) \mid h \in \mathscr{R}\right\}\right] .
$$

We write $M E X^{a}(M, h)$ for $M E X^{a}(M, h, \varphi)$.
We next extend Freivald's characterization of (what we call) $M E X^{0}$ to an interesting and technically useful characterization of $M E X^{a}$.

Definition 3.2. \mathscr{S} is a-limiting standardizable with a recursive estimate (abbr: $\mathscr{S} \in L S R^{a}$) iff there exist recursive functions G and v, such that for all $f \in \mathscr{S}$ and $i \in N$, if $\varphi_{i}=f$, then (i) $\operatorname{limit}_{s} G(i, s)$ exists and computes f with at most a anomalous inputs, (ii) for all j, if $\varphi_{j}=f$, then $\operatorname{limit}_{s} G(i, s)=\operatorname{limit}_{s} G(j, s)$, and (iii) Card $\{G(i, s) \mid s \in N\} \leqslant v(i)$.

We write $\mathscr{S} \subseteq L S R^{a}(G, v)$ iff the recursive functions G and v witness that $\mathscr{S} \in L S R^{a}$.
Clearly $L S R^{a}$ is numbering independent. Intuitively $\mathscr{S} \in L S R^{a}$ means that from any program i for an $f \in \mathscr{S}$, we can find in the limit an approximate (up to a anomalies) canonical program for f and there is a recursive bound $v(i)$ to limit the number of possibilities for the approximate canonical program. Being able to fix an approximate canonical program in the limit is equivalent to being able to solve in the limit the program equivalence problem approximately, at least for programs that compute functions in \mathscr{S}.

Theorem 3.3. The following three statements are equivalent.
(1) $\mathscr{S} \in M E X^{a}$.
(2) There exist recursive functions G and v such that $\mathscr{S} \subseteq L S R^{a}(G, v)$ and there exists an IIM M such that $M E X^{a}$-identifies every function in \mathscr{S} and $\left(\forall i \mid \varphi_{i} \in \mathscr{S}\right)\left[M\left(\varphi_{i}\right)=\operatorname{limit}_{s} G(i, s)\right]$.
(3) There exist recursive functions G and v and an IIM M such that $M E X^{a}$-identifies \mathscr{S} and for every $f \in \mathscr{S}, \operatorname{limit}_{s} G(\min (f), s)=M(f)$ and $\operatorname{Card}\{G(\min (f), s) \mid s \in N\} \leqslant v(\min (f))$.

Proof. $\quad(1) \Rightarrow(2) . \quad$ Suppose $\mathscr{S} \subseteq M E X^{a}(M, h)$. Let $v(i)=h(i)+2$ and define G as follows:

$$
\begin{aligned}
G(i, s) & =M\left(\varphi_{i}^{s}\right), & & \text { if } \quad M\left(\varphi_{i}^{s}\right) \leqslant h(i) ; \\
& =i_{\varphi}, & & \text { otherwise }
\end{aligned}
$$

It is clear that thanks to the conventions of Section 2 , both G and v are recursive. If $\varphi_{i} \in \mathscr{S}$, then (i) $\operatorname{limit}_{s} G(i, s)=M\left(\varphi_{i}\right)={ }^{a} \varphi_{i}$, (ii) for every j, if $\varphi_{j}=\varphi_{i}$, then $\operatorname{limit}_{s} G(j, s)=\operatorname{limit}_{s} G(i, s)=M\left(\varphi_{i}\right)$, and (iii) $\{G(i, s) \mid s \in N\} \subseteq$ $\{k \mid k \leqslant h(i)\} \cup\left\{i_{\varphi}\right\}$. Hence, $\operatorname{Card}\{G(i, s) \mid s \in N\} \leqslant v(i)=h(i)+2$. Therefore, $\mathscr{S} \in L S R^{a}$ and $\left(\forall i \mid \varphi_{i} \in \mathscr{S}\right)\left[M\left(\varphi_{i}\right)=\operatorname{limit}_{s} G(i, s)\right]$.
$(2) \Rightarrow(3)$. Immediate, since $\min (f)$ is one of the programs which compute f.
(3) \Rightarrow (1). Suppose that for every $f \in \mathscr{S}$, (i) $f \in E X^{a}(M)$, (ii) $\operatorname{limit}_{s} G(\min (f), s)=M(f)$, and (iii) $\operatorname{Card}\{G(\min (f), s) \mid s \in N\} \leqslant$ $v(\min (f))$. Without loss of generality, we assume that for every i, $\operatorname{Card}\{G(i, s) \mid s \in N\} \leqslant v(i)$. Intuitively we need to construct a machine M^{\prime} which simulates M on input f to get $M(f)$ in the limit and simutaneously dovetails to search the least program i such that $\operatorname{limit}_{s} G(i, s)=M(f)$. Then from i, it is possible to construct a program which computes $\varphi_{M(f)}$ and is h minimal. By the $s-m-n$ theorm (Rogers, 1967), there is a recursive function z such that for all i, j, x,

$$
\begin{aligned}
\varphi_{z(i, j)}(x) & =\varphi_{p}(x), & & \text { if there exist a least } m \text { such that } \\
& =\text { undefined, } & & \text { otherwise. }
\end{aligned}
$$

We define an IIM M^{\prime} thus. On input $f\left\lceil x, M^{\prime}\right.$ computes $M(f \mid x)$ and M^{\prime} searches for the least $i \leqslant x$ for which there exists $y \leqslant x$ such that $G(i, y)=$ $M\left(f\lceil x)\right.$. If such an i exists, M^{\prime} picks the least y such that $G(i, y)=$ $M(f \mid x)$. Let $j=\operatorname{Card}\{G(i, k) \mid k \leqslant y\}$. If $z(i, j)$ is not the last program output by M^{\prime} so far, M^{\prime} then outputs $z(i, j)$.

Let $h(i)=\max \{z(k, 1) \mid k \leqslant i$ and $1 \leqslant v(k)\}$. For any $f \in \mathscr{S}$, let x_{0} be a sufficiently large number such that (i) $\left(\forall x \geqslant x_{0}\right)\left[M\left(f\left\lceil x_{0}\right)=M(f\lceil x)]\right.\right.$, and (ii) $x_{0} \geqslant \max \left(i_{0}, y_{0}\right)$, where i_{0} is the least program for which there exists y
such that $G\left(i_{0}, y\right)=M(f)$ and y_{0} is the least such y. Since $\operatorname{limit}_{s} G(\min (f), s)=M(f)$, we observe that $i_{0} \leqslant \min (f)$. Therefore, by the definition of M^{\prime}, for all $x \geqslant x_{0}, \quad M^{\prime}(f \mid x)=z\left(i_{0}, j_{0}\right)$, where $j_{0}=$ $\operatorname{Card}\left\{G\left(i_{0}, y\right) \mid y \leqslant y_{0}\right\}$. Furthermore, for every $x, \varphi_{z\left(i_{0}, j_{0}\right)}(x)=\varphi_{G\left(i_{0}, y_{0}\right)}(x)=$ $\varphi_{M(f)}(x)$. Hence, $\varphi_{z\left(i_{0}, j_{0}\right)}=^{a} f$. Since $i_{0} \leqslant \min (f)$ and $j_{0} \leqslant v\left(i_{0}\right), z\left(i_{0}, j_{0}\right) \leqslant$ $h(\min (f))$.

Remark. If in the definition of $M E X^{a}$, we had allowed the functions h to be limiting recursive, then Theorem 3.3 would go through if we require the function v (but not G) to be limiting recursive.

Corollary 3.4. Let $\mathscr{S}^{a}=\left\{f \mid \varphi_{f(0)}={ }^{a} f\right\}$. Then $\mathscr{S}^{a} \in M E X^{a}$.
Proof. It suffices to show (i), there exists recursive G, v such that $\mathscr{S}^{a} \subseteq$ $L S R^{a}(G, v)$ and (ii) there exists M such that $\mathscr{S}^{a} \subseteq E X^{a}(M)$ and for all i such that $\varphi_{i} \in \mathscr{S}^{a}, M\left(\varphi_{i}\right)=\operatorname{limit}_{s} G(i, s)$. Let $v=\lambda x[2]$.

$$
\begin{aligned}
G(i, s) & =\varphi_{i}(0), & & \text { if } \quad \Phi_{i}(0) \leqslant s ; \\
& =0, & & \text { otherwise } .
\end{aligned}
$$

We define an IIM M thus. M on input f, outputs $f(0)$ only. Clearly $\mathscr{S}^{a} \subseteq$ $L S R^{a}(G, v), \mathscr{S}^{a} \subseteq E X^{a}(M)$, and for all i such that $\varphi_{i} \in \mathscr{S}^{a}, M\left(\varphi_{i}\right)=$ $\operatorname{limit}_{s} G(i, s)$.

Case and Smith $(1978,1979)$ have shown that $\mathscr{S}^{n+1} \in\left(E X^{n+1}-E X^{n}\right)$. Hence we have

Corollary 3.5. $(\forall n)\left[M E X^{n+1} \notin E X^{n}\right]$.
Corollary 3.6. $M E X^{0} \subset M E X^{1} \subset \cdots \subset M E X^{*}$.

4. Comparison of Inference With and Without Size Restrictions

In this section we examine the cost in anomalies and inferring power of inferring nearly minimal size programs. Theorem 4.1 below shows that with the cost of finitely many anomalies, nearly minimal size programs can be inferred without reducing the inferring power of IIMs. On the other hand, Theorem 4.3 implies that there is a severe reduction of inferring power in inferring nearly minimal size programs if the maximum number of anomalies allowed is any uniform constant.

Theorem 4.1. $M E X^{*}=E X^{*}$.
Proof. It suffices to show that $E X^{*} \subseteq M E X^{*}$.

By Corollary 3.2 it then suffices, for each IIM M, to define an acceptable numbering φ^{\prime}, a recursive function h and an IIM M^{\prime} such that $E X^{*}(M) \subseteq$ $M E X^{*}\left(M^{\prime}, h, \varphi^{\prime}\right)$.

We define $\varphi_{2 n}^{\prime}(x)=\varphi_{M\left(\varphi_{n}^{n}\right)}(x)$ and $\varphi_{2 n+1}^{\prime}=\varphi_{n}$. It is clear that φ^{\prime} is an acceptable numbering since φ can be reduced (Rogers, 1958) to φ^{\prime} by the recursive function $\lambda n[2 n+1]$. Also, let w be a recursive function such that φ^{\prime} is reduced to φ by w.

We define an IIM M^{\prime} thus. On input $f\left\lceil x, M^{\prime}\right.$ computes $M(f\lceil x)$ and then searches for the least $n \leqslant x$ such that $M\left(\varphi_{n}^{x}\right)=M\left(f\lceil x)\right.$ and $\varphi_{n}^{x} \subseteq f \mid x$. If such n exists and the last program output by M^{\prime}, so far, is not $2 n$, then M^{\prime} outputs $2 n$.

We claim that M^{\prime} on input $f \in \mathscr{S}$ will output a last program $2 n$ such that $n \leqslant \min (f)$ and $\varphi_{2 n}^{\prime}=* f$. If our claim is true, we will have that $2 n \leqslant$ $h\left(\min _{\varphi^{\prime}}(f)\right)$, where $h(i)=2 \cdot w(i)$, which implies the theorem. It remains to prove our claim. Suppose $f \in \mathscr{S}$. Consider the set of φ programs $A=$ $\left\{m \mid(\exists x)(\forall y \geqslant x)\left[M\left(\varphi_{m}^{y}\right)=M(f)\right.\right.$ and $\left.\varphi_{m}^{y} \subseteq f\lceil y]\right\}$. It is clear that for every i such that $\varphi_{i}=f, i \in A$. Let n be the least φ program in A. Hence, $n \leqslant$ $\min _{\varphi}(f)$. We want to show that for all sufficiently large $x, M^{\prime}(f \mid x)=2 n$. Let x_{0} be so large that (i) $\left(\forall y \geqslant x_{0}\right)\left[M\left(\varphi_{n}^{y}\right)=M(f)\right.$ and $\varphi_{n}^{y} \subseteq f\lceil y]$ and (ii) for every $m<n$, if $\varphi_{m} \nsubseteq f$, then $\varphi_{m}^{x_{0}} \nsubseteq f\left\lceil x_{0}\right.$. We then proceed to show that for every $y \geqslant x_{0}, M^{\prime}(f\lceil y)=2 n$. By (i) and the fact that n is the least program in A, we have $M^{\prime}\left(f\lceil y) \leqslant 2 n\right.$ for all $y \geqslant x_{0}$. By (ii) and the convention of Section 2, for all m, if $\varphi_{m} \nsubseteq f$, then $M^{\prime}(f\lceil y) \neq 2 m$ for all $y \geqslant x_{0}$. We then consider any program $m<n$ such that $\varphi_{m} \subseteq f$. Since $m<$ $n \leqslant \min _{\varphi}(f)$ and $\varphi_{m} \subseteq f, \varphi_{m}$ is not total. Let x^{\prime} be the least number which is not in the domain of φ_{m}. Then $M\left(\varphi_{m}\lceil y)=M\left(\varphi_{m}\left\lceil x^{\prime}\right)\right.\right.$ for all $y \geqslant x^{\prime}$. By the conventions of section $2, m<n$, the least program in A, so $M\left(\varphi_{m}\lceil y) \neq M(f)\right.$ for all $y \geqslant x^{\prime}$, a contradiction.

Therefore, $M^{\prime}(f)=2 n$. We next show that $\varphi_{2 n}^{\prime}=^{*} f$. Since $(\exists x)(\forall y \geqslant x)$ $\left[M\left(\varphi_{n}^{y}\right)=M(f\lceil y)]\right.$ and $\varphi_{2 n}^{\prime}(x)=\varphi_{M\left(\varphi_{n}^{x}\right)}(x)$, we have $(\forall y \geqslant x)\left[\varphi_{2 n}^{\prime}(y)=\right.$ $\left.\varphi_{M\left(\varphi_{n}^{\ell}\right)}(y)=\varphi_{M(f f y)}(y)\right]$. Hence $\varphi_{2 n}^{\prime}=^{*} \varphi_{M(f)}=^{*} f$.

Corollary 4.2. $\quad(\forall n)\left[E X^{n} \subset M E X^{*}\right]$.
Let $Z E R O^{*}=\left\{f \mid f=^{*} \lambda x[0]\right\}$. Clearly (for example, by Blum and Blum's (1975) enumeration technique) $Z E R O^{*} \in E X^{0}$. Kinber (Freivald, 1975; Kinber, 1977) has claimed without proof that $Z E R O^{*} \notin M E X^{0}$. Our next theorem extends this result.

Theorem 4.3. $\quad(\forall n)\left[Z E R O^{*} \notin M E X^{n}\right]$.

Proof. Suppose by way of contradiction, there exists a recursive, monotone nondecreasing h and an IIM M such that $Z E R O^{*} \subseteq M E X^{n}(M, h)$. By implicit use of the recursion theorem (Rogers, 1967), we define a self-
referential program i as follows. Let $\left(\varphi_{i}\right)^{s}$ denote the finite part of φ_{i} constructed by the beginning of stage s of program $i . x_{1}^{s}, x_{2}^{s}, x_{3}^{s}, \ldots$ denote the least, second least, third least,... elements $\notin \operatorname{domain}\left(\left(\varphi_{i}\right)^{s}\right)$. Let $\left(\varphi_{i}\right)^{0}=\varnothing$.

Begin Program i. On input x, successively execute the stages $s \geqslant 0$ below until (if ever) $\varphi_{i}(x)$ is defined.

Before stage 0 no program is cancelled.
Begin stage s. Let $j=M\left(\left(\varphi_{i}\right)^{s}\right)$.
Condition 1. Either $j \leqslant h(i)$ and j is already cancelled or $j>h(i)$.
Then let $\left(\varphi_{i}\right)^{s+1}=\left(\varphi_{i}\right)^{s} \cup\left\{\left(x_{1}^{s}, 0\right)\right\}$.
Condition 2. $j \leqslant h(i)$ and j is not yet cancelled.
Dovetail execution of the following two steps until either terminates.
Step 1. Search for $\sigma \supset\left(\varphi_{i}\right)^{s}$, where range $\left(\sigma-\left(\varphi_{i}\right)^{s}\right)=\{0\}$ such that $M(\sigma) \neq M\left(\left(\varphi_{i}\right)^{s}\right)$. Terminate step 1 when (if ever) σ is found.
Step 2. Dovetail computing $\varphi_{j}\left(x_{1}^{s}\right), \varphi_{j}\left(x_{2}^{s}\right), \ldots$ until $n+1$ of them converge, then terminate step 2 .
If step 1 terminates before step 2 , set $\left(\varphi_{i}\right)^{s+1}=\sigma$. If step 2 terminates before step 1 , let $y_{1}^{s}, y_{2}^{s}, \ldots, y_{n+1}^{s}$ be $n+1$ points at which φ_{j} converges.
Set $\left(\varphi_{i}\right)^{s+1}=\left(\varphi_{i}\right)^{s} \cup\left\{\left(y_{1}^{s}, 1 \doteq \varphi_{j}\left(y_{1}^{s}\right)\right), \ldots, \quad\left(y_{n+1}^{s}, 1 \doteq \varphi_{j}\left(y_{n+1}^{s}\right)\right)\right\} \quad$ and cancel j.
End stage s.
End program i.
If φ_{i} is a finite function, then there must be a stage s such that condition 2 is true and both steps 1 and 2 do not halt. Let $f=\left(\varphi_{i}\right)^{s} \cup\{(x, 0) \mid x \notin$ $\left.\operatorname{domain}\left(\left(\varphi_{i}\right)^{s}\right)\right\}$. It is clear that $f \in Z E R O^{*}$. Since step 1 does not halt, there is a j such that $M(f)=j$. Since step 2 does not halt, φ_{j} is a finite function; hence $\varphi_{j} \not{ }^{n} f$.

Suppose now that φ_{i} is not a finite function. Then every time condition 2 is true at a stage s, stage s must terminate. Since there are but finitely many $j \leqslant h(i)$ and for every stage at which step 2 terminates before step 1 , a different $j \leqslant h(i)$ is cancelled, for all sufficiently large stages s, if condition 2 holds at stage s, step 1 terminates before step 2. Therefore, φ_{i} is total. Hence,

Remarks. (i) The proof of Theorem 4.3 actually shows that $\{f \mid f$ is a characteristic function of a finite set $\} \notin M E X^{n}$. Also (ii) the proof can be easily modified to show that $Z E R O^{*} \nsubseteq M E X^{n}(M, h)$, where h is limiting recursive: Suppose $h=$ limit h^{\prime}, then in program i change all occurrences of $h(i)$ in stage s to $h^{\prime}(i, s)$; lastly observe that for all sufficiently large stages s, $h^{\prime}(i, s)=h(i)$.

Our next corollary is a slightly strengthened version of a result of Meyer (1972). Meyer's result is the $n=0$ case.

Corollary 4.4. Suppose h is recursive in the halting problem and n is any given natural number. Then there is a program e which computes the characteristic function of a finite set such that for any loop program p (Meyer and Ritchie, 1967) for which $\varphi_{p}={ }^{n} \varphi_{e}, p>h(e)$.

Proof. Let $p_{0}, p_{1}, p_{2}, \ldots$ be a recursive enumeration of all loop programs. Let $\mathscr{B}=\{f \mid f$ is a characteristic function of a finite set $\}$. It is clear that for every $f \in \mathscr{D}$, there is a loop program which computes f. Let M be an IIM which given any input $f[x$, searches for the smallest program p in $\left\{p_{0}, p_{1}, \ldots, p_{x}\right\}$ such that $\varphi_{p}\left\lceil x \subseteq^{n} f\lceil x\right.$. If such program p exists and differs from the last program output by M so far, M then outputs p. Clearly, for every $f \in \mathscr{B}, M(f)$ is the smallest loop program such that $\varphi_{M(f)}={ }^{n} f$. By the remarks, after the proof of Theorem $4.3, \mathscr{B} \nsubseteq M E X^{n}(M, h)$. Hence, there is a $f \in \mathscr{B}$ such that $h(\min (f))<M(f)$, i.e., for any loop program p such that $\varphi_{p}=^{n} f, p>h(\min (f))$.

Corollary 4.5. $(\forall n)\left[E X^{0} \nsubseteq M E X^{n}\right]$.
Corollary 4.6. $(\forall n)\left[M E X^{n} \subset E X^{n} \subset M E X^{*}\right]$.
Schubert (1974) conjectured that $\lambda x\left[\mu y\left[\varphi_{y} \supseteq \varphi_{x}\right]\right]$ is not limiting recursive. Our next corollary is a strengthening of Schubert's conjecture. Royer (private communication) independently proved Schubert's conjecture itself by using the techniques in Section 5 of Meyer (1972).

Corollary 4.7. Suppose $n \in N$ and h is limiting recursive. Then there is no limiting partial recursive function ψ such that $(\forall x)\left[\varphi_{x} \in Z E R O^{*} \Rightarrow\right.$ $\left[\psi(x)\right.$ converges and $\varphi_{\psi(x)}={ }^{n} \varphi_{x}$ and $\left.\left.\psi(x) \leqslant h\left(\min _{\varphi}\left(\varphi_{x}\right)\right)\right]\right]$.

Proof. Suppose by way of contradiction otherwise. As noted in Case (in press), there is a recursive function g such that $\psi \subseteq$ limit g. Let M be an IIM such that $Z E R O^{*} \subseteq E X^{*}(M)$. We define IIM M^{\prime} thus. M^{\prime}, on input f, simulates M. If M on input f just output a new program p, M^{\prime} outputs, surpressing co-final repetitions, $g(p, 0), g(p, 1), g(p, 2), \ldots$ until (if ever) M changes its output. Clearly $Z E R O^{*} \subseteq M E X^{n}\left(M^{\prime}, h\right)$, contradicting Remark (ii) following the proof of Theorem 4.3.

Corollary 4.8 (Schubert's conjecture). $\quad \lambda x\left[\mu y\left[\varphi_{y} \supseteq \varphi_{x}\right]\right]$ is not limiting recursive.

5. Popperian Machines

We next extend our results to Popperian machines (Case and Ngo Manguelle, in press), where a Popperian IIM, by definition, outputs only programs for total functions.

Definition 5.1 (Case and Ngo Manguelle, in press; Case and Smith, 1979). Suppose I is any previously defined criterion such as $E X^{a}, M E X^{a}$, $M E X^{a}(h, \varphi)$. (a) An IIM M PI-identifies \mathscr{S} (written: $\mathscr{S} \subseteq P I(M)$) iff M is Popperian and $M I$-identifies \mathscr{S}. (b) $P I=\{\mathscr{S} \mid(\exists M)[\mathscr{S} \subseteq P I(M)]\}$.
$P E X^{0}$ is a mathematically natural class with many characterizations and closure properties (Case and Ngo Manguelle, in press). For example: (1) $P E X^{0}=P E X^{1}=\cdots=P E X^{*}$ (Case and Ngo Manguelle, in press); hence, we write $P E X$ for $P E X^{0}$. (2) $P E X=\{\mathscr{S} \mid \mathscr{S}$ is contained in some recursively enumerable class of recursive functions\} (Barzdin and Freivald, 1972; Case and Ngo Manguelle, in press; Case and Smith, 1979). (3) PEX $=\{\mathscr{S} \mid$ $(\exists$ recursive $t)(\forall f \in \mathscr{S})(\exists i)\left[\varphi_{i}=f \quad\right.$ and $\left.\left.\quad(\exists y)(\forall x \geqslant y)\left[\Phi_{j}(x) \leqslant t(x)\right]\right]\right\}$ (Barzdin and Freivald, 1972; Blum and Blum, 1975; Case and Ngo Manguelle, in press). (4) PEX is closed under finite union, i.e., if \mathscr{S}_{1}, $\mathscr{S}_{2} \in P E X$ then $\mathscr{S}_{1} \cup \mathscr{S}_{2} \in P E X$. In contrast, $E X^{a}$ is not closed under union (Blum and Blum, 1975; Case and Ngo Manguelle, in press).

We define $P L S R^{a}$, an analogue of $L S R^{a}$, as follows.
Definition 5.2. $\mathscr{S} \in P L S R^{a}$ iff there exist recursive functions G and v such that $\mathscr{S} \subseteq L S R^{a}(G, v)$ and the range of G contains only programs for total functions.

Theorem 5.1. $\quad(\forall a)\left[P M E X^{a}=P L S R^{a}\right]$.

Proof. Consider the proof of Theorem 3.3. In that proof, if we restrict M to be a Popperian machine and the range of G contains programs for total functions only, then we have the following result: $\mathscr{S} \in P M E X^{a}$ iff there exist recursive functions G and v witnessing that $\mathscr{S} \in P L S R^{a}$ and there exists a Popperian IIM M such that $M P E X^{a}$-identifies every function in \mathscr{S} and $\left(\forall i \mid \varphi_{i} \in \mathscr{S}\right) \quad\left[M\left(\varphi_{i}\right)=\operatorname{limit}_{s} G(i, s)\right]$. Hence, it remains to show that if $\mathscr{S} \in P L S R^{a}$, then there exists an IIM M such that $M P E X^{a}$-identifies every function in \mathscr{S} and $\left(\forall i \mid \varphi_{i} \in \mathscr{S}\right)\left[M\left(\varphi_{i}\right)=\operatorname{limit}_{s} G(i, s)\right]$. Let $F_{0}, F_{1}, F_{2}, \ldots$ be a canonical indexing (Machtey and Young, 1978) of all finite functions: $N \rightarrow N$. By the $s-m-n$ theorem (Rogers, 1967) there is a recursive function z such that, for all i, j, k and x, if $x \in \operatorname{domain}\left(F_{k}\right)$, then $\varphi_{z(i, j, k)}(x)=$ $F_{k}(x) ;$ else, $\varphi_{z(i, j, k)}(x)=\varphi_{G(i, j)}(x)$. Clearly $\mathscr{S}^{\prime \prime}=\left\{\varphi_{z(i, j, k)} \mid i, j, k \in N\right\}$ is an r.e. class of recursive functions and \mathscr{S}^{\prime} contains \mathscr{S}. By property (2) of PEX mentioned immediately after the Definition 5.1 , there is a single Popperian IIM M^{\prime} with $P E X$-identifies every function in \mathscr{S}^{\prime}. Hence, for every $f \in \mathscr{S}$, $\varphi_{M^{\prime}(f)}=f$. We then define a Popperian IIM M thus. On input f, M simulates M^{\prime} on f. If p is the current last program output by M^{\prime}, M then outputs, surpressing co-final repetitions, $G(p, 0), G(p, 1), \ldots$ until M^{\prime} outputs a new program.

It is clear that the range of M is a subset of the range of G. Hence, M is a

Popperian IIM. For every $f \in \mathscr{S}$, since $\varphi_{M^{\prime}(f)}=f, M(f)=\operatorname{limit}_{s} G\left(M^{\prime}(f), s\right)$ and $\varphi_{M(f)}=^{a} f$.

Theorem 5.2. $\quad(\forall n)\left[P L S R^{0}=P L S R^{n}\right]$.
Proof. It suffices to show that $P L S R^{n} \subseteq P L S R^{0}$. Suppose that there exist recursive functions G and v such that $\mathscr{S} \in \operatorname{PLSR}^{n}(G, v)$. Let $v^{\prime}(i)=$ $(n+1) \cdot v(i)$. Let $G^{\prime}(i, s)=p$, where p is the patched version of program $G(i, s)$ defined below. Suppose $x_{1}, x_{2}, \ldots, x_{k}$ are the distinct points $\leqslant s$ such that $\varphi_{i}^{s}\left(x_{j}\right)$ is convergent $\neq \varphi_{G(i, s)}\left(x_{j}\right)$ for each j such that $1 \leqslant j \leqslant k$. If $k \leqslant n$, then let $\varphi_{p}(x)=\varphi_{G(i, s)}(x)$ for $x \notin\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ and $\varphi_{p}(x)=\varphi_{i}^{s}(x)$ for $x \in$ $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$; else, let $p=G(i, s)$. The number of different elements in the range of $(\lambda s)[G(i, s)]$ is $\leqslant v(i)$. Each different $G(i, s)$ can contribute at most $n+1$ different programs in the range of $(\lambda s)\left[G^{\prime}(i, s)\right]$. Therefore, the number of elements in the range of $(\lambda s)\left[G^{\prime}(i, s)\right]$ is bounded by $(n+1) \cdot v(i)=v^{\prime}(i)$. For every $\varphi_{i} \in \mathscr{S}$, if $\varphi_{j}=\varphi_{i}$, then $\operatorname{limit}_{s} G(i, s)=\operatorname{limit}_{s} G(j, s)$. Hence, $\operatorname{limit}_{s} G^{\prime}(i, s)=\operatorname{limit}_{s} G^{\prime}(j, s)$. Let $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ be the anomalies of $\operatorname{limit}_{s} G(i, s)$ in computing φ_{i}. Since $\varphi_{i} \in \mathscr{S}, k \leqslant n$. For every sufficiently large' s such that $\varphi_{i}^{s}\left(x_{j}\right)$ converges for all $x_{j} \in\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}, \varphi_{G^{\prime}(i, s)}=\varphi_{i}$. Therefore, G^{\prime} and v^{\prime} witness that $\mathscr{S} \in P L S R^{0}$.

Corollary 5.3 below shows that allowing a finite uniformly bounded number of anomalies in explanatory programs does not increase the inferring power of Popperian machines in inferring nearly minimal size programs. In contrast, $M E X^{n} \subset M E X^{n+1}$.

Corollary 5.3. $\quad(\forall n)\left[P M E X^{0}=P M E X^{n}\right]$.
Let $P M E X$ denote $P M E X^{0}$. By Theorem 4.3 and $P M E X^{n} \subseteq M E X^{n}$, we have the following.

Corollary 5.4. $Z E R O^{*} \notin P M E X$.

Corollary 5.4 and Theorem 5.5 below show that with the cost of a finite but not uniformly bounded number of anomalies, nearly minimal size programs can be inferred without reducing the inferring power of Popperian machines.

Theorem 5.5. $P M E X^{*}=P E X$.
Proof. Consider the proof of Theorem 4.1. It is straightforward to verify that M^{\prime} is a Popperian machine if M is Popperian. Hence, the proof shows that $P M E X^{*}=P E X^{*}=P E X$.

Since $Z E R O^{*} \in P E X$, by Corollary 5.4 and Theorem 5.5 , we have

Corollary 5.6. $P M E X \subset P M E X^{*}$.
Also by Theorem 4.3, we have.
Corollary 5.7. ($\forall n)\left[P M E X^{*} \notin M E X^{n}\right]$.
By Corollary 3.4 and the fact that $\mathscr{S}^{a} \notin P E X$ (Case and Ngo Manguelle, in press; Case and Smith, 1979), we have

Corollary 5.8. $P M E X \subset M E X^{0}$.
The proof of next theorem is constructive.
THEOREM 5.9. If $\mathscr{S}_{1}, \mathscr{S}_{2} \in P M E X^{a}$, then $\mathscr{S}_{1} \cup \mathscr{S}_{2} \in P M E X^{a}$.
Proof. Suppose that there exist Popperian machines M_{1} and M_{2} such that $\mathscr{S}_{1} \subseteq \operatorname{PMEX}^{a}\left(M_{1}\right)$ and $\mathscr{S}_{2} \subseteq P M E X^{a}\left(M_{2}\right)$. We define M thus. M on input $f\left\lceil x\right.$, computes $M_{1}(f \mid x)$ and $M_{2}(f \mid x)$. M then compares the number of anomalies n_{1} in $\varphi_{M_{1} f f(x)}\left\lceil x\right.$ and the number of anomalies n_{2} in $\varphi_{M_{2}(f \mid x)}\lceil x$.

Case 1. If $a=* ; M$ then outputs, suppressing co-final repetitions, the least program in $\left\{M_{1}\left(f\lceil x), M_{2}(f\lceil x)\}\right.\right.$ with fewer anomalies.

Case 2. $a \neq *$. If both n_{1} and $n_{2} \leqslant a$, then M outputs, surpressing cofinal repetitions, the smaller of $M_{1}(f \mid x)$ and $M_{2}(f \mid x)$. If only one of n_{1} and $n_{2} \leqslant a$, say $n_{1} \leqslant a$ and $n_{2}>a$, then M outputs, surpressing co-final repetitions, $M_{1}(f\lceil x)$.

It can easily be verified that $M P M E X^{a}$-identifies $\mathscr{S}_{1} \cup \mathscr{S}_{2}$.
Corollary 5.10. Given M_{1} and M_{2} witnessing that $\mathscr{S}_{1} \in P M E X$, $\mathscr{S}_{2} \in P E X$, respectively, we effectively find a Popperian machine M such that M PEX-identifies $\mathscr{S}_{1} \cup \mathscr{S}_{2}$ and PMEX-identifies \mathscr{S}_{1}; furthermore, if h is such that $\mathscr{S}_{1} \subseteq \operatorname{PMEX}\left(M_{1}, h\right), \mathscr{S}_{1} \subseteq \operatorname{PMEX}(M, h)$.

Proof. The corollary follows from the $a \neq *$ case of the proof of Theorem 5.9.

In (Chen, 1981), we show that there exist $\mathscr{S}_{1}, \mathscr{S}_{2} \in M E X^{0}$ such that $\mathscr{S}_{1} \cup \mathscr{S}_{2} \notin E X^{*}$.

6. Bounded Mind Changes

We say that an IIM changes its mind when it outputs a new program. The bound on the number of changes of output is a first approximation to a bound on the complexity of IIMs. For example, $\mathscr{S}^{0}=\left\{f \mid \varphi_{f(0)}=f\right\}$ can be $E X$-identified with no mind changes (Case and Smith, 1978, 1979). On the
other hand, it can be easily shown that there is no uniform upper bound in mind changes for any IIM to $E X$-identify $Z E R O^{*}$.

Definition 6.1. Suppose $Q \in\{P, P M, M, \Lambda\}$, where Λ denotes the empty string.
(a) An IIM $M Q E X_{b}^{a}$-identifies \mathscr{S} (written: $\mathscr{S} \subseteq Q E X_{b}^{a}(M)$) iff for all $f \in \mathscr{S}, M Q E X^{a}$-identifies f and M fed f makes no more than b (if $b=*$, finitely many) mind changes.
(b) $Q E X_{b}^{a}=\left\{\mathscr{S} \mid(\exists M)\left[\mathscr{S} \subseteq Q E X_{b}^{a}(M)\right]\right\}$.

Obviously, $Q E X_{*}^{a}$ is $Q E X^{a}$. Since the construction in the proof of Theorem 3.1 does not affect the number of mind changes, we have that for each $Q \in\{P, P M, M, \Lambda\}, Q E X_{b}^{a}$ is acceptable numbering independent.

In (Case and Smith, 1979), it is shown that $\left[E X_{b}^{a} \subseteq E X_{d}^{c}\right] \Leftrightarrow[a \leqslant c$ and $b \leqslant d]$. Hence, all of the tradeoffs between bounds on number of anomalies and bounds on number of mind changes are partial. On the other hand, it is shown in Case and Ngo Manguelle (in press) that $P E X_{b}^{a} \subseteq P E X_{d}^{c} \Leftrightarrow[[a \leqslant c$ and $b \leqslant d]$ or $d=*$ or $[a, b, c, d \in N$ and $G(a, b, c) \leqslant(1+d)]]$, where $G(a, b, c)=[1+$ floor $(a /(c+1))] \cdot(1+b)$. Hence, for Popperian machines, it is possible to completely tradeoff anomaly for mind change bounds. In this section we determine, for each $Q \in\{P M, M\}$, the exact containment relations between the classes $Q E X_{b}^{a}$. We shall see that, as in the case of $E X_{b}^{a}$, the tradeoffs between anomaly and mind change bounds are partial for both $P M E X_{b}^{a}$ and $M E X_{b}^{a}$.

We suppose without loss of generality that if an IIM $M Q E X_{m}^{a}$-identifies a class of recursive functions, then for any input f, M changes its mind at most m times.

Theorem 6.1. Suppose $Q \in\{P, A\}$. Then for all $m, Q E X_{m}^{a} \subseteq Q M E X^{a}$.
Proof. Suppose that $\mathscr{S} \in Q E X_{m}^{a}$, then there exists IIM M which $Q E X_{m}^{a}$ identifies \mathscr{S}. Let $v(i)=m+2$. Let

$$
\begin{aligned}
G(i, s) & =M\left(\varphi_{i}^{s}\right), & & \text { if } \quad M\left(\varphi_{i}^{s}\right) \text { is defined } ; \\
& =i_{\varphi}, & & \text { otherwise } .
\end{aligned}
$$

Clearly G and v witness that $\mathscr{S} \in L S R^{a}$ and for every $\varphi_{i} \in \mathscr{S}, M\left(\varphi_{i}\right)=$ $\operatorname{limit}_{s} G(i, s)$. By Theorem 3.3, we have that $\mathscr{S} \in M E X^{a}$. If $\mathscr{S} \in P E X_{m}^{a}$, then M is Popperian. Hence, the range of G contains only programs for total functions; therefore, $\mathscr{S} \subseteq P L S R^{a}$.

Corollary 6.2. Suppose $Q \in\{P, \Lambda\}$. Then for all $m, Q E X_{m}^{a} \subset Q M E X^{a}$.

Proof. By the previous theorem we have $Q E X_{m}^{a} \subseteq Q M E X^{a}$. In Case and Smith (1979) it is shown that $E X_{m}^{a} \subset E X_{m+1}^{a}$, and in Case and Ngo Manguelle (in press), it is shown that $P E X_{m}^{a} \subset P E X_{m+1}^{a}$; hence, we have $Q E X_{m}^{a} \neq Q M E X^{a}$.
We next proceed to obtain a useful property of $M E X_{m}^{n}$.
Definition 6.2. Suppose \mathscr{A} and \mathscr{B} are classes of recursive functions. \mathscr{B} is an a-cover of \mathscr{A} iff for each $f \in \mathscr{A}$, there exists $g \in \mathscr{B}$ such that $g={ }^{a} f$.

Definition 6.3. \mathscr{S} is a-immune iff (i) \mathscr{S} is infinite and (ii) every recursively enumerable subclass (Rogers, 1967) of \mathscr{S} has a finite a-cover.

Definition 6.4. \mathscr{S} is a-isolated iff \mathscr{S} is finite or \mathscr{S} is a-immune.
Lemma 6.3. Suppose that \mathscr{A} is a recursively enumerable class and that M is an IIM which MEX ${ }_{m}^{a}$-identifies \mathscr{A}. Then the set $A=\{M(f) \mid f \in \mathscr{A}$ and M on input f changes its mind exactly m times $\}$ is finite.

Proof. Suppose by way of contradiction otherwise. Then A is an infinite set. Let $p_{0}, p_{1}, p_{2}, \ldots$ be a recursive enumeration of programs for the functions in \mathscr{A}. Suppose that h is a recursive, monotone nondecreasing function such that $M M E X_{m}^{a}(h)$-identifies \mathscr{A}. By implicit use of the recursion theorem, we describe a program e thus.

Begin program e.
On input x, e enumerates $p_{0}, p_{1}, p_{2}, \ldots$, and searchs for a program p_{i} such that M on input $\varphi_{p_{i}}$ changes its mind exactly m times and $M\left(\varphi_{p_{i}}\right)>$ $h(e)$. (Such a p_{i} must exist since A is infinite.) When the first such p_{i} is found, e just emulates p_{i} on x.
End program e.
Since $M\left(\varphi_{e}\right)=M\left(\varphi_{p_{i}}\right)>h(e), M$ does not $M E X_{m}^{a}(h)$-identify $\varphi_{e} \in \mathscr{A}$, a contradiction.

Theorem 6.4. Suppose $\mathscr{S} \in M E X_{m}^{n}$. Then \mathscr{S} is an n-isolated class.
Proof. The proof is by induction on m. If $m=0$, the theorem follows immediately from Lemma 6.3. Suppose that the theorem is true for $m=k$. Suppose that $M M E X_{k+1}^{n}$-identifies \mathscr{S}. If \mathscr{S} contains a recursively enumerable subclass \mathscr{A} which is infinite. It suffices to show the \mathscr{A} is n immune. Since \mathscr{A} is a recursively enumerable class in $M E X_{k+1}^{n}$, by Lemma 6.3 the set $A=\{M(f) \mid f \in \mathscr{A}$ and M on input f changes its mind
exactly $k+1$ times $\}$ is finite. Let $\mathscr{B}=\left\{f \mid(\exists i \in A)\left[f(x)=\varphi_{i}(x)\right.\right.$ if $x \in \operatorname{domain}\left(\varphi_{i}\right)$; else $\left.\left.f(x)=0\right]\right\} . \mathscr{B}$ is finite since A is. Clearly \mathscr{B} is an n cover of the class $\mathscr{A}^{\prime}=\left\{f \in \mathscr{A} \mid(\exists g \in \mathscr{B})\left[f=^{n} g\right]\right\}$ and $\{f \in \mathscr{A} \mid M$ on input f changes its mind exactly $k+1$ times $\} \subseteq \mathscr{A}^{\prime}$. Let $\mathscr{A}^{\prime \prime}=\mathscr{A}-\mathscr{A}^{\prime}$. Hence, $M M E X_{k}^{n}$-identifies $\mathscr{A}^{\prime \prime} . \mathscr{A}^{\prime \prime}$ is n-isolated. Since \mathscr{B} is finite, $\mathscr{A}^{\prime \prime}$ is also an r.e. subclass of the r.e. class \mathscr{A}. Therefore $\mathscr{A}^{\prime \prime}$ is finite or n-immune. Hence, $\mathscr{A}=\mathscr{A}^{\prime} \cup \mathscr{A}^{\prime \prime}$ is n-immune.

The proof of above theorem does not work for $M E X_{m}^{*}$, but we conjecture that the theorem is true for this case.

Theorem 6.5. $\quad(\forall a)(\forall m)\left[P E X_{0}^{0} \nsubseteq M E X_{m}^{a}\right]$.
Proof. Let CONST $=\{f \mid(\exists i)[f=\lambda x[i]]\}$.
It is clear that $C O N S T \in P E X_{0}^{0}$ and $C O N S T$ is a recursively enumerable class without any finite a-cover. By Theorem 6.4, CONST $\notin M E X_{m}^{a}$ for all $a \in N$. The proof of Theorem 6.4 is easily modified to show that for $\mathscr{A}=\operatorname{CONST}, \mathscr{A} \notin M E X_{m}^{*}$.

Corollary 6.6. $(\forall m)(\forall n)\left[P M E X_{0}^{n+1} \nsubseteq M E X_{m}^{n}\right]$.
Proof. Consider the class of recursive functions $Z E R O^{n+1}=\left\{f \mid f=^{n+1}\right.$ $\lambda x[0]\}$. It is clear that $Z E R O^{n+1} \in P M E X_{0}^{n+1}$ and $Z E R O^{n+1}$ is a recursively enumerable class without any finite n-cover. By Theorem $6.4, Z E R O^{n+1} \notin$ $M E X_{m}^{n}$.

Corollary 6.7. Suppose $Q \in\{P, A\} . \quad(\forall m)\left[Q M E X_{m}^{a} \subseteq Q M E X_{m}^{b} \Leftrightarrow\right.$ $a \leqslant b]$.

The question of whether or not $M E X_{0}^{n+1} \nsubseteq E X^{n}$ remains open; however, we have

THEOREM 6.8. $(\forall m)(\forall n)\left[M E X_{0}^{n+1} \nsubseteq E X_{m}^{n}\right]$.
Proof. Let $\mathscr{S}^{n+1}=\left\{f \mid \varphi_{f(0)}={ }^{n+1} f\right.$ and $\left.f(0)<\min (f)\right\}$. Clearly, the IIM M_{0} which on input f, outputs $f(0)$ only, $M E X_{0}^{n+1}$-identifies \mathscr{S}^{n+1}. We then show that for all IIMs $M, \mathscr{S}^{n+1} \nsubseteq E X_{m}^{n}(M)$. We present the $n=0$ case only; the other cases are similar. Suppose M is any IIM. We implicitly define below a program e which computes a partial function which diverges on exactly one input such that some total extension of φ_{e} is in \mathscr{S}^{1} and cannot be $E X_{m}^{0}$-identified by M.
φ_{e} is defined by stages. Let $\left(\varphi_{e}\right)^{s}$ denote the finite part of φ_{e} defined before stage s. Let a_{1}^{s}, a_{2}^{s} denote respectively the least and second least numbers which are not in the domain of $\left(\varphi_{e}\right)^{s}$. By the recursion theorem (Rogers, 1967), we may set $\left(\varphi_{e}\right)^{0}=\{(0, e)\}$.

Begin stage $s . \quad$ Write $s=\langle i, j\rangle$. Let $\sigma=\left(\varphi_{e}\right)^{s} \cup\left\{\left(a_{1}^{s}, i\right)\right\}$. If $M(\sigma) \neq M\left(\left(\varphi_{e}\right)^{s}\right)$, then set $\left(\varphi_{e}\right)^{s+1}=\sigma$; otherwise, set $\left(\varphi_{e}\right)^{s+1}=\left(\varphi_{e}\right)^{s} \cup\left\{\left(a_{2}^{s}, 0\right)\right\}$.
End stage s.
Since by convention M makes no more than m mind changes, for some a, $\operatorname{limit}_{s} a_{1}^{s}=a<\infty$. Then domain $\left(\varphi_{e}\right)=(N-\{a\})$ and for any (total) recursive functions f and g such that $\varphi_{e} \subset f$ and $\varphi_{e} \subset g, M(f)=M(g)$. Since there are infinitely many f such that $\varphi_{e} \subset f$, there must exist f and g such that $\varphi_{e} \subset f, \varphi_{e} \subset g, f \neq g, \min (f)>e$ and $\min (g)>e$. Pick such a pair f, g. Then $f, g \in \mathscr{S}^{l}$ and $M(f)=M(g)$ but $f \neq g$. Hence, at least one of them cannot be $E X_{m}^{0}$-identified by M.

It is shown in Case and Ngo Manguelle (in press) that $P E X_{m+1} \not \subset E X_{m}^{*}$. Our next theorem strengthens this result.

Lemma 6.9. Suppose $Q \in\{P, \Lambda\}$.

$$
\bigcup_{\varphi^{\prime}} Q M E X_{b}^{a}\left(\lambda x[x], \varphi^{\prime}\right) \subseteq \bigcup_{h} Q M E X_{b}^{a}(h, \varphi)
$$

Proof. Suppose $\mathscr{S} \in \bigcup_{\varphi^{\prime}} Q M E X_{b}^{a}\left(\lambda x[x], \varphi^{\prime}\right)$. Then there exist M and φ^{\prime} such that $\mathscr{S} \subseteq Q M E X_{b}^{a}\left(M, \lambda x[x], \varphi^{\prime}\right)$. Since both φ and φ^{\prime} are acceptable numberings, there exist recursive functions w_{1} and w_{2} such that φ^{\prime} is reduced to φ by w_{1} and φ is reduced to φ^{\prime} by w_{2}. Let $h(x)=\max \left\{w_{1}(y) \mid y \leqslant w_{2}(x)\right\}$. We define an IIM M^{\prime} thus. On input $f\left\lceil x, M^{\prime}\right.$ simulates M on input $f\lceil x$. If M outputs a program p, M^{\prime} then outputs $w_{1}(p)$. Hence, if $M E X_{b}^{a}$-identifies f in φ, then $M^{\prime} E X_{b}^{a}$-identifies f in φ^{\prime}. If M is a Popperian IIM, then M^{\prime} is also a Popperian IIM. Suppose $f \in \mathscr{S}$, it remains to show that $M^{\prime}(f) \leqslant$ $h\left(\min _{\varphi}(f)\right)$. Since $\quad f \in \mathscr{S}, \quad M(f)=\min _{\varphi}(f) . \quad M^{\prime}(f)=w_{1}(M(f))=$ $w_{1}\left(\min _{\varphi}(f)\right) . h\left(\min _{\varphi}(f)\right)=\max \left\{w_{1}(y) \mid y \leqslant w_{2}\left(\min _{\varphi}(f)\right)\right\} \geqslant \max \left\{w_{1}(y) \mid y \leqslant\right.$ $\left.\min _{\varphi}(f)\right\} \geqslant w_{1}\left(\min _{\varphi},(f)\right)=M^{\prime}(f)$.

Lemma 6.10. Suppose φ^{\prime} and g are such that (i) for all $n, \varphi_{2 n}^{\prime}$ is total, (ii) for all m, n, if $m \neq n$, then $\varphi_{2 m}^{\prime} \neq \varphi_{2 n}^{\prime}$, (iii) g is a strictly monotone increasing function for which the range of g contains only even numbers, and (iv) there exists a k such that for all n, there are at most $n+k$ different functions in $\left\{\varphi_{1}^{\prime}, \varphi_{3}^{\prime}, \varphi_{5}^{\prime}, \ldots, \varphi_{g(n)+1}^{\prime}\right\}$. Then there are infinitely many φ^{\prime} minimal indices in the range of g.

Proof. Suppose by way of contradiction otherwise. Then there are finitely many φ^{\prime} minimal indices in the range of g. Let n_{0} be such that for all $n \geqslant n_{0}, g(n)>\min _{\varphi^{\prime}}\left(\varphi_{g(n)}^{\prime}\right)$ and $\min _{\varphi^{\prime}}\left(\varphi_{g(n)}^{\prime}\right)$ is odd. Hence, for all $n \geqslant n_{0}$, $\left\{\varphi_{g\left(n_{0}\right)}^{\prime}, \varphi_{g\left(n_{0}+1\right)}^{\prime}, \ldots, \varphi_{g(n)}^{\prime}\right\} \subseteq\left\{\varphi_{1}^{\prime}, \varphi_{3}^{\prime}, \ldots, \varphi_{g(n)+1}^{\prime}\right\}$ since g is a strictly monotone increasing function. By the hypothesis, there is a k such that for all n,
$n+k \geqslant$ the number of different partial functions in $\left\{\varphi_{1}^{\prime}, \varphi_{2}^{\prime}, \ldots, \varphi_{g(n)+1}^{\prime}\right\} \geqslant$ the number of different partial functions in $\left\{\varphi_{g\left(n_{0}\right)}^{\prime}, \varphi_{g\left(n_{0}+1\right)}^{\prime}, \ldots, \varphi_{g(n)}^{\prime}\right\}$. Since if $m \neq n$, then $\varphi_{g(m)}^{\prime} \neq \varphi_{g(n)}^{\prime}$, the number of different partial functions in $\left\{\varphi_{g\left(n_{0}\right)}^{\prime}\right.$, $\left.\varphi_{g\left(n_{0}+1\right)}^{\prime}, \ldots, \varphi_{g(n)}^{\prime}\right\}$ is $n-n_{0}+1$. Therefore, for every $n \geqslant n_{0}$ the number of different partial functions in $\left(\left\{\varphi_{1}^{\prime}, \varphi_{3}^{\prime}, \ldots, \varphi_{g(n)+1}^{\prime}\right\}-\left\{\varphi_{g\left(n_{0}\right)}^{\prime}, \varphi_{g\left(n_{0}+1\right)}^{\prime}, \ldots, \varphi_{g(n)}^{\prime}\right\}\right)$ is less than or equal to $n_{0}+k-1$. Hence the number of different partial functions computed by odd indices not computed by even indices is finite. Therefore, since the even φ^{\prime} programs compute only total functions, φ^{\prime} computes but a finite number of non-total functions, a contradiction.

Theorem 6.11. $(\forall m)\left[P M E X_{m+1}^{0} \nsubseteq E X_{m}^{*}\right]$.
Proof. Suppose $e \geqslant 0$. A finite sequence $\left(x_{1}, x_{2}, \ldots, x_{e}\right)$ is strictly monotone iff $\left[e=0\right.$ or $\left.x_{1}<x_{2}<\cdots<x_{e}\right]$. () denotes the empty sequence. i.e. the case $e=0$. Let $\Sigma_{m}=$ the set of strictly monotone finite sequences ($x_{1}, x_{2}, \ldots, x_{e}$) such that $0 \leqslant e \leqslant m$. A function f is a step up function at step up points $\left(x_{1}, x_{2}, \ldots, x_{e}\right)$ iff case 1. $e=0$; then $f=\lambda x[0]$, and case $2 . e>0$; then $f(x)=0$ if $x<x_{1} ; f(x)=i$ if $x_{i} \leqslant x<x_{i+1} ; f(x)=e$ if $x \geqslant x_{e}$. For $\alpha=$ $\left(x_{1}, x_{2}, \ldots, x_{e}\right), f_{\alpha}$ denotes the step up function at step up points $\left(x_{1}, x_{2}, \ldots, x_{e}\right)$. Let $\mathscr{S}_{\left(x_{1}, x_{2}, \ldots, x_{e}\right)}=\left\{f_{\alpha} \mid \alpha=\left(x_{1}, x_{2}, \ldots, x_{e}, x_{e+1}\right)\right.$, where $\left.x_{e+1}>x_{e}\right\}$. $\mathscr{S}_{0}=$ $\left\{f_{\alpha} \mid \alpha=\left(x_{1}\right)\right.$, where $\left.x_{1} \in N\right\}$. We also let $\mathscr{S}_{0}=\{\lambda x[0]\}$. Note that if α and β are distinct elements of $\Sigma_{m} \cup\{0\}$, then $\mathscr{S}_{\alpha} \cap \mathscr{S}_{\beta}=\varnothing$. Let $\mathscr{S}=\bigcup\left\{\mathscr{S}_{\alpha} \mid \alpha \in\right.$ $\left.\Sigma_{m} \cup\{0\}\right\}$. Fix a canonical indexing (Machtey and Young, 1978; Rogers, 1967) of the elements of Σ_{m}. Let α_{i} be the element of Σ_{m} with canonical index i. Clearly there is a recursive function w such that $(\forall i)\left[\left\{\varphi_{w(i, j)} \mid j \in N\right\}=\mathscr{S} \alpha_{i}\right]$ and $(\forall i, j, k)\left[\right.$ if $j \neq k$ then $\left.\varphi_{w^{(i, j)}} \neq \varphi_{w^{(i, k)}}\right]$.

We will now construct an acceptable numbering φ^{\prime} such that a set of φ^{\prime} programs for the functions in \mathscr{S} are effectively enumerated by some recursive function z such that for every i, j, if $i \neq j$, then $\varphi_{z(i)} \neq \varphi_{z(j)}$ and for each $\alpha \in \Sigma_{m}$, the range of z contains infinitely many φ^{\prime} minimal indices for the functions in \mathscr{S}_{α}. We define φ^{\prime} thus.

$$
\begin{array}{lllll}
\varphi_{0}^{\prime}=\lambda x[0] & \varphi_{2}^{\prime}=\varphi_{w(0,0)} & \varphi_{4}^{\prime}=\varphi_{w(0,1)} & \varphi_{6}^{\prime}=\varphi_{w(1,0)} & \cdots \\
\varphi_{1}^{\prime}=\lambda x[\uparrow] & \varphi_{3}^{\prime}=\varphi_{0} & \varphi_{5}^{\prime}=\lambda x[\uparrow] & \varphi_{7}^{\prime}=\varphi_{1} & \cdots
\end{array}
$$

Generally

$$
\varphi_{0}^{\prime}=\lambda x[0], \varphi_{2(\langle i, j)+1)}^{\prime}=\varphi_{w(i, j)}
$$

and

$$
\begin{aligned}
\varphi_{2\langle i, j\rangle+1}^{\prime} & =\lambda x[\uparrow], & & \text { if } \quad i \neq 0 \\
& =\varphi_{j}, & & \text { otherwise }
\end{aligned}
$$

It is clear that φ^{\prime} is effective and φ can be reduced to φ^{\prime} by $\lambda x[2 \cdot\langle x, 0\rangle+1]$. Hence, φ^{\prime} is an acceptable numbering. Let $z(x)=2 x$. Then z enumerates a set of φ^{\prime} programs for the functions in \mathscr{P} such that for every i, j, if $i \neq j$, then $\varphi_{z(i)} \neq \varphi_{z(j)}$. We claim that
for each $\alpha \in \Sigma_{m}$, the range of z contains infinitely many φ^{\prime} minimal indices for the functions in \mathscr{S}_{α}.

To see this, let $g(x)=2(\langle j, x\rangle+1)$. Clearly, g is $1-1$ monotone increasing and $\mathscr{F}_{\alpha}=\left\{\varphi_{g(x)}^{\prime} \mid x \in N\right\}$. We want to show that there are infinitely many φ^{\prime} minimal indices in the range of g. We see that the number of different functions which are computed by odd indices $\leqslant 2\langle j, x\rangle+1$, is $\leqslant j+x+2$. By Lemma 6.10 , with $k=j+2$, there are infinitely many minimal indices in the range of g. This establishes (6.2).

Now there is an IIM M which on input $f\lceil x$, finds the step up points $\left(x_{1}, x_{2}, \ldots, x_{e}\right)$ (if any); if $e=0, M$ then outputs 0 , otherwise M outputs the even φ^{\prime} index which computes $f_{\left(x_{1}, x_{2}, \ldots, x_{e}\right)} . M$ is a Popperian machine since M outputs even indices only. Let $\mathscr{S}^{\prime}=\left\{f \mid f \in \mathscr{S}\right.$ and $\min _{\odot}(f)$ is even $\}$. By (6.2) we know that for every $\alpha \in \Sigma_{m}, \mathscr{S}^{\prime} \cap \mathscr{S}_{\alpha}$ contains infinitely many elements. For every $f \in \mathscr{S}^{\prime}, f$ has at most $m+1$ step up points, so M on input f, will change its mind at most $m+1$ times and $\varphi_{M(f)}^{\prime}=f$. Hence by Lemma 6.9, $\mathscr{S}^{\prime} \subseteq P M E X_{m+1}(M)$.

Note. $\lambda x[0]$ is in \mathscr{S}^{\prime} since $\varphi_{0}^{\prime}=\lambda x[0]$.
It remains to show that no IIM $E X_{m}^{*}$-identifies \mathscr{S}^{\prime}. Let us consider the case $m=0$. Suppose by way of contradiction otherwise. Then there is an IIM M^{\prime} such that $M^{\prime} E X_{0}^{*}$-identifies \mathscr{S}^{\prime}. Since $\lambda x[0] \in \mathscr{S}^{\prime}$, there is a sufficiently large x_{1} such that for every $y \geqslant x_{1}, \quad M^{\prime}(\lambda x[0]\lceil y)=$ $M^{\prime}\left(\lambda x[0]\left\lceil x_{1}\right)=p_{1}\right.$ and $\varphi_{p_{1}}^{\prime}=* \lambda x[0]$. Since $\mathscr{S}_{0} \cap \mathscr{S}^{\prime}$ contains infinitely many elements, there is an x_{1}^{\prime} such that $x_{1}^{\prime} \geqslant x_{1}$ and $f_{\left(x_{1}^{\prime}\right)} \in \mathscr{S}_{0} \cap \mathscr{S}^{\prime}$. We then consider M^{\prime} on input $f_{\left(x_{1}^{\prime}\right)}$. Since $f_{\left(x_{1}^{\prime}\right)} \in \mathscr{S}^{\prime}$, there is a sufficiently large x_{2} such that for all $y \geqslant x_{2}, M^{\prime}\left(f_{\left(x_{1}^{\prime}\right)} \mid y\right)=M^{\prime}\left(f_{\left(x^{\prime}\right)}\left\lceil x_{2}\right)=p_{2}\right.$ and $\varphi_{p_{2}}^{\prime}={ }^{*} f_{\left(x_{1}^{\prime}\right)^{\prime}}$. It is clear that $p_{1} \neq p_{2}$. We therefore force M^{\prime} to change its mind, a contradiction. For $m>0$, similarly there is a step up function $f_{\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{m+1}^{\prime}\right)} \in \mathscr{S}^{\prime}$ such that M^{\prime} on input $f_{\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{m+1}^{\prime}\right)}$ will be forced to change its mind at least $m+1$ times, a contradiction.

Corollary 6.12. Suppose $Q \in\{P, \Lambda\}$. Then $Q M E X_{m}^{a} \subseteq Q M E X_{n}^{b} \Leftrightarrow$ $a \leqslant b$ and $m \leqslant n$.

Proof. It immediately follows from Theorem 6.6 and 6.11.
Corollary 6.13. ($\forall m)\left[P M E X \nsubseteq M E X_{m}^{*}\right]$.

Acknowledgments

This paper is part of the author's Ph.D. dissertation at SUNY Buffalo, written under the direction of Professor John Case. The author wishes to express his sincere gratitude to Professor Case for guiding this research, suggesting the problems, and helping with the preparation of this paper. We are also grateful to James Royer for reading our manuscript and supplying a simplification to our original proof of Theorem 6.11.
This paper is partially supported by NSF Grant MCS-80-10728.
Received: June 15, 1981; revised: May 14, 1982

References

Barzdin, J. and Freivald, R. V. (1972), On the predication of general recursive functions, Soviet Math. Dokl. 13, 1224-1228.
Blum, M. (1967), A machine independent theory of the complexity of recursive functions, J. Assoc. Comput. Math. 14, 322-336.
Blum, M. (1967), On the size of machines, Inform. Contr. 11, 257-265.
Blum, L. and Blum, M. (1975), Toward a mathematical theory of inductive inference, Inform. Contr. 28, 125-155.
CASE, J. Pseudo extensions of computable functions, Inform. Contr., in press.
Case, J. and Ngo Manguelle, S., Refinements of inductive inference by Popperian machines, I and II, Kybernetika, in press.
Case, J. and Smith, C. (1978), Anomaly hierarchies of mechanized inductive inference, in "Proceedings, 10th Symposium on the Theory of Computing," San Diego, California, pp. 314-319.
Case, J. and Smith, C. (1979), "Comparison of Identification Criteria for Mechanized Inductive Inference," Technical Report No. 154, Dept. of Computer Science, SUNY Buffalo.
Chen, K. (1981), "Tradeoffs in Machine Inductive Inference," Ph.D. Dissertation, Computer Science Department, SUNY at Buffaio, N.Y.
Freivald, R. V. (1975), "Minimal Gödel Numbers and Their Identification in the Limit," Lecture Notes in Computer Science No. 32, pp. 219-225, Springer-Verlag, Berlin/New York.
Gold, E. M. (1967), Language identification in the limit, Inform. Contr. 10, 447-474.
Kinber, E. B. (1977), "On a Theory of Inductive Inference," Lecture Notes in Computer Science No. 56, pp. 435-440, Springer-Verlag, Berlin/New York.
Meyer, A. (1972), Program size in restricted programming languages, Inform. Contr. 21, 382-394.
Meyer, A. and Ritchie, D. (1967), Computational complexity and program structure, IBM Res. Rep. 1817.
Machtey, M. and Young, P. (1978), "An Introduction to the General Theory of Algorithms," North-Holland, New York/Amsterdam.
Rogers, H., Jr. (1958), Gödel numberings of partial recursive functions, J. Symbol. Logic 23, 331-341.
Rogers, H., Jr. (1967), "Theory of Recursive Functions and Effective Computability," McGraw-Hill, New York.
Schubert, L. K. (1974), "Representative sample of programmable functions," Inform. Contr. 25, 30-44.
Shoenfield, J. (1971), "Degrees of Unsolvability," North-Holland, New York.

[^0]: * Present address: Institute of Information Science, Academia Sinica, Taipei, Taiwan, R.O.C.

