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Abstract

The fusion frames were considered recently by P.G. Casazza, G. Kutyniok and S. Li in connection with
distributed processing and are related to the construction of global frames from local frames. In this paper
we give new results on the duality of fusion frames in Hilbert spaces.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

First we will recall the definitions and some properties of frames in Hilbert spaces. For basic
results on frames, see [3,4,7–9,13–18].

Let H be a Hilbert space and I be a set which is finite or countable. We denote by L(H) the
algebra of all bounded linear operators on H, and by IH the identity operator on H.

A system F = {fi}i∈I is called a frame for H if there exist the constants A,B > 0 such that,
for all f ∈H,

A‖f ‖2 �
∑
i∈I

∣∣〈f,fi〉
∣∣2 � B‖f ‖2.

The constants A and B are called frame bounds. If A = B we call this frame an A-tight frame and
if A = B = 1 it is called a Parseval frame. A frame is exact if it is ceases to be frame whenever
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any single element is deleted from the system {fi}i∈I . It is known that a frame is exact if and
only if it is a Riesz basis. If we only have the upper bound, we call {fi}i∈I a Bessel sequence.

If {fi}i∈I is a Bessel sequence, then the following operators are linear and bounded

TF : l2(I ) → H, TF (ci) =
∑
i∈I

cifi (synthesis operator)

T ∗
F :H → l2(I ), T ∗

Ff = {〈f,fi〉
}
i∈I

(analysis operator)

SF :H → H, SFf = TFT ∗
Ff =

∑
i∈I

〈f,fi〉fi (frame operator).

The operator θ = T ∗
F is called also the frame transform of {fi}i∈I . It is the adjoint of TF .

If {fi}i∈I is a frame, then θ is injective; θ is invertible if and only if {fi}i∈I is a Riesz basis.
If {fi}i∈I is a frame, then SF is an invertible operator and the following reconstruction formula
holds for all f ∈H:

f =
∑
i∈I

〈
f,S−1

F fi

〉
fi =

∑
i∈I

〈f,fi〉S−1
F fi.

Then the family {f̃i}i∈I , where f̃i = S−1
F fi, i ∈ I , is also a frame for H, called the canonical

dual of {fi}i∈I .
In general, the Bessel sequence {gi}i∈I is called an alternate dual of the frame {fi}i∈I if the

following formula holds, for all f ∈H:

f =
∑
i∈I

〈f,gi〉fi.

If denote by θ1 the frame transform of {fi}i∈I in H and by θ2 the frame transform of {gi}i∈I , then
Han and Larson [13] proved that {gi}i∈I is an alternate dual of {fi}i∈I if and only if θ∗

1 θ2 = IH.
Then {gi}i∈I is also a frame for H since

‖f ‖ = ∥∥θ∗
1 θ2(f )

∥∥ �
∥∥θ∗

1

∥∥∥∥θ2(f )
∥∥, f ∈ H.

It follows also that θ∗
2 θ1 = IH, hence then {fi}i∈I is the alternate dual of {gi}i∈I .

For recent applications of frame theory see references of [12]. Generalizations of frame theory
were give in [1,5,6,10,11,16,19].

The theory of fusion frames of Hilbert spaces were developed recently by Casazza et al. [5,6].
See also [2].

Let {Vi}i∈I be a family of closed subspaces of Hilbert space H and {vi}i∈I be a family of
weights, i.e. vi > 0, i ∈ I. The family V = {(Vi, vi)}i∈I is a fusion frame (frame of subspaces), if
there exist constants 0 < C � D < ∞ such that

C‖f ‖2 �
∑
i∈I

v2
i ‖πVi

f ‖2 � D‖f ‖2, for all f ∈ H,

where for the closed subspace V ⊂ H, πV denotes the orthogonal projection of H on V . The
constants C and D are called the fusion frame bounds. If we only have the upper bound, we call
{(Vi, vi)}i∈I a Bessel fusion sequence.

Let V = {(Vi, vi)}i∈I be a fusion frame. Then the frame operator SV for {(Vi, vi)}i∈I is defined
by

SV (f ) =
∑

v2
i πVi

(f ), f ∈H.
i∈I
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Casazza and Kutyniok proved that SV is positive, self-adjoint, invertible operator on H and the
following reconstruction formula holds for all f ∈ H:

f =
∑
i∈I

v2
i S−1

V πVi
(f ).

This relation proves that the family of operators {v2
i S

−1
V πVi

(f )}i∈I is a resolution of identity. We
recall that a family of bounded operators {Ti}i∈I on H is called a resolution of identity on H if
for all f ∈H we have

f =
∑
i∈I

Tif

(and series converges unconditionally for all f ∈ H). The family {(S−1
V Vi, vi)}i∈I is called the

dual fusion frame. To prove that the dual fusion frame is a fusion frame, Casazza and Kutyniok
stated the following result:

Proposition 1.1. Let {(Vi, vi)}i∈I be a fusion frame and let T :H → H be an invertible operator
on H. Then {(T Vi, vi)}i∈I is a fusion frame.

To prove this result, the authors used the formula:

πT Vi
= T πVi

T −1, i ∈ I. (1)

Remark 1.2. The problem with Eq. (1) is that the right-hand side is always a projection onto T Vi ,
but it is not an orthogonal projection unless T ∗T Vi ⊂ Vi (see Section 2). In particular, this would
happen if T is an unitary operator.

In Section 2 of this paper we prove that (1) in general is not true, but we show in another way
that Proposition 1.1 is true.

In Section 3 we consider an operator associated to a pair of Bessel sequences of subspaces
and we prove some new resolutions of identity.

2. Duals of fusion frames

The formula (1) is equivalent with

πT V T = T πV .

First, we prove the following result on operators.

Proposition 2.1. Let T ⊂ L(H) and V ∈ H be a closed subspace. Then the following are equiv-
alent:

(i) πT V T = T πV ;
(ii) T ∗T V ⊂ V.

Proof. (i) ⇒ (ii). We take h ∈ V ⊥. We have

πT V T h = T πV h = 0,
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hence T h ∈ (T V )⊥ = (T V )⊥. But 〈T h,T v〉 = 0, for all v ∈ V ⇔ 〈h,T ∗T v〉 = 0, for all
v ∈ V ⇔ h ∈ (T ∗T V )⊥.

(ii) ⇒ (i). If v ∈ V then

πT V T v = T v and T πV v = T v.

If h ∈ V ⊥ then T πV h = T 0 = 0 and, from the hypothesis, we have h ∈ (T ∗T V )⊥.
As before, we have now T h ∈ (T V )⊥, hence πT V T h = 0. �

Corollary 2.2. There exist Hilbert space H, an invertible operator T ∈ L(H) and V a closed
subspace of H such that

πT V T 
= T πV .

Proof. We take H = R
2, V = {(x,0)/x ∈ R} and

T : R2 → R
2, T (x, y) = (x + y, y)

for all (x, y) ∈ R
2. Then the adjoint of T is

T ∗(x, y) = (x, x + y) for all (x, y) ∈ R
2.

We have

T ∗T (x,0) = T ∗(x,0) = (x, x) /∈ V for all x 
= 0.

From Proposition 2.1 it follows that πT V T 
= T πV . �
To prove the main result of this section, we give the following lemma:

Lemma 2.3. Let T ∈ L(H) and V ∈ H be a closed subspace. Then we have

πV T ∗ = πV T ∗πT V .

Proof. If f ∈ H, then

f = πT V f + g, g ∈ (T V )⊥ = (T V )⊥.

It follows

T ∗f = T ∗πT V f + T ∗g.

But, for v ∈ V , we have

〈T ∗g, v〉 = 〈g,T v〉 = 0,

hence T ∗g ∈ V ⊥. It follows

πV T ∗f = πV T ∗πT V f + πV T ∗g = πV T ∗πT V f. �
Theorem 2.4. Let {(Vi, vi)}i∈I be a fusion frame with frame bounds C, D. If T ∈ L(H) is an
invertible operator, then {(T Vi, vi)}i∈I is a fusion frame with frame bounds

C

‖T ∗‖2‖T ∗−1‖2
and D‖T ∗‖2‖T ∗−1‖2.
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Proof. From Lemma 2.3 we have

‖πVi
T ∗f ‖ � ‖T ∗‖ · ‖πT Vi

f ‖
hence

C‖T ∗f ‖2 �
∑
i∈I

v2
i ‖πVi

T ∗f ‖2 � ‖T ∗‖2
∑
i∈I

v2
i ‖πT Vi

f ‖2

and since T ∗ is invertible, we obtain
∑
i∈I

v2
i ‖πT Vi

f ‖2 � C

‖T ∗‖2‖T ∗−1‖2
‖f ‖2.

On the other hand, from Lemma 2.3, we obtain, with T −1 instead of T :

πT Vi
= πT Vi

T ∗−1πVi
T ∗,

hence

‖πT Vi
f ‖ �

∥∥T ∗−1
∥∥ · ‖πVi

T ∗f ‖.
It follows∑

i∈I

v2
i ‖πT Vi

f ‖2 �
∥∥T ∗−1

∥∥2 ∑
i∈I

v2
i ‖πVi

T ∗f ‖2

�
∥∥T ∗−1

∥∥2
D‖T ∗f ‖2

� D · ∥∥T ∗−1
∥∥2‖T ∗‖2‖f ‖2. �

Corollary 2.5. The dual fusion frame of fusion frame V = {(Vi, vi)}i∈I with C, D frame bounds
is a fusion frame with the frame bounds

C

‖SV‖2‖S−1
V ‖2

and D‖SV‖2
∥∥S−1

V
∥∥2

.

Proof. We take in Theorem 2.4, T = S−1
V . �

Corollary 2.6. Let {(Vi, vi)}i∈I be a fusion frame with C, D frame bounds and U a unitary
operator on H. Then UV := {(UVi, vi)}i∈I is a fusion frame with C, D frame bounds and frame
operator USVU∗.

Proof. For the first part we apply Theorem 2.4, with T = U . For the second part, we apply the
Proposition 2.1:

SUVf =
∑
i∈I

v2
i πUVi

(f ) =
∑
i∈I

v2
i UπVi

U∗(f ) = USVU∗f, f ∈ H. �

We give now a form of the reconstruction formula with the help of the dual fusion frame. By
Lemma 2.3, we have

πVi
S−1 = πVi

S−1π −1 ,
V V SV Vi
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hence
S−1
V πVi

= π
S−1
V Vi

S−1
V πVi

.

Then the reconstruction formula has the form

f =
∑
i∈I

v2
i πS−1

V Vi
S−1
V πVi

(f ), f ∈ H. (2)

This leads us to introduce the following definition:

Definition 2.7. Let V = {(Vi, vi)}i∈I be a fusion frame and let SV be the frame operator. We
consider also W = {(Wi,wi)}i∈I a Bessel fusion sequence. We say that W is an alternate dual
of V if we have

f =
∑
i∈I

viwiπWi
S−1
V πVi

(f ), (3)

for all f ∈ H.

By the relation (2) we have that the dual fusion frame of V is an alternate dual frame.
We have also the following result:

Proposition 2.8. The alternate dual of fusion frame is a fusion frame.

Proof. By (3) we obtain

‖f ‖2 =
∑
i∈I

viwi

〈
S−1
V πVi

(f ),πWi
(f )

〉

�
∑
i∈I

viwi

∥∥S−1
V πVi

(f )
∥∥∥∥πWi

(f )
∥∥

�
(∑

i∈I

v2
i

∥∥S−1
V πVi

(f )
∥∥2

)1/2(∑
i∈I

w2
i

∥∥πWi
(f )

∥∥2
)1/2

�
∥∥S−1

V
∥∥√

D‖f ‖
(∑

i∈I

w2
i

∥∥πWi
(f )

∥∥2
)1/2

,

where D is the upper bound of the frame V . �
3. Frame operator for a pair of Bessel fusion sequences

In the following, we consider two Bessel fusion sequences: V = {(Vi, vi)}i∈I with Bessel
bound D1 and W = {(Wi,wi)}i∈I with Bessel bound D2. We introduce the operator

SV Wf :=
∑
i∈I

viwiπVi
πWi

f, f ∈H.

By [5, Lemma 3.9], it follows that series converges unconditionally.
We have also

〈SV Wf,g〉 =
∑
i∈I

viwi〈πWi
f,πVi

g〉, (4)

for all f,g ∈ H.
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By Cauchy–Schwartz inequality, we have

∣∣〈SV Wf,g〉∣∣ �
(∑

i∈I

v2
i ‖πVi

g‖2
)1/2

·
(∑

i∈I

w2
i ‖πWi

f ‖2
)1/2

. (5)

From (5), it follows∣∣〈SV Wf,g〉∣∣ �
√

D1

√
D2‖g‖‖f ‖,

hence SV W is a bounded operator and

‖SV W‖ �
√

D1

√
D2.

From (5) we have also

‖SV Wf ‖ �
√

D1

(∑
i∈I

w2
i ‖πWi

f ‖2
)1/2

(6)

and

‖S∗
V Wg‖ �

√
D2

(∑
i∈I

v2
i ‖πVi

g‖2
)1/2

. (7)

Moreover, from (4) we have

〈SV Wf,g〉 =
∑
i∈I

viwi〈f,πWi
πVi

g〉 = 〈f,SWV g〉,

hence

S∗
V W = SWV .

Theorem 3.1. The following are equivalent:

(i) SV W is bounded below;
(ii) (∃)K ∈ L(H) such that {Ti}i∈I is a resolution of identity, where

Ti = viwiKπVi
πWi

, i ∈ I.

If one of conditions holds, then W is a fusion frame.

Proof. (i) ⇒ (ii). If SV W is bounded below, then there exists K ∈ L(H) such that KSV W = IH.
It follows

f =
∑
i∈I

viwiKπVi
πWi

f.

(ii) ⇒ (i). If (ii) holds, then for f ∈ H we have

f =
∑
i∈I

viwiKπVi
πWi

.

It follows

f = K

(∑
i∈I

viwiπVi
πWi

f

)
,

hence IH = KSV W . It follows that SV W is bounded below.
If SV W is bounded below, from (6) it follows that W is a fusion frame. �
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Corollary 3.2. The following are equivalent:

(i) SV W is invertible;
(ii) (∃)K ∈ L(H) invertible such that

Ti = viwiKπVi
πWi

is a resolution of identity.

If one of conditions holds, then V , W are fusion frames.

Corollary 3.3. Let W be a Bessel fusion sequence. Then W is a fusion frame if and only if there
exists V = {(Vi, vi)}i∈I a Bessel fusion sequence such that SV W is bounded below.

Proof. If W is a fusion frame we take Vi = Wi , wi = vi , i ∈ I .
For conversely, we use Theorem 3.1. �

Theorem 3.4. We assume there exist λ1 < 1, λ2 > −1 such that∥∥∥∥f −
∑
i∈I

viwiπVi
πWi

(f )

∥∥∥∥ � λ1‖f ‖ + λ2

∥∥∥∥
∑
i∈I

viwiπVi
πWi

(f )

∥∥∥∥,

for any f ∈ H. Then W is a fusion frame and(
1 − λ1

1 + λ2

)2 1

D1
‖f ‖2 �

∑
i∈I

w2
i ‖πWi

f ‖2, f ∈ H.

Proof. As before, we denote

SV Wf =
∑
i∈I

viwiπVi
πWi

(f ).

We have

‖f − SV Wf ‖ � λ1‖f ‖ + λ2‖SV Wf ‖.
Since

‖f − SV Wf ‖ �
∣∣‖f ‖ − ‖SV Wf ‖∣∣,

it follows

λ1‖f ‖ + λ2‖SV Wf ‖ � ‖f ‖ − ∥∥SV W (f )
∥∥,

hence

‖SV Wf ‖ � 1 − λ1

1 + λ2
‖f ‖.

From (6) we obtain

∑
i∈I

w2
i ‖πWi

f ‖2 � 1

D1

(
1 − λ1

1 + λ2

)2

‖f ‖2. �

In the particular case λ2 = 0 we have a stronger result.



P. Găvruţa / J. Math. Anal. Appl. 333 (2007) 871–879 879
Corollary 3.5. We assume that exists λ ∈ [0,1), such that∥∥∥∥f −
∑
i∈I

viwiπVi
πWi

(f )

∥∥∥∥ � λ‖f ‖, f ∈H.

Then W and V are fusion frames and the following estimates hold

∑
i∈I

w2
i ‖πWi

f ‖2 � (1 − λ)2

D1
‖f ‖2,

∑
i∈I

v2
i ‖πVi

f ‖2 � (1 − λ)2

D2
‖f ‖2,

for any f ∈ H.

Proof. We have for f ∈H∥∥f − SWV (f )
∥∥ = ∥∥(IH − SV W )∗(f )

∥∥ �
∥∥(IH − SV W )∗

∥∥‖f ‖
= ‖IH − SV W‖‖f ‖ � λ‖f ‖

and apply Theorem 3.4. �
Remark 3.6. If in Corollary 3.5 we take λ = 0, we obtain Proposition 2.7 in [2].
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