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Tradeoffs in the Inductive Inference of 
Nearly Minimal Size Programs 
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Computer Science Department, State University of New York at Buffalo, 
Amherst, New York 14226 

Inductive inference machines are algorithmic devices which attempt to synthesize 
(in the limit) programs for a function while they examine more and more of the 
graph of the function. There are many possible criteria of success. We study the 
inference of nearly minimal size programs. Our principal results imply that nearly 
minimal size programs can be inferred (in the limit) without loss of inferring power 
provided we are willing to tolerate a finite, but not uniformly, bounded, number of 
anomalies in the synthesized programs. On the other hand, there is a severe 
reduction of inferring power in inferring nearly minimal size programs if the 
maximum number of anomalies allowed is any uniform constant. We obtain a 
general characterization for the classes of recursive functions which can be 
synthesized by inferring nearly minimal size programs with anomalies. We also 
obtain similar results for Popperian inductive inference machines. The exact 
tradeoffs between mind change bounds on inductive inference machines and 
anomalies in synthesized programs are obtained. The techniques of recursive 
function theory including the recursion theorem are employed. 

1. INTRODUCTION 

While doing more and more experiments, a scientist may  be able to infer a 
correct theory or explanation for a phenomenon he is investigating. What  are 
the theoretical capabilities and limitations of  this inference process if the 
scientist is a robot or machine? In order to answer this question, inductive 
inference machines have been defined formally (Blum and Blum, 1975; Gold, 
1967) as follows. 

N denotes the set of  natural numbers. 

DEFINITION 1.i. An inductive inference machine (abbr: I IM) is an 
algorithmic device, with no a priori bounds on how much time or memory 
resource it shall use, which takes as its input the graph of a function from N 
to N an ordered pair at a time, and which from time to time, as it is 
receiving i ts  input, outputs computer programs. 
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We assume without loss of generality all IIMs are order independent 
(Blum and Blum, 1975; Case and Smith, 1978). 

There are many ways to define what it means for an IIM to succeed at 
eventually synthesizing a correct program. For example, we say that, for a 
N U { * }, an IIM M EXa-identifies f iff M fed f outputs a non-empty finite 
sequence of computer programs the last of which computes f except on at 
most a anomalous inputs (if a = *, except for finitely many inputs). What we 
call E_g°-identification was the first criterion of success proposed and is 
essentially due to Gold (1967). The a = * case was first proposed by Blum 
and Blum (1975) and they refer to it as a.e. identification. The other cases 
are due to Case (Case and Smith, 1978, 1979). Each IIM may EXa-identify 
some functions but fail to EXa-ident i fy  others. E X  ~ is defined to be the class 
of all sets Y of recursive functions such that some IIM EXa-identifies each 
function in Y .  In (Case and Smith, 1978, 1979), the introducing of 
anomalies is motivated by the fact that physicists sometimes employ 
explanations with anomalies and it is shown that E X  ° c E X  ~ c ... ~ E X * .  

Hence, allowing anomalies in explanatory programs enables individual IIMs 
to infer explanations for a broader class of phenomena. In this paper we 
focus on the succinctness of the explanatory programs themselves. Since the 
quality of a scientific explanation is determined in part by its succinctness 
(Occam's Razor), we consider the effect on inferring power of restricting the 
final Output programs to be of small, nearly minimal, size (Blum, 1967). 

2. PRELIMINARIES 

Let N =  ( N U  {*}), where (¥n E N )  [n < *]. C, ~_, and c denote, respec- 
tively, membership, containment, and proper containment for sets. We let e, 
i, j,  k , / ,  m, n, p, s, x, and y range over N and a, b, c, d range over N. We let 
f ,  g, h, v, w, z, and G (with or without subscripts) range over total (number 
theoretic) functions, q/ (with or without subscripts) ranges over partial 
(number theoretic) functions. ~0 (with or without 's) ranges over acceptable 

numberings (Machtey and Young, 1978; Rogers, 1958, 1967) of the partial 
recursive functions. ~0 n is the partial recursive function computed by program 
n in the acceptable numbering ~0; we then speak of n as being a ~0 program or 
~o index. In what follows 0 should denote a fixed acceptable numbering and 
when no explicit reference to a particular acceptable numbering is made, ~0 
will be the numbering referred to. For example, then, min(g,) denotes 
mino(qJ), the minimal q~ program of gt. @ denotes an arbitrary Blum 
complexity measure (Blum, 1967) associated with ~0. ~.~ denotes the class of 
recursive functions. J ' ,  9 ,  Y (with or without subscripts) range over 
classes of recursive functions. We define ~,[x = {(y, qt(y)) I y < x}. Card(A)  
denotes the cardinality of the setA. II/1 = n  i/./2 means that Card{x I qJl(x)4= 
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~2(x)}~<n, and ~ q = *  ~'2 means that Card{xl~ul(x)4:~,2(x)} is finite. 
~'~ ---" ~'2 means that Card{x I ~,l(X) 4: q/2(x), x ~ domain(q/l) } ~< n. 2X[ql(X)] 
denotes q/ (Rogers, 1967). io denotes a fixed program for 2x[0] in tp. ;tx[T] 
denotes the everywhere undefined function. We define ~0~ = {(y, ~0i(y)) I y.< s 
and cbi(y ) <~ s}. M (with or without subscripts or 's) ranges over inductive 
inference machines, r ranges over finite functions; whereas, ~r ranges over 
finite functions with domain an initial segment ofN. M(a) denotes M's last 
output (if any) just after it has been fed all of o. For Sections 3 through 5 we 
adopt (without loss of generality) the convention that any given I I M M  
outputs io before being fed any input so that for all a, M(a) is defined. M(r) 
denotes M(a), where a ___ r and domain of cr is the largest initial segment of 
the domain of r. M(f )  denotes M's last output, on input f ,  if M has a last 
output; else, M(f )  is undefined. 2i, j[(i, j ) ]  denotes the pairing function such 
that (i,j) = [(i + j +  1)(i + j) /2]  + i (Rogers, 1969). ~, is limiting partial 
recursive iff there exists a partial recursive function q/  such that, for all x, 
limity q/' (x, y) = ~(x) (Schubert, 1974). f is limiting recursive i f f f  is limiting 
partial recursive and total. Any unexplained notation or terminology is from 
Rogers (1967). 

3. INFERRING NEARLY MINIMAL SIZE PROGRAMS 

Freivald (1975) considered the problem of EX°-identification of minimal 
size programs but was able to show that this notion of inference is accep- 
table numbering dependent, i.e., what can be done depends on the particular 
acceptable numbering employed. Freivald also considered EX°-identification 
of programs which are of minimal size module a recursive (fudge) factor. 
This notion, precisely defined below, turns out to be acceptable numbering 
independent. We generalize it below to the anomaly hierarchy of Case and 
Smith (1978, 1979). 

DEFINITION 3.1. (a) An IIM M MEXa-identifies Y (written: 
Y ~_ MEXa(M)) iff there is recursive function h such that for all f ~  Y ,  
M EXa-identifies f and M(f)  ~ h(min(f)).  (b)MEX ~ = { Y l  (~M)[Y % 
MEXa(M)]}. 

To facilitate showing that MEX~-identification is acceptable numbering 
independent, we say that for an acceptable numbering ~' and recursive 
function h, an I I M M  MEX~(h,~p')-identifies Y (written: Y 
MEXa(M, h, ~0')) iff h witnesses that M MEX~-identifies Y in the numbering 
~o'. MEX~(h,~o ') is defined to be {Y[(3M)[Y~_MEXa(M,h,~p')]}. It 
suffices to show that for every ~p', Uh~,MEXa(h, ~p) = Uh~MEX~(h,  ~o'). 

Without loss of generality, we assume from now on that h is monotone 
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nondecreasing: Suppose 5 ~ ~ MEX~(M, g, q)) and h(x) = max{ g(y) ] y <~ xl; 
clearly 5 p _c MEX~(M, h, ~o) and h is monotone nondecreasing. 

THEOREM 3.1. 

(Vh ~ c~)(V~o', O~")(3h' ~ ~ ) [MEXa(h ,  09') ~ MEX~(h ', ~P")]. 

Proof Since both (p' and ¢p" are acceptable numberings, there exist 
recursive functions w I and w2 such that for every i E N, ~[ = 9",1~i) and ~o[' = 
~0"2(i). Suppose Y ~ M E X a ( M , h , o ) ' ) ,  where h is recursive and monotone 
nondecreasing. We define an IIM M '  thus. On input f ,  M '  simulates M, and, 
whenever M outputs a program i, M '  outputs wl(i). Let h'(x) = max{wl(y)  l 
y<~h(wz(X))}. Clearly, h '  is recursive. We claim that Y _  
MEX~(M',h' ,qr") .  To see this, suppose f ~ Y .  Since h is monotone 
nondecreasing, M ( f )  < h(mino,( / ) )  ~< h(wz(mino.(f))  ). M ' ( f )  = wl (M( f ) )  
<~ max{wl(y)  l y <~ M(f)}  ~< max{wl(Y) ] y <~ h(min~,(f))} <~ max{wl(y)  ] y 
<~ h(w2(mino,,(f))) } = h,(mino.(f))" II 

COROLLARY 3.2. 

(V~', q~")[U {MEX"(h, e ' ) l h  ~ 3} = U {MEXa(h, ~o")lh ~ ~ } ] .  

We write MEX~(M, h) for MEX"(M,  h, q~). 
We next extend Freivald's characterization of (what we call) M E X  ° to an 

interesting and technically useful characterization of M E X  a. 

DEFINITION 3.2. Y is a-limiting standardizabIe with a reeursive 
estimate (abbr: Y C L S R  a) iff there exist recursive functions G and v, such 
that for all f C Y and i ~ N, if ¢Pi = f ,  then (i) limit s G(i, s) exists and 
computes f with at most a anomalous inputs, (ii)for all j, if q)j = f ,  then 
limit~ G(i, s) = limit s G(j, s), and (iii) Card{G(i, s) I s E N} <~ v(i). 

We write Y ~ LSRa(G, v) iff the recursive functions G and v witness that 
Y C L S R  ~. 

Clearly L S R  ~ is numbering independent. Intuitively Y E L S R  ~ means 
that from any program i for an f E Y ,  we can find in the limit an approx- 
imate (up to a anomalies) canonical program for f and there is a recursive 
bound v(i) to limit the number of possibilities for the approximate canonical 
program. Being able to fix an approximate canonical program in the limit is 
equivalent to being able to solve in the limit the program equivalence 
problem approximately, at least for programs that compute functions in 5 p. 

THEOREM 3.3. The following three statements are equivalent. 

(1) ~ ~ M E X  °. 
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(2) There exist recursive functions G and v such that Y ~ LSRa(G, v) 
and there exists an I IM M such that M EX~-identOqes every function in .~  
and (Vit ~ C Y )  [M(o;) = limit s G(i, s)]. 

(3) There exist reeursive funetions G and v and an I IM M such that 
M EX~-identifies 5 p and for every f C Y ,  limit s G(min ( f ) ,  s) = M(f )  and 
Card{G(min(f), s) [ s C N} <. v(min( f ) ) .  

Proof (1)=> (2). Suppose Y GMEX~(M, h). Let v(i) = h(i) + 2 and 
define G as follows: 

G(i, s) = M(~0~), if M(~0~) ~< h(i); 

= io, otherwise. 

It is clear that thanks to the conventions of Section 2, both G and v are 
recursive. If  ¢i C J ,  then (i) limit s G(i, s) =M(~oi) =a (Oi, (ii) for every j ,  if 
~oj = ~0i, then limit s G(j, s) = limit S G(i, s) = M(~oi), and (iii) {G(i, s) is C N} ~ 
{k tk  <~ h(i)} U {io}. Hence, Card{G(i,s) ls EN}  < v(i) = h(i) + 2. There- 
fore, Y ~ LSR a and (Vi ] ¢p~ ~ Y )  [M(~of) = limit s G(i, s)]. 

(2)=> (3). Immediate,  since r a in ( f )  is one of the programs which 
compute f .  

( 3 ) = > ( 1 ) .  Suppose that for every f E Y ,  (i) f C EXa(M), 
(ii) limit s G ( m i n ( f ) , s )  = M(f) ,  and (iii) Card{G(min(f) ,s)ls EN}  <~ 
v(min( f ) ) .  Without loss of  generality, we assume that  for every i, 
Card{G(i, s) l s E N} <<, v(i). Intuitively we need to construct a machine M '  
which simulates M on input f to get M(f )  in the limit and simutaneously 
dovetails to search the least program i such that limit s G(i, s) = M(f) .  Then 
from i, it is possible to construct a program which computes ~0M~y ) and is h- 
minimal. By the s - m - n  theorm (Rogers, f967), there is a recursive 
function z such that for all i, j ,  x, 

: 

= undefined, 

if there exist a least m such that 
Card{G(i, k) I k <~ m} = j and p = G(i, m); 

otherwise. 

We define an I IM M '  thus. On input f r x, M '  computes M ( f  [ x) and M '  
searches for the least i ~ x for which there exists y ~ x such that G(i, y) = 
M ( f I x  ). If  such an i exists, M '  picks the least y such that G(i, y )= 
M( f [x ) .  Let j=Card{G(i ,k)  l k< .y  }. If  z(i,j) is not the last program 
output by M '  so far, M '  then outputs z(i,j). 

Let h(i)=max{z(k, 1 ) l k ~ < i  and 1 ~<v(k)}. For a n y f ~ Y ,  let x0 be a 
sufficiently large number such that (i) (¥x >1 Xo) [M(f  [ Xo) = M ( f  [ x)], and 
(ii) Xo ~ max(io, Yo), where i 0 is the least p rogram for which there exists y 
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such that G(i 0 , y ) = M ( f )  and Y0 is the least such y. Since 
limit S G(min(f),  s ) =  M ( f ) ,  we observe that i 0 ~< rain(f).  Therefore, by the 
definition of M',  for all x > / x  o, M ' ( f [ x ) = z ( i o , J o ) ,  where j0 = 
Card{G(io, Y)[ Y ~< Yo}- Furthermore, for every x, %~io,;o)(X) = ~oG~io,yo)(x ) = 
¢M~y)(x). Hence, ¢z(i0Jo) =~ f" Since i 0 ~< rain(f)  and Jo <~ V(io), Z(io,Jo) 
h(min(f)).  I 

Remark.  If in the definition of M E X  ~, we had allowed the functions h to 
be limiting recurs|re, then Theorem 3.3 would go through if we require the 
function v (but not G) to be limiting recurs|re. 

COROLLARY 3.4. Let  y a  = { f l  ¢i~o) =~ f } .  Then Y ~  E M E X  a. 

Proof. It suffices to show (i), there exists recursive G, v such that Y a  ~ 
LSRO(G, v) and (ii) there exists M such that Y ~  ~_EX~(M) and for all i 
such that ¢i C Y a ,  M(¢i) = limits G(i; s). Let v = 2x[2]. 

G(i, s) = q~/(0), if q~i(0) ~< s; 

= 0, otherwise. 

We define an IIM M thus. M on input f ,  outputs f (0 )  only. Clearly Y o  ~_ 
LSR~(G,  v), Y ~  c_EX~(M),  and for all i such that ~0i@Y ~, M(fpi)= 
limit s G(i, s). | 

Case and Smith (1978, 1979) have shown that y n + l  C ( E X  ~+~ - E X " ) .  
Hence we have 

COROLLARY 3.5. ( V n ) [ M E X  "+1 qL EX"].  

COROLLARY 3.6. M E X  ° c M E X  I ~ ... ~ M E X * .  

4. COMPARISON OF INFERENCE WITH AND WITHOUT SIZE RESTRICTIONS 

In this section we examine the cost in anomalies and inferring power of 
inferring nearly minimal size programs. Theorem 4.1 below shows that with 
the cost of finitely many anomalies, nearly minimal Size programs can be 
inferred without reducing the inferring power of IIMs. On the other hand, 
Theorem 4.3 implies that there is a severe reduction of inferring power in 
inferring nearly minimal size programs if the maximum number of anomalies 
allowed is any uniform constant. 

THEOREM 4.1. M E X *  = EX* .  

Proof  It suffices to show that E X *  ~ M E X * .  
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By Corollary 3.2 it then suffices, for each I IM M, to define an acceptable 
numbering ~0', a recursive function h and an I IM M '  such that EX*(M)~_ 
MEX*(M', h, ~o'). 

We define tpJ , (x)=~0M(~(x ) and ¢ J , + l = 0 ) n .  It is clear that q~' is an 
acceptable numbering since ~0 can be reduced (Rogers, 1958) to (0' by the 
recursive function )~n[2n + 1]. Also, let w be a recursive function such that 
~0' is reduced to ~0 by w. 

We define an I I M M '  thus. On input f i x ,  M' computes  M ( f r x )  and 
then searches for the least n ~< x such that M(~0~) -- M ( f  [ x) and ~0~ _~ f [ x. 
If  such n exists and the last program output by M ' ,  so far, is not 2n, then M '  
outputs 2n. 

We claim that M '  on i n p u t f  E Y will output a last p rogram 2n such that 
n ~ < m i n ( f )  and ~ 0 j ~ = * f .  I f  our claim is true, we will have that 2n~< 
h(min~,( f ) ) ,  where h(i) -- 2 • w(i), which implies the theorem. It remains to 
prove our claim. Suppose f E Y .  Consider the set of  ~0 programs A = 
{m [ (3x)(Vy>/x) [M(~OYm)=M(f) and (PYre -~ f [ Y] }" It is clear that for every i 
such that ~0 i = f ,  i E A .  Let n be the least 0 program in A. Hence, n 
mino( f ) .  We want to show that for all sufficiently large x, M ' ( f  [ x) = 2n. 
Let x 0 be so large that ( i ) ( V y ) x 0 )  [ M ( 9 ~ ) = M ( f )  and (pY c f Vy] and 
(ii) for every m < n, if (Pro 4: f ,  then (pXm° 4: f [ x 0. We then proceed to show 
that for every y >/x o, M ' ( f  [ y)  = 2n. By (i) and the fact that n is the least 
program in A, we have M ' ( f [ y ) ~  2n for all y > / x  0. By (ii) and the 
convention of Section 2, for all m, if q~m ~; f ,  then M ' ( f  [ y) 4= 2m for all 
y ~> x o. We then consider any program m < n such that ~o m ~__ f .  Since m < 
n ~ m i n o ( f )  and (p,, _ f ,  ~0 m is not total. Let x '  be the least number  which is 
not in the domain of  (Pro" Then M((Pm [ y) = M((Pm [ X') for all y ~> x ' .  By the 
conventions of  section 2, m < n, the least p rogram in A, s o  M((o m I Y) 4= M( f )  
for all y >~ x ' ,  a contradiction. 

Therefore, M ' ( f ) =  2n. We next show that q)J, = * f .  Since (3x) (Vy >/x)  
[M((0Y,) = M ( f  [ y)] and ~OJn(X ) = ~OM(~,~)(X ), we have (Vy >/x)  [0)~,(Y) = 
~OM(~,)(Y) = (PMt:Iy)(Y)]" Hence ~oj. = *  q)M(:) = *  f" II 

COROLLARY 4.2. (Vn)[EX n cMEX*].  

Let ZERO*={fl f=*J~x[O]}.  Clearly (for example,  by Blum and 
Blum's (1975) enumerat ion technique) ZERO* E EX °. Kinber (Freivald, 
1975; Kinber,  1977) has claimed without proof  that  ZERO* q) MEX °. Our 
next theorem extends this result. 

THEOREM 4.3. (Vn)[ZERO* ~ MEXn ]. 

Proof. Suppose by way of contradiction, there exists a recursive, 
monotone nondecreasing h and an I IM M such that ZERO* ~_ MEX"(M, h). 
By implicit use of the recursion theorem (Rogers, 1967), we define a self- 
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referential p rogram i as follows. Let (q~y denote the finite part  of  ~0~ 
constructed by the beginning of stage s of program i. x ] ,  x~, x~ .... denote the 
least, second least, third least .... elements ~ domain((~oi)~). Let (q~i)° = O. 

Begin Program i. On input x, successively execute the stages s ~> 0 below 
until (if ever) ~oi(x ) is defined. 

Before stage 0 no program is cancelled. 
Begin stage s. Let j = M((~oi)s). 
Condition 1. Either j <~ h(i) and j is already cancelled or j > h(i). 
Then let (~0i) s+I  = (@i)S~J {(X], 0)}. 

Condition 2. j <~ h(i) and j is not yet cancelled. 
Dovetail  execution of the following two steps until either terminates. 

Step 1. Search for ~r~ ( O y ,  where r a n g e ( e - ( ~ o y ) =  {0} such 
that  M(o)  ¢ M((~0y).  Terminate step 1 when (if ever) cr is found. 
Step 2. Dovetail  computing Oj(x]), Oj(x~) .... until n + 1 of them 
converge, then terminate step 2. 

If  step 1 terminates before step 2, set (q~y+l = a .  If  step 2 terminates 
s ~ ~ be n + 1 points at which q~g converges. before step 1, let y~, Y2,..., Y,+~ 

Set (~oi)s+l=((oi)su {(y~, l "-~Og(ySl)),... , (ySn+l, l "--~oj(ysn+l))} and 
cancel j .  
End stage s. 

End program i. 

If  ~0 i is a finite function, then there must be a stage s such that condition 2 
is true and both steps 1 and 2 do not halt. Let f =  (~0i)st..){(x, 0 ) [ x ~  
domain((~oy)}. It is clear that f @  ZERO*.  Since step 1 does not halt, there 
is a j such that M ( f )  = j. Since step 2 does not halt, %. is a finite function; 
hence ~0j 4=" f .  

Suppose now that ~0 i is not a finite function. Then every time condition 2 
is true at a stage s, stage s must terminate. Since there are but finitely many  
j<, h(i) and for every stage at which step 2 terminates before step 1, a 
different j <~ h(i) is cancelled, for all sufficiently large stages s, if condition 2 
holds at stage s, step 1 terminates before step 2. Therefore, ~0i is total. Hence, 
in this case, l e t f  = ~o i. ~o i @ Z E R O *  and ~0M(~i ) 4= n f .  II 

Remarks. (i) The proof  of  Theorem 4.3 actually shows that { f l  f is a 
characteristic function of a finite set} ~ MEX".  Also (ii) the proof  can be 
easily modified to show that Z E R O *  c~MEX"(M,  h), where h is limiting 
recursive: Suppose h = limit h ' ,  then in p rogram i change all occurrences of 
h(i) in stage s to h'(i, s); lastly observe that for all sufficiently large stages s, 
h'(i, s) = h(i). 

Our next corollary is a slightly strengthened version of a result of Meyer 
(1972). Meyer 's  result is the n = 0 case. 
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COROLLARY 4.4. Suppose h is recursive in the halting problem and n is 
any given natural number. Then there is a program e which computes the 
characteristic function of a finite set such that for any loop program p 
(Meyer and Ritchie, 1967)for which ~Op =n 9e, P > h(e). 

Proof Let P0, Pl,  P2 .... be a recursive enumeration of all loop programs. 
Let 9 = { f l f i s  a characteristic function of a finite set}. It is clear that for 
every f E 9 ,  there is a loop program which computes f .  Let M be an IIM 
which given any input f i x ,  searches for the smallest program p in 
{Po, Pl ..... Px} such that q)p [ X cn f [ X. If such program p exists and differs 
from the last program output by M so far, M then outputs p. Clearly, for 
everyf  C 9 ,  M ( f )  is the smallest loop program such that ~OM(I) =n f .  By the 
remarks, after the proof of Theorem 4.3, 9 ~; MEXn(M, h). Hence, there is a 
f E 9 such that h(min(f)) < M(f ) ,  i.e., for any loop program p such that 
~0p =n f ,  p > h(min(f)). II 

COROLLARY 4.5. (Vn)[EX ° q~MEYn]. 

COROLLARY 4.6. (Vn)[MEX n c E X  n c M E X * ] .  

Schubert (1974) conjectured that 2x[/~y [~0y ___ 0x] ] is not limiting recursive. 
Our next corollary is a strengthening of Schubert's conjecture. Royer 
(private communication) independently proved Schubert's conjecture itself 
by using the techniques in Section 5 of Meyer (1972). 

COROLLARY 4.7. Suppose n E N and h is limiting reeursive. Then there 
is no limiting partial reeursive function q/ such that (Vx)[~0 x E ZERO*=> 
[qJ(x) converges and ¢%(x) =n ~0 x and gt(x) ~ h(min~(~0x))] ]. 

Proof Suppose by way of contradiction otherwise. As noted in Case (in 
press), there is a recursive function g such that gt _~ limit g. Let M be an IIM 
such that ZERO* ~EX°(M) .  We define I I M M '  thus. M',  on input f ,  
simulates M. If M on input f just output a new program p, M'  outputs, 
surpressing co-final repetitions, g(p, 0), g(p, 1), g(p, 2) .... until (if ever) M 
changes its output. Clearly ZERO* ~ M E X n ( M  ', h), contradicting Remark 
(ii) following the proof of Theorem 4.3. II 

COROLLARY 4.8 (Schubert's conjecture). 2x[zty[(0y_~ q)x]] is not limiting 
recursive. 

5. POPPERIAN MACHINES 

We next extend our results to Popperian machines (Case and Ngo 
Manguelle, in press), where a Popperian IIM, by definition, outputs only 
programs for total functions. 
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DEFINITION 5.1 (Case and Ngo Manguelle, in press; Case and Smith, 
1979). Suppose I is any previously defined criterion such as E X  ~, M E X  a, 
MEXa(h, (p). (a) An IIM M PI-identifies Y (written: Y _ PI(M))  iff M is 
Popperian and M/-identifies Y .  (b )P I  = {Y]  (3M)[Y _ PI(M)] }. 

P E X  ° is a mathematically natural class with many characterizations and 
closure properties (Case and Ngo Manguelle, in press). For example: 
(1) P E X  ° = P E X  1 . . . . .  PEX*  (Case and Ngo Manguelle, in press); hence, 
we write P E X  for P E X  °. (2) P E X  = {Y ] ~ is contained in some recursively 
enumerable class of recursive functions} (Barzdin and Freivald, 1972; Case 
and Ngo Manguelle, in press; Case and Smith, 1979). ( 3 ) P E X = { Y ]  
(3 recursive t ) (¥ f  E Y)(~i)[tpi = f and (3y)(¥x >/y)[@;(x) ~< t(x)]]} 
(Barzdin and Freivald, 1972; Blum and Blum, 1975; Case and Ngo 
Manguelle, in press). ( 4 )PEX is closed under finite union, i.e., if 5~1, 

E P E X  then Yl U Y2 C PEX. In contrast, E X  ~ is not closed under union 
(Blum and Blum, 1975; Case and Ngo Manguelle, in press). 

We define P L S R  a, an analogue of L S R  ~, as follows. 

DEFINITION 5.2. Y ~ P L S R  ~ iff there exist recursive functions G and v 
such that Y _c LSR~(G,  v) and the range of G contains only programs for 
total functions. 

THEOREM 5.1. ( ¥ a ) [ P M E X a = P L S R a ] .  

Proof Consider the proof of Theorem 3.3. In that proof, if we restrict M 
to be a Popperian machine and the range of G contains programs for total 
functions only, then we have the following result: Y C P M E X  ~ iff there exist 
recursive functions G and v witnessing that Y E P L S R  ~ and there exists a 
Popperian IIM M such that M PEXa-identifies every function in Y and 
(Vii % E Y )  [M((0i) = limit, G(i, s)]. Hence, it remains to show that if 
Y C P L S R  ~, then there exists an IIM M such that M PEX~-identifies every 
function in Y and (¥i] ¢Pi C Y )  [M(%) = limit s G(i, s)]. Let F 0, F1, F 2 .... be 
a canonical indexing (Machtey and Young, 1978) of all finite functions: 
N ~ N .  By the s - - m - - n  theorem (Rogers, 1967) there is a recursive 
function z such that, for all i , j ,  k and x, if x C domain(Fk), then ~Oz~i.j,k)(X ) = 
Fk(X); else, ~Ozti,;,k)(X ) = ~0~i,j)(X ). Clearly 5 L'' = {~Oz~i.j,k) [ i,j,  k C N} is an 
r.e. class of recursive functions and Y '  contains Y .  By property (2) of P E X  
mentioned immediately after the Definition 5.1, there is a single Popperian 
IIM M' with PEX-identifies every function in Y ' .  Hence, for every f E  Y ,  
~%t'~s) = f  We then define a Popperian IIM M thus. On input f,  M simulates 
M' on f If p is the current last program output by M',  M then outputs, 
surpressing co-final repetitions, G(p, 0), G(p, 1) .... until M'  outputs a new 
program. 

It is clear that the range of M is a subset of the range of G. Hence, M is a 

643/52/1 6 
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Popperian IIM, For e v e r y f ~  Y ,  since ~oM,ts ) = f ,  M ( f )  = limit s G ( M ' ( f ) ,  s) 
a n d  ~OM(f)zct fl I 

THEOREM 5.2. (Vn)[PLSR ° = P L S R n  ]. 

Proof  It suffices to show that P L S R  n ~_ P L S R  °. Suppose that there exist 
recursive functions G and v such that ~ E P L S R " ( G , v ) .  Let v ' ( i ) =  
(n + 1). v(i). Let G'(i, s ) = p ,  where p is the patched version of program 
G(i, s) defined below. Suppose x 1, x 2 ..... x k are the distinct points ~<s such 
that ~0~(xj) is convergent 4=~o~i,s)(Xj) for each j such that 1 ~<j ~< k. If k ~< n, 
then let ~0,(x)= ~9G(i,s)(X ) for x q~ { x l , x  2 ..... xk} and ~0,(x)=qg~(x) for x E 
{x l, x 2 ..... Xk}; else, let p = G(i, s). The number of different elements in the 
range of (2s)[G(i, s)] is <~v(i). Each different G(i, s) can contribute at most 
n + 1 different programs in the range of (2s)[G'(i, s)]. Therefore, the number 
of elements in the range of (,~s)[G'(i, s)] is bounded by (n + 1) • v(i) = v'(i). 
For every ~0 i C Y ,  if q~y = ~Pi, then limit s G(i, s) = limit s G(j, s). Hence, 
limit s G'(i, s) = l imi t  s G'( j ,  s). Let {xl,x2,...,xk} be the anomalies of 
limit s G(i, s) in computing ~0 i. Since 9i 6 5 p, k ~< n. For every sufficiently 
large' s such that ~p~(xj) converges for all x j C  { X 1 , X  2 ..... Xk}' ~gG'(i,s)=(Pi" 
Therefore, G'  and v '  witness that J,~ ~ P L S R  °. I 

Corollary 5.3 below shows that allowing a finite uniformly bounded 
number of anomalies in explanatory programs does not increase the inferring 
power of Popperian machines in inferring nearly minimal size programs. In 
contrast, M E X  n c M E X "  + 1. 

COROLLARY 5.3. (Vn) [PMEX ° : P M E X "  ]. 

Let P M E X  denote P M E X  °. By Theorem 4.3 and PMEXn~_ M E X  ~, we 
have the following. 

COROLLARY 5.4. Z E R O *  ~ PMEX.  

Corollary 5.4 and Theorem 5.5 below show that with the cost of a finite 
but not uniformly bounded number of anomalies, nearly minimal size 
programs can be inferred without reducing the inferring power of Popperian 
machines. 

THEOREM 5.5. P M E X *  = PEX.  

Proof  Consider the proof of Theorem 4.1. It is straightforward to verify 
that M '  is a Popperian machine if M is Popperian. Hence, the proof shows 
that P M E X *  = P E X *  = PEX. l 

Since Z E R O *  C PEX,  by Corollary 5.4 and Theorem 5.5, we have 
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COROLLARY 5.6. P M E X  c PMEX*.  

Also by Theorem 4.3, we have. 

COROLLARY 5.7. (Vn)[PMEX* ~ MEXn]. 

By Corollary 3.4 and the fact that 5 ~ ~ PEX (Case and Ngo Manguelle, 
in press; Case and Smith, 1979), we have 

i 

COROLLARY 5.8. P M E X  c M E X  °. 

The proof of next theorem is constructive. 

THEOREM 5.9. I f  . ~ ,  .5/2 C P M E X  a, then J,P~ U Y2 C PMEX% 

Proof Suppose that there exist Popperian machines M 1 and M 2 such 
that . ~  _~ PMEXa(M1) and Y2-~ PMEXa(M2) • We define M thus. M on 
input f [  x, computes M l ( f l  x) and M2( f [  x). M then compares the number 
of anomalies n I in (~MI(f[x) [ X and the number of anomalies n 2 in ~PM,~Irx~ [ x. 

Case 1. If a = . ;  M then outputs, suppressing co-final repetitions, the 
least program in {Ml( f [  x), M2( f [  x)} with fewer anomalies. 

Case 2. a 4= *. If both n I and n 2 ~< a, then M outputs, surpressing co- 
final repetitions, the smaller of M~(f [  x) and M2( f [  x). If  only one of n~ and 
n2Ka,  say n~ K a and n 2 > a, then M outputs, surpressing co-final 
repetitions, M l ( f  [ x). 

It can easily be verified that M PMEX<identifies 5~ U Y2. | 

COROLLARY 5.10. Given M 1 and M 2 witnessing that 5 ~ C P M E X ,  
C PEX, respectively, we effectively f ind a Popperian maehine M such that 

M PEX-identifies 5~ U ,Y2 and PMEX-identi)qes Y l ; fur thermore ,  if h is 
such that ,~1 ~- PMEX(MI ,  h), 5~ ~_ PMEX(M,  h). 

Proof The corollary follows from the a4=* case of the proof of 
Theorem 5.9. II 

In (Chen, 1981), we show that there exist ~,~,,c 2 C M E X  ° such that 

6. BOUNDED MIND CHANGES 

We say that an IIM changes its mind when it outputs a new program. The 
bound on the number of changes of output is a f r s t  approximation to a 
bound on the complexity of IIMs. For example, y 0  = {fl 9i(0) = f }  can be 
EX-identified with no mind Changes (Case and Smith, 1978, 1979). On the 
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other hand, it can be easily shown that there is no uniform upper bound in 
mind changes for any IIM to EX-identify ZERO*. 

DEFINITION 6.1. Suppose Q E {P, PM, M, A }, where A denotes the 
empty string. 

(a) An IIM M QEY~-identifies Y (written: Y c_ QEX~(M)) iff for all 
f E  Y ,  M QEXa-identifies f and M fed f makes no more than b (if b = *, 
finitely many) mind changes. 

(b) QEX~ = {Y I (3M)[Y ___ QEX~(M)] }. 

Obviously, QEX~. is QEX ~. Since the construction in the proof of 
Theorem 3.1 does not affect the number of mind changes, we have that for 
each Q ~ {P, PM, M, A }, QEX~ is acceptable numbering independent. 

In (Case and Smith, 1979), it is shown that [EX~c_EX~d]¢> [a<.e and 
b ~< d]. Hence, all of the tradeoffs between bounds on number of anomalies 
and bounds on number of mind changes are partial. On the other hand, it is 
shown in Case and Ngo Manguelle (in press) that PEXg c_ PEX~d¢> [[a ~< c 
and b<,d] or d - - *  or [a,b,e, d C N  and G(a,b,e)<~ (l +d)]], where 
G(a, b, c ) =  [1 + floor(a/(c + 1))].  (1 + b). Hence, for Popperian machines, 
it is possible to completely tradeoff anomaly for mind change bounds. In this 
section we determine, for each Q c {PM, M}, the exact containment relations 
between the classes QEX~,. We shall see that, as in the case of EX~, the 
tradeoffs between anomaly and mind change bounds are partial for both 
PMEX~ and MEX~. 

We suppose without loss of generality that if an IIM M QEX"m-identifies a 
class of recursive functions, then for any i npu t f  M changes its mind at most 
m times. 

THEOREM 6.1. Suppose Q ~ {P, A }. Then for all m, QEX~ c QMgX ~. 

Proof. Suppose that Y E QEX~m, then there exists IIM M which QEX~m - 
identifies 5 '~. Let v(i) = m + 2. Let 

G(i, s) = M(~0~), if M(~0~) is defined; 

= io, otherwise. 

Clearly G and v witness that Y E LSR a and for every q~i E Y ,  M(rPi)= 
limit s G(i, s). By Theorem 3.3, we have that Y E MEX a. If Y C PEXam, 
then M is Popperian. Hence, the range of G contains only programs for total 
functions; therefore, Y c p L S R  ~. II 

COROLLARY 6.2. Suppose Q C {P, A }. Then for all m, QEX~m c QMEX a. 
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Proof By the previous theorem we have QEX a ~_ Q M E X  ~. In Case and 
Smith (1979) it is shown that EX~mCEX~m+~, and in Case and Ngo 
Manguelle (in press), it is shown that PEX~m c PEX~m+1; hence, we have 
QEX~m ~ Q M E X  ~. II 

We next proceed to obtain a useful property of MEX~.  

DEFINITION 6.2. Suppose d and ~ are classes of recursive functions. 
,Y¢ is an a-cover of d iff for e a c h f E  J ' ,  there exists g E ,~  such that g = a f  

DEFINITION 6.3. Y is a-immune iff (i) Y is infinite and (ii) every recur- 
sively enumerable subclass (Rogers, 1967) of Y has a finite a-cover. 

DEFINITION 6.4. Y is a-isolated iff Y is finite or Y is a-immune. 

LEMMA 6.3. Suppose that 5¢" is a recursively enumerable class and that 
M is an I I M  which MEX~-identifies J .  Then the set A = {M(f)  I f E  J and 
M on input f changes its mind exactly m times} is finite. 

Proof Suppose by way of contradiction otherwise. Then A is an infnite 
set. Let P0, Pl,P2,-.. be a recursive enumeration of programs for the functions 
in ~¢'. Suppose that h is a recursive, monotone nondecreasing function such 
that MMEX~m(h)-identifies 3~¢'. By implicit use of the recursion theorem, we 
describe a program e thus. 

Begin program e. 

On input x, e enumerates Po,Pl ,Pz ..... and searchs for a program Pi 
such that M on input 9p~ changes its mind exactly m times and M((op) > 
h(e). (Such a p / m u s t  exist since A is infinite.) When the first such Pi is 
found, e just emulates p; on x. 

End program e. 

Since M((0e)= M(q~pi ) > h(e), M does not MEX°m(h)-identify (o e ~ c¢ ~, a 
contradiction. II 

THEOREM 6.4. Suppose Y C MEX~m • Then f /  is an n-isolated class. 

Proof The proof is by induction on m. If m = 0, the theorem follows 
immediately from Lemma 6.3. Suppose that the theorem is true for m = k. 
Suppose that MMEX~+l-identifies Y .  If Y contains a recursively 
enumerable subclass d which is infinite. It suffices to show the . ~  is n- 
immune. Since s¢ ~ is a recursively enumerable class in MEX~+I, by 
Lemma 6.3 the set A = { M ( f ) [ f C  d and M on input f changes its mind 
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exactly k +  1 times} is, f in i te .  ,Let ~ =  {fl (3iCA)[f(x)=~oi(x) if 
x C domain(~0i); else f ( x ) =  0]}. ~ is finite since A is. Clearly ~ is an n- 
cover of the class ~ g " = { f ~ J l ( ~ g C ~ ) [ f = ~ g ] /  and { f C ~ I M  on 
input f changes its mind exactly k +  1 times} ___~' .  Let ~ "  ----~¢~ - -~¢" .  
Hence, MMEX~-identifies d " .  J "  is n-isolated. Since ~ is finite, J ' "  is 
also an r.e. subclass of the r.e. class ~¢'. Therefore d "  is finite or nqmmune.  
Hence, d = ~ ¢ " U  ~¢'" is n-immune. II 

The proof  of  above theorem does not work for MEX*, but we conjecture 
that the theorem is true for this case. 

THEOREM 6.5. (Va)(Vm)[PEX~o 72 MEX~m]. 

Proof Let CONST= {fl (~i)[f =)~x[il]}. 
It is clear that CONSTEPEX°o and CONST is a recursively enumerable 

class without any finite a-cover. By Theorem 6.4, CONST¢-MEX~m for all 
a ~ N .  The proof  of Theorem 6.4 is easily modified to show that for 
d = CONST, d ~: MEX*. I 

COROLLARY 6.6. (Vm)(Vn)[PMEX~ +1 f2MEX~m]. 

Proof Consider the class of recursive functions ZERO "+l = I f [ f =  n+1 
2x[0]}. It is clear that ZERO "+1 E PMEX~ +~ and ZERO ~+~ is a recursively 
enumerable class without any finite n-cover. By Theorem 6.4, ZERO "+~ 
MEX~m . | 

COROLLARY 6.7. Suppose Q C {P, A }. (Vm)[QMEX~m c_ QMEX b ¢~> 
a<<. b]. 

The question of whether or not MEX~ +~ 72EX" remains open; however, 
we have 

THEOREM 6.8. (Vm)(Vn)[MEX~ +l 72EXam]. 

Proof Let y , + l  = {fj ~0i(0) = , + i f  and f ( 0 )  < min( f )} .  Clearly, the 
I I M M  0 which on input f ,  outputs f ( 0 )  only, MEX~+1-identifies Y"+I.  We 
then show that for all I IMs M, ~ , + l  72 EX"m(M). We present the n = 0 case 
only; the other cases are similar. Suppose M is any IIM. We implicitly define 
below a program e which computes a partial function which diverges on 
exactly one input such that some total extension of ¢e is in 5 pl  and cannot 
be EAmm-identified by M. 

~0 e is defined by stages. Let (~0e) s denote the finite part  of  q)e defined before 
stage s. Let a~, aS denote respectively the least and second least numbers 
which are not in the domain of (q~e) s. By the recursion theorem (Rogers, 
1967), we may  set (~0e) ° = {(0, e)}. 
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Begin stage s. Write s = (i,j). Let cr = (~0~) s U {(a], i)}. If M ( a ) ~ M ( ( ¢ J ) ,  
then set ((p j + l  = a; otherwise, set (q ) j+ l  = (~oJ U {(a~, 0)}. 
End stage s. 

Since by convention M makes no more than m mind changes, for some a, 
limit, a ] = a < o o .  Then domain(~0e)=(N-{a})  and for any (total) 
recursive functions f and g such that q)e c f  and q)e c g, M ( f )  = M(g). Since 
there are infinitely many f such that ~0~ o f ,  there must exist f and g such that 
q)~ c f  ~o e c g ,  f4= g, rain(f)  > e and rain(g) > e. Pick such a pair f ,  g. Then 
f, g E 5 pl and M ( f )  = M(g)  but f 4 :  g. Hence, at least one of them cannot be 
EX°m-identified by M. II 

It is shown in Case and Ngo Manguelle (in press) that PEXm+ 1 ~ E X *  m . 
Our next theorem strengthens this result. 

LEMMA 6.9. Suppose Q 6 {P, A }. 

~) QMEX~O~x[x], 09') c Q) QMEX~(h, ~o). 

Proof Suppose Y C Us,  QMEX~(2x[x], (o'). Then there exist M and 9'  
such that Y c QMEX~(M,)~x[x],o)'). Since both 9 and ~o' are acceptable 
numberings, there exist recursive functions w I and w 2 such that q)' is reduced 
to ~0 by w 1 and q) is reduced to 9'  by w 2. Let h(x) =max{wl (y  ) l Y ~  w2(x)}. 
We define an IIM M' thus. On input f [ x, M'  simulates M on input f r x. if 
M outputs a program p, M'  then outputs wl(p). Hence, if MEX~-identi f iesf  
in 9, then M' EXg-identifiesfin ~o'. I f M  is a Popperian IIM, then M'  is also 
a Popperian IIM. Suppose f C  Y ,  it remains to show that M'(f)<~ 
h(mino(f)  ). Since f C Y ,  M ( f )  = mino,(f).  M ' ( f )  = Wl(M(f))  = 
wl(min~,(f)), h(mino(f))  = max{wl(y) ly <<. Wz(min~(f))} > /max{wl(y) ly  <~ 
m i n ~ , ( f ) } )  wl(mino,(f))  = M ' ( f ) .  II 

LEMMA 6.10. Suppose q)' and g are such that (i) for all n, ~o~n is total, 
(ii) for all m, n, if  m 4: n, then ~O~m 4: ~o~n, (iii) g is a strictly monotone 
increasing function for which the range of g contains only even numbers, and 
(iv) there exists a k such that for all n, there are at most n + k different 
/'unctions in {9'1,~0~,~0~ ..... ~0g~n)+l}. Then there are infinitely many ~o' 
minimal indices in the range of g. 

Proof Suppose by way of contradiction otherwise. Then there are 
finitely many ~0' minimal indices in the range of g. Let n o be such that for all 
n >~ n o, g(n)> min,,(~Og~n)) and mino,(~0g~n)) is odd. Hence, for all n >/n 0, 
{('0g(n0)'¢ q)g(n0+ 1 ) '  . . . . .  (fig(n)}' - -  ~ {~0~ , ~/?3,'"," q)g(n)+' 1t since g is a strictly monotone 
increasing function. By the hypothesis, there is a k such that for all n, 
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n + k/> the number of  different partial functions in {(f~, (f~ ..... (f~.) + ~ } >i- the 
t t ! number of  different partial functions in {(fg~.o), (fg(.o+ 1) ..... (fg~.) }. Since if 

! ! t m 4: n, then (fg(m) 4: (fg(n), the number of  different partial functions in {(fg~.o), 
(fg~.0+~) ..... (0g~.)} is n - n  o + 1. Therefore, for every n >~n 0 the number of 
different partial functions in ({~0'~, ~°3' ..... ~°g~.) + 1 } '  - {q~g(.0)" ~Og~.o+' 1) ..... ~0g~.) } ) '  
is less than or equal to n o + k - I. Hence the number of  different partial 
functions computed by odd indices not computed by even indices is finite. 
Therefore, since the even (f' programs compute only total functions, (f' 
computes but a finite number of  non-total functions, a contradiction. 1 

T H E O R E M  6.11. (Vm)[PMEX°m+I  c/: E X * ] .  

P r o o f  Suppose e />0 .  A finite sequence (x~ ,x2 , . . . ,Xe)  is strictly 
monotone  iff [e = 0 or x I < x z < ... < xe]. ( ) denotes the empty sequence. 
i.e. the case e = 0. Let ~v' m = the set of strictly monotone finite sequences 
(x~, x 2 ..... Xe) such that 0 ~< e ~< m. A function f is a step up func t ion  at step 
up points (xl, x z ..... xe) iff case 1. e = 0; then f =  2x[0], and case 2. e > 0; 
then f ( x )  = 0 if x < x 1 ; f ( x )  = i if x i <~ x < xi+ 1 ; f ( x )  = e if x ~> x~. For a = 
(xl, x2 ..... x.), f .  denotes the step up function at step up points (x~, x2,..., Xe). 
Let 5 ~ , x  ~ ..... Xe) = { f , ~ [ a = ( x l , x 2  ..... X . ,Xe+l ) ,  where X.+l >xe}. 5~()= 
{f .  I a = (x 0,  where x I E N}. We also let 5~0 = {2x[0] }. Note that if a and 
are distinct elements of Z m U {0}, then Y .  ~ ~ = O. Let 5 ~ = 0{SP.  ] a C 
Z:mU {0}}. Fix a canonical indexing (Machtey and Young, 1978; Rogers, 
1967) of  the elements of Z m. Let a i be the element of  Z m with canonical 
index i. Clearly there is a recursive function w such that 

(Vi)[{~°w(i,j) IJ C N} = ~.G~'ai] and (Vi, f i  k )  [ i f j  4: k then ¢w(i,j) 4: (fw(i,k)]. 
We will now construct an acceptable numbering ~ '  such that a set of (f' 

programs for the functions in 5 ~ are effectively enumerated by some 
recursive function z such that for every i , j ,  if i 4:j ,  then (f~(n 4: ~Pz<j~ and for 
each a E Z m, the range of  z contains infinitely many ¢ '  minimal indices for 
the functions in 5P~. We define (f' thus. 

(f~ = 2 x [ 0 ]  (f~ = (fw~o,o) (f~ = (fw(o,1) (f~ = (f~,,o) "'" 

(f'l=,tx[T] (f;=(f0 (f =Ax[T] . . .  

Generally 

and 

~<td)+,  = 2x[T], if i 4 : o ;  

= q~i ,  otherwise. 
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It is clear that (o' is effective and ~0 can be reduced to ~0' by 
2 x [ 2 - ( x ,  0 ) +  1]. Hence, ~0' is an acceptable numbering. Let z (x )=2x .  
Then z enumerates a set of q~' programs for the functions in 5 p such that for 
every i,j, if i re j ,  then ~Qt~) 4: ~o~j). We claim that 

for each a C S m, the range of z contains infinitely many ¢ '  
minimal indices for the functions in 5 ~ .  (6.2) 

To see this, let g(x) = 2((j ,  x )  + 1). Clearly, g is 1-1 monotone increasing 
and S ~  = {~0g(x) I x C N}. We want to show that there are infinitely many ~' 
minimat indices in the range of g. We see that the number of different 
functions which are computed by odd indices ~<2(j, x ) +  1, is ~<j + x + 2. 
By Lemma 6.10, with k = j  + 2, there are infinitely many minimal indices in 
the range of g. This establishes (6.2). 

Now there is an I I M M  which on input f [  x, finds the step up points 
(x 1, x 2 ..... xe) (if any); if e = 0, M then outputs 0, otherwise M outputs the 
even ~0' index which computes f~xl,x 2 ..... xe)" M is a Popperian machine since 
M outputs even indices only. Let Y '  = { f l f C  Y and mino , ( f )  is even}. By 
(6.2) we know that for every a ~27 m, Y '  N Y~ contains infinitely many 
elements. For  every f ~  Y ' ,  f has at most m + 1 step up points, so M on 
input f ,  will change its mind at most m + 1 times and ~0~( j )=f  Hence by 
Lemma 6.9, Y '  ___ PMEXm+ l(M). 

Note. 2x[0] is in Y '  since q~ = 2x[0]. 
It remains to show that no IIMEX*-ident i f ies  Y ' .  Let us consider the 

case m = 0. Suppose by way of contradiction otherwise. Then there is an 
I I M M '  such that M'EX*-identifies Y ' I  Since 2x[0] C ~ ' ,  there is a 
sufficiently large xl such that for every y ) x  1, M'(2x[0]  [ y ) =  
m ' (2x [0 ]  [ x~) = p ,  and ( ~  = *  2x[0]. Since 5~) (~ Y '  contains infinitely 
many elements, there is an X'l such that x'~ ) x ~  andf (xp  C ~ ) ~ Y ' .  We 
then consider M '  on input f~ , ) .  Since f ~ i  ) ~ 5 ~ ' ,  there is a sufficiently large 

~ ~ , x2 such that for all y ) x z ,  M (f~o [Y) = m  (f~,~ [ x2) =P2  and ~0p= f~,~. 
It is clear that p~ 4:p2. We therefore force f / '  to change its mind, a 
contradiction. For m > 0, similarly there is a step up function 
f~i,x~ ...... m+,) G 5 p '  such that M '  on input f , , , will be forced to (Xl,X2,...,Xm+ 1) 
change its mind at least m + 1 times, a contradiction. II 

COROLLARY 6.12. Suppose QC{P,A} .  Then Q M E X ~ m ~ Q M E X ~  
a <. b and m <~ n. 

Proof. It immediately follows from Theorem 6.6 and 6.11. II 

COROLLARY 6.13. (Vrn)[PMEXg~MEX*]. 



86 KEH-JIANN CHEN 

ACKNOWLEDGMENTS 

This paper is part of the author's Ph.D. dissertation at SUNY Buffalo, written under the 
direction of Professor John Case. The author wishes to express his sincere gratitude to 
Professor Case for guiding this research, suggesting the problems, and helping with the 
preparation of this paper. We are also grateful to James Royer for reading our manuscript and 
supplying a simplification to our original proof of Theorem 6.11. 

This paper is partially supported by NSF Grant MCS-80-10728. 

RECEIVED: June 15, 1981; REVISED: May 14, 1982 

REFERENCES 

BARZDIN, J. AND FREIVALD, R. V. (1972), On the predication of general recursive functions, 
Soviet Math. Dokl. 13, 1224-1228. 

BLUM, M. (1967), A machine independent theory of the complexity of recursive functions, J. 
Assoc. Comput. Math. 14, 322-336. 

BLUM, M. (1967), On the size of machines, Inform. Contr. II ,  257-265. 
BLUM, L. AND BLUM, M. (1975), Toward a mathematical theory of inductive inference, 

Inform. Contr. 28, 125-155. 
CASE, J. Pseudo extensions of computable functions, Inform. Contr., in press. 
CASE, J. AND NGO MANGUELLE, S., Refinements of inductive inference by Popperian 

machines, I and II, Kybernetika, in press. 
CASE, J. AND SMITH, C. (1978), Anomaly hierarchies of mechanized inductive inference, in 

"Proceedings, 10th Symposium on the Theory of Computing," San Diego, California, 
pp. 314-319. 

CASE, J. AND SMITH, C. (1979), "Comparison of Identification Criteria for Mechanized 
Inductive Inference," Technical Report No. 154, Dept. of Computer Science, SUNY 
Buffalo. 

C HEN, K. (198 I), "Tradeoffs in Machine Inductive Inference," Ph.D. Dissertation, Computer 
Science Department, SUNY at Buffalo, N.Y. 

FREIVALD, R. V. (1975), "Minimal G6del Numbers and Their Identification in the Limit," 
Lecture Notes in Computer Science No. 32, pp. 219-225, Springer-Verlag, Berlin/New 
York. 

GOLD, E. M. (1967), Language identification in the limit, Inform. Contr. 10, 447474.  
KINBER, E. B. (1977), "On a Theory of Inductive Inference," Lecture Notes in Computer 

Science No. 56, pp. 435-440, Springer-Verlag, Berlin/New York. 
MEYER, A. (1972), Program size in restricted programming languages, Inform. Contr. 21, 

382-394. 
MEYER, A. AND RITCHIE, D. (1967), Computational complexity and program structure, IBM 

Res. Rep. 1817. 
MACHTEY, M. AND YOUNG, P. (1978), "An Introduction to the General Theory of 

Algorithms," North-Holland, New York/Amsterdam. 
ROGERS, H., JR. (1958), G6del numberings of partial recursive functions, J. Symbol. Logic 

23, 331-341. 
ROGERS, H., JR. (1967), "Theory of Recursive Functions and Effective Computability," 

McGraw-Hill, New York. 
SCnUnERT, L. K. (1974), "Representative sample of programmable functions," Inform. Contr. 

25, 3~44.  
SHOENFIELD, J. (1971), "Degrees of Unsolvability," North-Holland, New York. 


