On the duality of fusion frames

P. Găvruța ${ }^{1}$
Department of Mathematics, University "Politehnica" of Timişoara, Piaţa Victoriei, No. 2, 300006 Timişoara, Romania
Received 6 September 2006
Available online 9 January 2007
Submitted by P.G. Casazza

Abstract

The fusion frames were considered recently by P.G. Casazza, G. Kutyniok and S. Li in connection with distributed processing and are related to the construction of global frames from local frames. In this paper we give new results on the duality of fusion frames in Hilbert spaces.

© 2006 Elsevier Inc. All rights reserved.
Keywords: Hilbert space; Frame; Dual frame; Fusion frame

1. Introduction

First we will recall the definitions and some properties of frames in Hilbert spaces. For basic results on frames, see [3,4,7-9,13-18].

Let \mathcal{H} be a Hilbert space and I be a set which is finite or countable. We denote by $\mathcal{L}(\mathcal{H})$ the algebra of all bounded linear operators on \mathcal{H}, and by $I_{\mathcal{H}}$ the identity operator on \mathcal{H}.

A system $\mathcal{F}=\left\{f_{i}\right\}_{i \in I}$ is called a frame for \mathcal{H} if there exist the constants $A, B>0$ such that, for all $f \in \mathcal{H}$,

$$
A\|f\|^{2} \leqslant \sum_{i \in I}\left|\left\langle f, f_{i}\right\rangle\right|^{2} \leqslant B\|f\|^{2} .
$$

The constants A and B are called frame bounds. If $A=B$ we call this frame an A-tight frame and if $A=B=1$ it is called a Parseval frame. A frame is exact if it is ceases to be frame whenever

[^0]any single element is deleted from the system $\left\{f_{i}\right\}_{i \in I}$. It is known that a frame is exact if and only if it is a Riesz basis. If we only have the upper bound, we call $\left\{f_{i}\right\}_{i \in I}$ a Bessel sequence.

If $\left\{f_{i}\right\}_{i \in I}$ is a Bessel sequence, then the following operators are linear and bounded

$$
\begin{array}{ll}
T_{\mathcal{F}}: l^{2}(I) \rightarrow \mathcal{H}, & T_{\mathcal{F}}\left(c_{i}\right)=\sum_{i \in I} c_{i} f_{i} \quad \text { (synthesis operator) } \\
T_{\mathcal{F}}^{*}: \mathcal{H} \rightarrow l^{2}(I), & T_{\mathcal{F}}^{*} f=\left\{\left\langle f, f_{i}\right\rangle\right\}_{i \in I} \quad \text { (analysis operator) } \\
S_{\mathcal{F}}: \mathcal{H} \rightarrow \mathcal{H}, & S_{\mathcal{F}} f=T_{\mathcal{F}} T_{\mathcal{F}}^{*} f=\sum_{i \in I}\left\langle f, f_{i}\right\rangle f_{i} \quad \text { (frame operator). }
\end{array}
$$

The operator $\theta=T_{\mathcal{F}}^{*}$ is called also the frame transform of $\left\{f_{i}\right\}_{i \in I}$. It is the adjoint of $T_{\mathcal{F}}$.
If $\left\{f_{i}\right\}_{i \in I}$ is a frame, then θ is injective; θ is invertible if and only if $\left\{f_{i}\right\}_{i \in I}$ is a Riesz basis. If $\left\{f_{i}\right\}_{i \in I}$ is a frame, then $S_{\mathcal{F}}$ is an invertible operator and the following reconstruction formula holds for all $f \in \mathcal{H}$:

$$
f=\sum_{i \in I}\left\langle f, S_{\mathcal{F}}^{-1} f_{i}\right\rangle f_{i}=\sum_{i \in I}\left\langle f, f_{i}\right\rangle S_{\mathcal{F}}^{-1} f_{i} .
$$

Then the family $\left\{\tilde{f}_{i}\right\}_{i \in I}$, where $\tilde{f}_{i}=S_{\mathcal{F}}^{-1} f_{i}, i \in I$, is also a frame for \mathcal{H}, called the canonical dual of $\left\{f_{i}\right\}_{i \in I}$.

In general, the Bessel sequence $\left\{g_{i}\right\}_{i \in I}$ is called an alternate dual of the frame $\left\{f_{i}\right\}_{i \in I}$ if the following formula holds, for all $f \in \mathcal{H}$:

$$
f=\sum_{i \in I}\left\langle f, g_{i}\right\rangle f_{i}
$$

If denote by θ_{1} the frame transform of $\left\{f_{i}\right\}_{i \in I}$ in \mathcal{H} and by θ_{2} the frame transform of $\left\{g_{i}\right\}_{i \in I}$, then Han and Larson [13] proved that $\left\{g_{i}\right\}_{i \in I}$ is an alternate dual of $\left\{f_{i}\right\}_{i \in I}$ if and only if $\theta_{1}^{*} \theta_{2}=I_{\mathcal{H}}$. Then $\left\{g_{i}\right\}_{i \in I}$ is also a frame for \mathcal{H} since

$$
\|f\|=\left\|\theta_{1}^{*} \theta_{2}(f)\right\| \leqslant\left\|\theta_{1}^{*}\right\|\left\|\theta_{2}(f)\right\|, \quad f \in \mathcal{H} .
$$

It follows also that $\theta_{2}^{*} \theta_{1}=I_{\mathcal{H}}$, hence then $\left\{f_{i}\right\}_{i \in I}$ is the alternate dual of $\left\{g_{i}\right\}_{i \in I}$.
For recent applications of frame theory see references of [12]. Generalizations of frame theory were give in [1,5,6,10,11, 16, 19].

The theory of fusion frames of Hilbert spaces were developed recently by Casazza et al. [5,6]. See also [2].

Let $\left\{V_{i}\right\}_{i \in I}$ be a family of closed subspaces of Hilbert space \mathcal{H} and $\left\{v_{i}\right\}_{i \in I}$ be a family of weights, i.e. $v_{i}>0, i \in I$. The family $\mathcal{V}=\left\{\left(V_{i}, v_{i}\right)\right\}_{i \in I}$ is a fusion frame (frame of subspaces), if there exist constants $0<C \leqslant D<\infty$ such that

$$
C\|f\|^{2} \leqslant \sum_{i \in I} v_{i}^{2}\left\|\pi_{V_{i}} f\right\|^{2} \leqslant D\|f\|^{2}, \quad \text { for all } f \in \mathcal{H},
$$

where for the closed subspace $V \subset \mathcal{H}, \pi_{V}$ denotes the orthogonal projection of \mathcal{H} on V. The constants C and D are called the fusion frame bounds. If we only have the upper bound, we call $\left\{\left(V_{i}, v_{i}\right)\right\}_{i \in I}$ a Bessel fusion sequence.

Let $\mathcal{V}=\left\{\left(V_{i}, v_{i}\right)\right\}_{i \in I}$ be a fusion frame. Then the frame operator $S_{\mathcal{V}}$ for $\left\{\left(V_{i}, v_{i}\right)\right\}_{i \in I}$ is defined by

$$
S_{\mathcal{V}}(f)=\sum_{i \in I} v_{i}^{2} \pi_{V_{i}}(f), \quad f \in \mathcal{H}
$$

Casazza and Kutyniok proved that $S_{\mathcal{V}}$ is positive, self-adjoint, invertible operator on \mathcal{H} and the following reconstruction formula holds for all $f \in \mathcal{H}$:

$$
f=\sum_{i \in I} v_{i}^{2} S_{\mathcal{V}}^{-1} \pi_{V_{i}}(f)
$$

This relation proves that the family of operators $\left\{v_{i}^{2} S_{\mathcal{V}}^{-1} \pi_{V_{i}}(f)\right\}_{i \in I}$ is a resolution of identity. We recall that a family of bounded operators $\left\{T_{i}\right\}_{i \in I}$ on \mathcal{H} is called a resolution of identity on \mathcal{H} if for all $f \in \mathcal{H}$ we have

$$
f=\sum_{i \in I} T_{i} f
$$

(and series converges unconditionally for all $f \in \mathcal{H}$). The family $\left\{\left(S_{\mathcal{V}}^{-1} V_{i}, v_{i}\right)\right\}_{i \in I}$ is called the dual fusion frame. To prove that the dual fusion frame is a fusion frame, Casazza and Kutyniok stated the following result:

Proposition 1.1. Let $\left\{\left(V_{i}, v_{i}\right)\right\}_{i \in I}$ be a fusion frame and let $T: \mathcal{H} \rightarrow \mathcal{H}$ be an invertible operator on \mathcal{H}. Then $\left\{\left(T V_{i}, v_{i}\right)\right\}_{i \in I}$ is a fusion frame.

To prove this result, the authors used the formula:

$$
\begin{equation*}
\pi_{T V_{i}}=T \pi_{V_{i}} T^{-1}, \quad i \in I . \tag{1}
\end{equation*}
$$

Remark 1.2. The problem with Eq. (1) is that the right-hand side is always a projection onto $T V_{i}$, but it is not an orthogonal projection unless $T^{*} T V_{i} \subset V_{i}$ (see Section 2). In particular, this would happen if T is an unitary operator.

In Section 2 of this paper we prove that (1) in general is not true, but we show in another way that Proposition 1.1 is true.

In Section 3 we consider an operator associated to a pair of Bessel sequences of subspaces and we prove some new resolutions of identity.

2. Duals of fusion frames

The formula (1) is equivalent with

$$
\pi_{T V} T=T \pi_{V}
$$

First, we prove the following result on operators.
Proposition 2.1. Let $T \subset \mathcal{L}(\mathcal{H})$ and $V \in \mathcal{H}$ be a closed subspace. Then the following are equivalent:
(i) $\pi_{\overline{T V}} T=T \pi_{V}$;
(ii) $T^{*} T V \subset V$.

Proof. (i) \Rightarrow (ii). We take $h \in V^{\perp}$. We have

$$
\pi_{\overline{T V}} T h=T \pi_{V} h=0,
$$

hence $T h \in(\overline{T V})^{\perp}=(T V)^{\perp}$. But $\langle T h, T v\rangle=0$, for all $v \in V \Leftrightarrow\left\langle h, T^{*} T v\right\rangle=0$, for all $v \in V \Leftrightarrow h \in\left(T^{*} T V\right)^{\perp}$.
(ii) \Rightarrow (i). If $v \in V$ then

$$
\pi_{\overline{T V}} T v=T v \quad \text { and } \quad T \pi_{V} v=T v .
$$

If $h \in V^{\perp}$ then $T \pi_{V} h=T 0=0$ and, from the hypothesis, we have $h \in\left(T^{*} T V\right)^{\perp}$.
As before, we have now $T h \in(\overline{T V})^{\perp}$, hence $\pi_{\overline{T V}} T h=0$.
Corollary 2.2. There exist Hilbert space \mathcal{H}, an invertible operator $T \in \mathcal{L}(\mathcal{H})$ and V a closed subspace of \mathcal{H} such that

$$
\pi_{T V} T \neq T \pi_{V} .
$$

Proof. We take $\mathcal{H}=\mathbb{R}^{2}, V=\{(x, 0) / x \in \mathbb{R}\}$ and

$$
T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \quad T(x, y)=(x+y, y)
$$

for all $(x, y) \in \mathbb{R}^{2}$. Then the adjoint of T is

$$
T^{*}(x, y)=(x, x+y) \quad \text { for all }(x, y) \in \mathbb{R}^{2} .
$$

We have

$$
T^{*} T(x, 0)=T^{*}(x, 0)=(x, x) \notin V \quad \text { for all } x \neq 0 .
$$

From Proposition 2.1 it follows that $\pi_{T V} T \neq T \pi_{V}$.
To prove the main result of this section, we give the following lemma:
Lemma 2.3. Let $T \in \mathcal{L}(\mathcal{H})$ and $V \in \mathcal{H}$ be a closed subspace. Then we have

$$
\pi_{V} T^{*}=\pi_{V} T^{*} \pi_{\overline{T V}} .
$$

Proof. If $f \in \mathcal{H}$, then

$$
f=\pi_{\overline{T V}} f+g, \quad g \in(\overline{T V})^{\perp}=(T V)^{\perp} .
$$

It follows

$$
T^{*} f=T^{*} \pi_{\overline{T V}} f+T^{*} g
$$

But, for $v \in V$, we have

$$
\left\langle T^{*} g, v\right\rangle=\langle g, T v\rangle=0,
$$

hence $T^{*} g \in V^{\perp}$. It follows

$$
\pi_{V} T^{*} f=\pi_{V} T^{*} \pi_{\overline{T V}} f+\pi_{V} T^{*} g=\pi_{V} T^{*} \pi_{\overline{T V}} f .
$$

Theorem 2.4. Let $\left\{\left(V_{i}, v_{i}\right)\right\}_{i \in I}$ be a fusion frame with frame bounds C, D. If $T \in \mathcal{L}(\mathcal{H})$ is an invertible operator, then $\left\{\left(T V_{i}, v_{i}\right)\right\}_{i \in I}$ is a fusion frame with frame bounds

$$
\frac{C}{\left\|T^{*}\right\|^{2}\left\|T^{*-1}\right\|^{2}} \quad \text { and } \quad D\left\|T^{*}\right\|^{2}\left\|T^{*-1}\right\|^{2}
$$

Proof. From Lemma 2.3 we have

$$
\left\|\pi_{V_{i}} T^{*} f\right\| \leqslant\left\|T^{*}\right\| \cdot\left\|\pi_{T v_{i}} f\right\|
$$

hence

$$
C\left\|T^{*} f\right\|^{2} \leqslant \sum_{i \in I} v_{i}^{2}\left\|\pi_{V_{i}} T^{*} f\right\|^{2} \leqslant\left\|T^{*}\right\|^{2} \sum_{i \in I} v_{i}^{2}\left\|\pi_{T v_{i}} f\right\|^{2}
$$

and since T^{*} is invertible, we obtain

$$
\sum_{i \in I} v_{i}^{2}\left\|\pi_{T V_{i}} f\right\|^{2} \geqslant \frac{C}{\left\|T^{*}\right\|^{2}\left\|T^{*-1}\right\|^{2}}\|f\|^{2} .
$$

On the other hand, from Lemma 2.3, we obtain, with T^{-1} instead of T :

$$
\pi_{T v_{i}}=\pi_{T v_{i}} T^{*-1} \pi_{V_{i}} T^{*},
$$

hence

$$
\left\|\pi_{T V_{i}} f\right\| \leqslant\left\|T^{*-1}\right\| \cdot\left\|\pi_{V_{i}} T^{*} f\right\| .
$$

It follows

$$
\begin{aligned}
\sum_{i \in I} v_{i}^{2}\left\|\pi_{T V_{i}} f\right\|^{2} & \leqslant\left\|T^{*-1}\right\|^{2} \sum_{i \in I} v_{i}^{2}\left\|\pi_{V_{i}} T^{*} f\right\|^{2} \\
& \leqslant\left\|T^{*-1}\right\|^{2} D\left\|T^{*} f\right\|^{2} \\
& \leqslant D \cdot\left\|T^{*-1}\right\|^{2}\left\|T^{*}\right\|^{2}\|f\|^{2}
\end{aligned}
$$

Corollary 2.5. The dual fusion frame of fusion frame $\mathcal{V}=\left\{\left(V_{i}, v_{i}\right)\right\}_{i \in I}$ with C, D frame bounds is a fusion frame with the frame bounds

$$
\frac{C}{\left\|S_{\mathcal{V}}\right\|^{2}\left\|S_{\mathcal{V}}^{-1}\right\|^{2}} \quad \text { and } \quad D\left\|S_{\mathcal{V}}\right\|^{2}\left\|S_{\mathcal{V}}^{-1}\right\|^{2}
$$

Proof. We take in Theorem 2.4, $T=S_{\mathcal{V}}^{-1}$.
Corollary 2.6. Let $\left\{\left(V_{i}, v_{i}\right)\right\}_{i \in I}$ be a fusion frame with C, D frame bounds and U a unitary operator on \mathcal{H}. Then $U \mathcal{V}:=\left\{\left(U V_{i}, v_{i}\right)\right\}_{i \in I}$ is a fusion frame with C, D frame bounds and frame operator $U S_{\mathcal{V}} U^{*}$.

Proof. For the first part we apply Theorem 2.4, with $T=U$. For the second part, we apply the Proposition 2.1:

$$
S_{U \mathcal{V}} f=\sum_{i \in I} v_{i}^{2} \pi_{U V_{i}}(f)=\sum_{i \in I} v_{i}^{2} U \pi_{V_{i}} U^{*}(f)=U S_{\mathcal{V}} U^{*} f, \quad f \in \mathcal{H}
$$

We give now a form of the reconstruction formula with the help of the dual fusion frame. By Lemma 2.3, we have

$$
\pi_{V_{i}} S_{\mathcal{V}}^{-1}=\pi_{V_{i}} S_{\mathcal{V}}^{-1} \pi_{S_{\mathcal{V}}^{-1} V_{i}}
$$

hence

$$
S_{\mathcal{V}}^{-1} \pi_{V_{i}}=\pi_{S_{\mathcal{V}} V_{i}} S_{\mathcal{V}}^{-1} \pi_{V_{i}}
$$

Then the reconstruction formula has the form

$$
\begin{equation*}
f=\sum_{i \in I} v_{i}^{2} \pi_{S_{\mathcal{V}}^{-1} V_{i}} S_{\mathcal{V}}^{-1} \pi_{V_{i}}(f), \quad f \in \mathcal{H} . \tag{2}
\end{equation*}
$$

This leads us to introduce the following definition:
Definition 2.7. Let $\mathcal{V}=\left\{\left(V_{i}, v_{i}\right)\right\}_{i \in I}$ be a fusion frame and let $S_{\mathcal{V}}$ be the frame operator. We consider also $\mathcal{W}=\left\{\left(W_{i}, w_{i}\right)\right\}_{i \in I}$ a Bessel fusion sequence. We say that \mathcal{W} is an alternate dual of \mathcal{V} if we have

$$
\begin{equation*}
f=\sum_{i \in I} v_{i} w_{i} \pi_{W_{i}} S_{\mathcal{V}}^{-1} \pi_{V_{i}}(f), \tag{3}
\end{equation*}
$$

for all $f \in \mathcal{H}$.
By the relation (2) we have that the dual fusion frame of \mathcal{V} is an alternate dual frame.
We have also the following result:
Proposition 2.8. The alternate dual of fusion frame is a fusion frame.
Proof. By (3) we obtain

$$
\begin{aligned}
\|f\|^{2} & =\sum_{i \in I} v_{i} w_{i}\left\langle S_{\mathcal{V}}^{-1} \pi_{V_{i}}(f), \pi_{W_{i}}(f)\right\rangle \\
& \leqslant \sum_{i \in I} v_{i} w_{i}\left\|S_{\mathcal{V}}^{-1} \pi_{V_{i}}(f)\right\|\left\|\pi_{W_{i}}(f)\right\| \\
& \leqslant\left(\sum_{i \in I} v_{i}^{2}\left\|S_{\mathcal{V}}^{-1} \pi_{V_{i}}(f)\right\|^{2}\right)^{1 / 2}\left(\sum_{i \in I} w_{i}^{2}\left\|\pi_{W_{i}}(f)\right\|^{2}\right)^{1 / 2} \\
& \leqslant\left\|S_{\mathcal{V}}^{-1}\right\| \sqrt{D}\|f\|\left(\sum_{i \in I} w_{i}^{2}\left\|\pi_{W_{i}}(f)\right\|^{2}\right)^{1 / 2}
\end{aligned}
$$

where D is the upper bound of the frame \mathcal{V}.

3. Frame operator for a pair of Bessel fusion sequences

In the following, we consider two Bessel fusion sequences: $\mathcal{V}=\left\{\left(V_{i}, v_{i}\right)\right\}_{i \in I}$ with Bessel bound D_{1} and $\mathcal{W}=\left\{\left(W_{i}, w_{i}\right)\right\}_{i \in I}$ with Bessel bound D_{2}. We introduce the operator

$$
S_{V W} f:=\sum_{i \in I} v_{i} w_{i} \pi_{V_{i}} \pi_{W_{i}} f, \quad f \in \mathcal{H} .
$$

By [5, Lemma 3.9], it follows that series converges unconditionally.
We have also

$$
\begin{equation*}
\left\langle S_{V W} f, g\right\rangle=\sum_{i \in I} v_{i} w_{i}\left\langle\pi_{W_{i}} f, \pi_{V_{i}} g\right\rangle, \tag{4}
\end{equation*}
$$

for all $f, g \in \mathcal{H}$.

By Cauchy-Schwartz inequality, we have

$$
\begin{equation*}
\left|\left\langle S_{V W} f, g\right\rangle\right| \leqslant\left(\sum_{i \in I} v_{i}^{2}\left\|\pi_{V_{i}} g\right\|^{2}\right)^{1 / 2} \cdot\left(\sum_{i \in I} w_{i}^{2}\left\|\pi_{W_{i}} f\right\|^{2}\right)^{1 / 2} \tag{5}
\end{equation*}
$$

From (5), it follows

$$
\left|\left\langle S_{V W} f, g\right\rangle\right| \leqslant \sqrt{D_{1}} \sqrt{D_{2}}\|g\|\|f\|,
$$

hence $S_{V W}$ is a bounded operator and

$$
\left\|S_{V W}\right\| \leqslant \sqrt{D_{1}} \sqrt{D_{2}}
$$

From (5) we have also

$$
\begin{equation*}
\left\|S_{V W} f\right\| \leqslant \sqrt{D_{1}}\left(\sum_{i \in I} w_{i}^{2}\left\|\pi_{W_{i}} f\right\|^{2}\right)^{1 / 2} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|S_{V W}^{*} g\right\| \leqslant \sqrt{D_{2}}\left(\sum_{i \in I} v_{i}^{2}\left\|\pi_{V_{i}} g\right\|^{2}\right)^{1 / 2} \tag{7}
\end{equation*}
$$

Moreover, from (4) we have

$$
\left\langle S_{V W} f, g\right\rangle=\sum_{i \in I} v_{i} w_{i}\left\langle f, \pi_{W_{i}} \pi_{V_{i}} g\right\rangle=\left\langle f, S_{W V} g\right\rangle,
$$

hence

$$
S_{V W}^{*}=S_{W V}
$$

Theorem 3.1. The following are equivalent:
(i) $S_{V W}$ is bounded below;
(ii) $(\exists) K \in \mathcal{L}(\mathcal{H})$ such that $\left\{T_{i}\right\}_{i \in I}$ is a resolution of identity, where

$$
T_{i}=v_{i} w_{i} K \pi_{V_{i}} \pi_{W_{i}}, \quad i \in I .
$$

If one of conditions holds, then \mathcal{W} is a fusion frame.
Proof. (i) \Rightarrow (ii). If $S_{V W}$ is bounded below, then there exists $K \in \mathcal{L}(\mathcal{H})$ such that $K S_{V W}=I_{\mathcal{H}}$. It follows

$$
f=\sum_{i \in I} v_{i} w_{i} K \pi_{V_{i}} \pi_{W_{i}} f
$$

(ii) \Rightarrow (i). If (ii) holds, then for $f \in \mathcal{H}$ we have

$$
f=\sum_{i \in I} v_{i} w_{i} K \pi_{V_{i}} \pi_{W_{i}} .
$$

It follows

$$
f=K\left(\sum_{i \in I} v_{i} w_{i} \pi_{V_{i}} \pi_{W_{i}} f\right)
$$

hence $I_{\mathcal{H}}=K S_{V W}$. It follows that $S_{V W}$ is bounded below.
If $S_{V W}$ is bounded below, from (6) it follows that \mathcal{W} is a fusion frame.

Corollary 3.2. The following are equivalent:
(i) $S_{V W}$ is invertible;
(ii) $(\exists) K \in \mathcal{L}(\mathcal{H})$ invertible such that

$$
T_{i}=v_{i} w_{i} K \pi_{V_{i}} \pi_{W_{i}}
$$

is a resolution of identity.
If one of conditions holds, then \mathcal{V}, \mathcal{W} are fusion frames.
Corollary 3.3. Let \mathcal{W} be a Bessel fusion sequence. Then \mathcal{W} is a fusion frame if and only if there exists $\mathcal{V}=\left\{\left(V_{i}, v_{i}\right)\right\}_{i \in I}$ a Bessel fusion sequence such that $S_{V W}$ is bounded below.

Proof. If \mathcal{W} is a fusion frame we take $V_{i}=W_{i}, w_{i}=v_{i}, i \in I$.
For conversely, we use Theorem 3.1.
Theorem 3.4. We assume there exist $\lambda_{1}<1, \lambda_{2}>-1$ such that

$$
\left\|f-\sum_{i \in I} v_{i} w_{i} \pi_{V_{i}} \pi_{W_{i}}(f)\right\| \leqslant \lambda_{1}\|f\|+\lambda_{2}\left\|\sum_{i \in I} v_{i} w_{i} \pi_{V_{i}} \pi_{W_{i}}(f)\right\|,
$$

for any $f \in \mathcal{H}$. Then \mathcal{W} is a fusion frame and

$$
\left(\frac{1-\lambda_{1}}{1+\lambda_{2}}\right)^{2} \frac{1}{D_{1}}\|f\|^{2} \leqslant \sum_{i \in I} w_{i}^{2}\left\|\pi_{W_{i}} f\right\|^{2}, \quad f \in \mathcal{H} .
$$

Proof. As before, we denote

$$
S_{V W} f=\sum_{i \in I} v_{i} w_{i} \pi_{V_{i}} \pi_{W_{i}}(f)
$$

We have

$$
\left\|f-S_{V W} f\right\| \leqslant \lambda_{1}\|f\|+\lambda_{2}\left\|S_{V W} f\right\| .
$$

Since

$$
\left\|f-S_{V W} f\right\| \geqslant\left|\|f\|-\left\|S_{V W} f\right\|\right|,
$$

it follows

$$
\lambda_{1}\|f\|+\lambda_{2}\left\|S_{V W} f\right\| \geqslant\|f\|-\left\|S_{V W}(f)\right\|,
$$

hence

$$
\left\|S_{V W} f\right\| \geqslant \frac{1-\lambda_{1}}{1+\lambda_{2}}\|f\| .
$$

From (6) we obtain

$$
\sum_{i \in I} w_{i}^{2}\left\|\pi_{W_{i}} f\right\|^{2} \geqslant \frac{1}{D_{1}}\left(\frac{1-\lambda_{1}}{1+\lambda_{2}}\right)^{2}\|f\|^{2}
$$

In the particular case $\lambda_{2}=0$ we have a stronger result.

Corollary 3.5. We assume that exists $\lambda \in[0,1)$, such that

$$
\left\|f-\sum_{i \in I} v_{i} w_{i} \pi_{V_{i}} \pi_{W_{i}}(f)\right\| \leqslant \lambda\|f\|, \quad f \in \mathcal{H} .
$$

Then \mathcal{W} and \mathcal{V} are fusion frames and the following estimates hold

$$
\begin{aligned}
& \sum_{i \in I} w_{i}^{2}\left\|\pi_{W_{i}} f\right\|^{2} \geqslant \frac{(1-\lambda)^{2}}{D_{1}}\|f\|^{2}, \\
& \sum_{i \in I} v_{i}^{2}\left\|\pi_{V_{i}} f\right\|^{2} \geqslant \frac{(1-\lambda)^{2}}{D_{2}}\|f\|^{2}
\end{aligned}
$$

for any $f \in \mathcal{H}$.
Proof. We have for $f \in \mathcal{H}$

$$
\begin{aligned}
\left\|f-S_{W V}(f)\right\| & =\left\|\left(I_{\mathcal{H}}-S_{V W}\right)^{*}(f)\right\| \leqslant\left\|\left(I_{\mathcal{H}}-S_{V W}\right)^{*}\right\|\|f\| \\
& =\left\|I_{\mathcal{H}}-S_{V W}\right\|\|f\| \leqslant \lambda\|f\|
\end{aligned}
$$

and apply Theorem 3.4.
Remark 3.6. If in Corollary 3.5 we take $\lambda=0$, we obtain Proposition 2.7 in [2].

Acknowledgments

The author thanks Professor Peter G. Casazza and referees for carefully reading and useful comments.

References

[1] S.T. Ali, J.P. Antoiné, J.P. Gazeau, Continuous frames in Hilbert space, Ann. of Phys. 222 (1993) 1-37.
[2] M.S. Asgari, A. Khosravi, Frames and bases of subspaces in Hilbert spaces, J. Math. Anal. Appl. 308 (2) (2005) 541-553.
[3] L.W. Baggett, D.R. Larson (Eds.), The Functional and Harmonic Analysis of Wavelets and Frames, Contemp. Math., vol. 247, Amer. Math. Soc., Providence, RI, 1999.
[4] P.G. Casazza, The art of frame theory, Taiwanese J. Math. 4 (2000) 129-201.
[5] P.G. Casazza, G.K. Kutyniok, Frames of Subspaces, Contemp. Math., vol. 345, Amer. Math. Soc., Providence, RI, 2004, pp. 87-113.
[6] P.G. Casazza, G.K. Kutyniok, S. Li, Fusion frames and distributed processing, preprint.
[7] O. Christensen, An Introduction to Frames and Riesz Bases, Appl. Numer. Harmon. Anal., Birkhäuser, Boston, 2003.
[8] I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, PA, 1992.
[9] J. Duffin, A.C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952) 341-366.
[10] M. Fornasier, Decompositions of Hilbert spaces: Local construction of global frames, in: B. Bojanov (Ed.), Proc. Int. Conf. on Constructive Function Theory, Varna, 2002, DARBA, Sofia, 2003, pp. 275-281.
[11] M. Fornasier, Quasi-orthogonal decompositions of structured frames, J. Math. Anal. Appl. 289 (1) (2004) 180-199.
[12] P. Găvruţa, On some identities and inequalities for frames in Hilbert spaces, J. Math. Anal. Appl. 321 (2006) 469478.
[13] D. Han, D.R. Larson, Frames, bases and group representations, Mem. Amer. Math. Soc. 147 (697) (2000).
[14] C. Heil, D. Walnut, Continuous and discrete wavelet transforms, SIAM Rev. 31 (4) (1989) 628-666.
[15] E. Hernández, G. Weiss, A First Course on Wavelets, CRC Press, 1996.
[16] G. Kaiser, A Friendly Guide to Wavelets, Birkhäuser, Boston, 1994.
[17] S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, San Diego, CA, 1998.
[18] Y. Meyer, Ondelettes, Hermann, Paris, 1990.
[19] W. Sun, G-frames and g-Riesz bases, J. Math. Anal. Appl. 322 (2006) 437-452.

[^0]: E-mail address: pgavruta@yahoo.com.
 1 Partially supported by MEC grand CEEX 69/2006.

