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Abstract 

In the paper a mixed-hybrid approximation of the potential fluid flow problem based on prismatic discretization of the 
domain is presented. Trilateral prismatic elements with vertical faces and nonparallel bases suitable for the modelling of 
real geological circumstances are considered. The set of linearly independent vector basis functions is defined and 
existence and uniqueness of the approximate solution from the resulting symmetric indefinite system are examined. 
Possible approaches to the solution of the discretized system are discussed. 

Keywords: Potential flow problem in porous media; Mixed-hybrid formulation; General prismatic elements; Symmetric 
indefinite linear systems 

1. Introduction 

Solution of the underground water flow problem in real conditions must reflect complex 
geological structure of sedimented minerals. Layers of stratified rocks with substantially different 
physical properties must be modelled using an appropriate discretization of the geological region. 
These geological characteristics can be correspondingly described by the mixed-hybrid finite element 
method using trilateral prismatic elements with vertical faces and generally nonparallel bases. 

An outline of the paper is as follows. First, we introduce the mathematical formulation of the 
problem. In Section 2, we consider the mixed-hybrid formulation. Finite-dimensional approxima- 
tion, existence and uniqueness of the approximate solution are derived in Section 3. Finally, 
different approaches to the solution of the discretized linear system with a symmetric indefinite 
matrix are discussed and promising ways are proposed. 
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Let f2 be a bounded  domain  in ~3 with a Lipschitz cont inuous  boundary  012. Potential  fluid flow 
in saturated porous  media  can be modelled by the velocity u given by Darcy's law 

u = - A - X V p ,  (1.1) 

where p is the piezometric potential  (fluid pressure) and A-1  is the symmetric  and uniformly 
positive-definite second rank tensor of hydraulic permeability of porous  medium,  i.e., there exists 
a positive constant  ~0 such that  

~oll ¢112 ~ (h-X(x)~, 4) 

holds for all ~ E R 3 and almost  a l lx  ~ f2. Fur ther  we assume [,4 - 1 (x)] u e L~ (f2) for all i ,j  ~ {1, 2, 3}. 
Consider  also the continui ty equat ion for the incompressible flow 

17. u = q, (1.2) 

where q represents the density of potential  sources in the medium.  The boundary  condit ions are 
given by 

p = PD on &f2o, (1.3) 

u . n =  - - A - 1 1 7 p . n = u N  o n ' f a N ,  (1.4) 

where 0fa = dfaDVOafaN are such that  OfaD~&faN = 0 and n is the outward  normal  vector defined 
(almost everywhere) on the boundary  012. 

A remark  on the notation.  We denote  by L2(12) the Lebesgue space defined as 

L2(Q) 

with the scalar product  (~bl, ~b2)o,a = Saq~x~b2 dx and the s tandard norm [I ~b Ilo,o = (q~, ~Jo,a~'~l/2. Fur- 
ther we denote  by L2(O) the Lebesgue space of vector valued functions r, where the components  vl, 
i = 1, . . . ,  3, belong to the space L2(Q), and consider the Sobolev space 

H'(£2) = {¢p 6 L2(f2); 17~o ~L2(f2)} 

with the scalar p roduct  (¢Pl, q~z)l,a = Sa[qhq~2 + 17q~1 Vcp2] dx and the norm l] q~ II ~,a = (~o, . .~/2 • V I I  , f l "  

We introduce the space of vector valued functions 

H(div, f2) = {v eL2(O); 17. v ~ L2(0)} 

with the no rm defined as l] r I]dlv,a = (]It [Io2a + ]] V. v 112)1/2. We will also introduce the bilinear 
form <$,/~>ea = ~a$/~ dS, where ~b a n d / t  are functions from L2(c3Q). 

2. Mixed-hybrid formulation of the problem 

Denote  the collection of subdomains  of the domain  ~ by 8h and the collection of 
faces of subdomains  e e gh which are not  adjacent to the boundary  0fan by Fh = Ue~hOe -- 8fao, 
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where h is the discretization parameter  (see [4]) 

h = max {diam e}. 

Denote  the restriction of any function on the subdomain  e ~ ~h by the superscript e, i.e. ~b e = q~ le. 
Let us in t roduce the functional spaces defined on ~h and Fh. Let H(div, 8h) be the space of square 
integrable vector functions v ~ L2(12), whose divergences are square integrable on every subdomain  
e ~ V~h, i.e. 

H(div, v~h) = {v ~ L2(f2); V. r e ~ L2(e), Ve ~ ~h} (2.1) 

with the norm given as 

[ 2 Jl Ilrlld~,,.~.= Ilvllo2.,+ ,Y__., II v ' v e l l o , e /  • (2.2) 
e~gh 

We also consider the space of traces 

Hb/'(F,) = { ~ : r ,  --. R; ~o e H~(O). ~ = ~h~o}. (2.3) 

where the space H1D(f2) is defined as H~((2) = {q~ e Hi(12); 7q9 = 0 on ~2o} and 7q~ = q~10e is the 
trace of the function q~ ~H~(f2) on the boundary  ~12; Tnq~ = q~lr, is the trace of the function 
q~ e Hi(O) on the structure of faces Fh. The space Hb/:(r~) is equipped with the norm 

11~tl~/2.r~ = inf {l~olx.,; 7h~P = P o n  f 'h}, (2.4) 

= Vtp)0.~. where I~o1~.~ denotes the seminorm I~01~., (17,p, ~/2 
Thus,  the mixed-hybrid formulat ion of the problem (1.1), (1.2) with the boundary  condit ions (1.3), 

(1.4) and the discretization ~h of the domain  f2 can be stated as follows (see also [12, 9]): 

Find (u, p, 2) e H(div, gh) x L2(~2) X H~/2( / 'h )  such that 

2 { (hue, re)o, e -- (pe, lT. ve)o.e q_ (,~e neove)oenFh } 
e ~ d h  

= ~ (p~, n ~. ve)eeneao, VV ~ H(div, gh); (2.5) 
e e g ,  

-- ~ ( V ° u e , ~ ) e ) o , e =  --  ~, (qe, Oe)o,e, V~beeL2(t2); (2.6) 
e ~ h  e E ~ h  

e ~  h e E ~  h 

(2.7) 

3. Discretization of  the domain and finite-dimensional approximation 

In this section we introduce the discretization of the domain  t2 and the lowest order finite- 
dimensional  approximat ion  of (2.5)-(2.7). 



386 J. Mary~ka et al./Journal of Computational and Applied Mathematics 63 (1995) 383-392 

Z1 

Fig. 1. 

Z6 

373 

Assume from now that  the domain  f2 is a po lyhedron  and is subdivided into a collection of 
subdomains  such that  every subdomain  is a trilateral prism with suitably chosen vertices 
Xl~ X2, X3, X4~ X5~ X6, 

Xl ~--- (Xl, Yl, Z1), X2 = (X2, Y2, Z2), X3 = (X3, Y3, Z3), 

X4 = (XI, Yl, Z4), X5 = (X2, Y2, ZS), X6 = (X3, Y3, Z6)" 

We allow also elements, which approximate  boundary  of the domain,  such that  for some 
i e {1, 2, 3} is xl = xi+3 or there exist i, j e {1, 2, 3}, i # j ,  such that  xi = xi+3 and xj = xj+3. (See 
Fig. 1.) We will assume that  the mesh obtained is strongly regular, i.e., there exists a positive 
constant  ( independent  of the mesh size h such that  d'/d >>, ( holds for every element edges d, d' f rom 
the decomposi t ion  ~h. Denote  by/7 the min imum angle of the t r iangulat ion obtained as a horizon- 
tal project ion of the prismatic mesh. 

The velocity function u will be approximated  by vector functions linear on every element e e ¢h. 
We define the Rav ia r t -Thomas  space RT°(e), 

5 
RT°(e) = {i~e; re(x) = ~ VjVj(X), X ~ e}, 

j = l  

with linearly independent  basis functions v~, j = 1, . . . ,  5, of the form 

V~ = k~ 

0] [0] 
0 , v~ = k~ 0 , 

X 3 --  0~]3 X3 --  0~3 

x , -  1 F x , -  1 
x ~ -  < 2 / ,  vx = k~ I x 2 -  =a2 / ,  

fl~X3 - -  ~ 3 J  L fl~,X3 -- C~,~3J 

F X I - - ~ I  1 
v$ = k~ / xz - ~.~ | , 

Lfl~X3 --  0~3 j 

v~ = k~ 

(3.1) 

(3.2) 

such that  

ffi(r~) = f ny. v e dS = tSij, 
J f;  

i , j =  1 . . . . .  5. (3.3) 
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HereJ~ e denotes the j th  face of the element e and n~ its outward normal vector (with respect to the 
element e). 

Lemma 3.1. The system of  functional equations 

f f j (v~) :=f  ny-v e d S = b i j ,  i , j =  1 , . . . ,5 ,  
J f~ 

generates the unique set o f  basis vector functions of  the form (3.2). 

Proof. Substituting (3.2) into (3.3) we obtain 

~ k e [  + -~- n j 3 f i x  3 - -  nj30~i3 ] dS : (~ij (3.4) n j l X  n j 2 x  2 e  e e __ njlO~i e __ nj20~i e e e . 

J f;  

For i -¢ j we get the condition 

nffl0~el q- n~z~e2 -+- nff30~e3 --  n 7 3 X T 3 ( f f ) f  e = ny lXTI ( fT)  + n72xr2(f je) ,  

where Xr(ff)  denotes the centre of gravity of the j th  face. Thus for i = 1, 2 we have 

~3=XT3(Jje), i =  1, j = 2 o r i = 2 ,  j =  1. (3.5) 

From (3.4) we obtain 

k e = {ne3 [XT3(fie) __ XT3(fje)] iJSel} - 1, (3.6) 

where I f~el denotes the area of the ith face, so I J~el > 0. For i = 3, 4, 5 we obtain the system of 
equations for the unknowns 0~1, eiS, ~i~3 and fie; 

nffl0~el -+- n720~e2 -q- nff30~e3 --  n~3XTa(f f ) f l  e = n~ lXTl ( f j  e) -q- n~2XT2(fje), j = 1, 2, (3.7) 

e e e e e e e e 
njl~i l  q- nj20~i2 = n j l X T l ( f j )  q- nj2XT2(fj) , j = 3,4, 5; j ¢ i. (3.8) 

Arbitrary two vectors from the set {n~, nL n~} are linearly independent. Hence, the system (3.8) has 
a unique solution a e ( 1 , 2 )  = (0~el, 0~ie2). Consider the subdeterminant 

1 -- Xr3(f[)  
ne13n~23 1 -- Xr3(f~) = ne13ne23[XT3(f~) -- X T 3 ( f f ) ]  ~ O. 

Then substituting for ~el and ~2, the system (3.7) has the unique solution (cte3, f~'). For k~ we have 

k~ [n~. xi(f~ e) - n e. ai~ 1,2~1 ]J~el = 1. (3.9) 

The coefficient k e is invariant of translation. We use a translation of the element e to element ~ such 
that x3 = J ~ J ~  for some j :/: i. Then the right-hand side of the system (3.8) is equal to zero, i.e. 

~ ~ ~ ~ = (0,0). Estimate then n j l X T l ( f  j ) q- n j2XT2(f j  ) = 0, and so ai( l ,2)  

n~i 'x i ( f i  ~) >1 In~l Ixi(Ji~)lsin r />  O. 
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Therefore, 

k e = k~ = [n~.x~(f~)]-  ~lf/~l- a > 0. [ ]  

We also define 

RT°- l(gh) = {Vh ~ Lz((2); v~, ~ RT°(e), Ve ~ gh}, (3.10) 

the space that consists of vector functions linear on every element. We note that in the case of 
nonparallel bases these functions are not continuous across the interelement boundaries Fh. 
Denote  the space of scalar functions constant on the element e by M°(e) with the basis function of 
the form: 

qS~,(x) = 1, x ~ e; qS~,(x) = O, xCe. 

Then we introduce the space 

M ° ~(Sh) = {qSh 6 LZ(a); qS~, s M°(e), Ve ~ gh}, (3.1 1) 

which consists of elementwise constant functions that will approximate the piezometric potential p. 
Let M ° ( f )  be the space of constant functions on the interelement f a c e f s  Fh and define the space 
m ° 1 (Fh), 

M ° ~(Fh) = {lab :Fh -* R; IJh ~ M ° ( f ) ,  V f s  Fh}, (3.12) 

which consists of functions constant on every face from Fh. Further  let PO,h, UN,h be the functions 
from M ° _ 1 (012) which approximate the functions PD and uN given in the boundary  conditions and 
which satisfy 

ff(Po,h --  Po) dS = 0; V f 6  012o, (3.13) 

fy(UN.h -- UN) dS = 0; ~ ' f~  ~f2N. (3.14) 

Then the Raviar t -Thomas  approximation of the mixed-hybrid formulation for the problem reads 
as follows (we refer also to [9-1 or [10]): 

Find (Uh, Ph, "~h) ~ RT °- 1 (~h) >( M ° 1 (gh) X M ° _ 1 (Fh) such that 

2 { (huh,  Vh)O, e --  (Ph, 17. ~h)O,e q- ('~h, he"  Vh~e~rh} 
e~h  

= (po,h, ne.vh~Oe; ~qlVhE RT°  l(~h); 

- ( [ 7 . u h ,  q h)O,e = - -  
e ~ h  

E ( ne" l~h' ]~th~Oe : dUN, h' ]2h)df2N ; ~¢~'[h ~ M ° 1,D(Fh) • 
e6~h 

(3.15) 

(3.16) 

(3.17) 
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Next, the system of linear equations equivalent to the problem (3.15)-(3.17) will be derived. Let 
ej e ¢h, j = 1,.. . ,  J, be the numbered system of prismatic elements. On every element we have 
defined the five-dimensional space RT°(e) of linear vector functions v e, i = 1, . . . ,  5. The finite- 
dimensional space RT°I(d~h) is then spanned by 5 x J linearly independent basis functions v~, 
i = 1, ... ,  I = 5 x J. Let J~, k = 1 . . . .  , K, be the numbered system of interelement faces from Fh. By 
the introduced approximation,  the functions uh, Ph and 2h belong to spaces RT ° _ 1 (Sh), M ° - ~ (6~h) and 
M°_x(Fh), respectively, and so they can be expanded in the form 

u (x) = a, , , i (x),  = E x e 
i e l  j e J  

 h(x) = E g.k(x), x rh 
k e K  

We p u t  u = (t~l, . . . , / ~ I ) T ,  p = ( e l ,  . . - ,  p j ) T  ~, = (~1,  . - , ,  ~K) T and 

Aij = (Avi, Vj)o.n; i = 1, . . . ,  l , j  = 1 , . . . , I ,  (3.18) 

Bij = - (17" Vi, 1)O.e~; i = 1 . . . .  , I, j = 1, . . . ,  J, (3.19) 

Cik  = <nk. Vi, I>A; i =  1 , . . . , I ,  k = 1 , . . . , K .  (3.20) 

Here n k is the outward  normal  vector to the facefk with respect to the element corresponding to the 
support  of the function vs. Then we compute  

[ q l ] i  = - -  <PD,h, hi" Vi>ooo; i = 1,... ,  I, (3.21) 

[q2]i = -- (q, 1)o,ej; j = 1, . . . ,  J, (3.22) 

[ q 3 ] k  ---- <UN,h, I>A; k = 1, . . . ,  K. (3.23) 

Substituting Uh, Ph and 2h into (3.15)-(3.17), we can now write the system of linear equations 

A B 
B T 

C T 

u ql) 
q2 " 

q3 

(3.24) 

Lemma 3.2. Assuming ~I2o # O, the matrix (BC) e NI.J+K defined in (3.19) and (3.20) has the full 
column rank, i.e. rank(BC) = J + K. 

Proof. Suppose Bp + C2 = 0 holds for some vectors p and 2. Then vr(Bp + C 2 ) =  0, Vv e R t. 
Equivalently, we have 

-- ~ (I7. V, P)O,e + E < ne" V, ~,>oe~r~ = O, VV • RT ° l(¢h)- 
e~. t~ h e~t f  h 

(3.25) 
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Applying the Green formula to the first term in (3.25), we have for all v e RT  ° _ 1 (~h) 

-- Z ( lie" V, P~e q- 2 (lie" V, ~enrh 
ee~'h ee~h 

= ~" ( n  e . v , ~ , - p ) o e c ~ r h -  ~ ( ne'v,p)Oec~eoo=O. 
ee~h ee~h 

(3.26) 

Because the Dirichlet boundary  condi t ion is defined at least on one face from t312o, there exists 
e 8h such that  ~ t 3 f 2 D  ~ 0. Then for some v, e ~ supp(~) we have (n  ~. v, p ) ~ o o  = 0 and so 

p = 0 on ~. Consequently,  p = 0 also on some faces belonging to Fh. Since the first sum in (3.26) 
i m p l i e s 2 = p o n F h w e g e t p = 0 o n a l l e e ¢ h a n d 2 = 0 o n a l l f e F h .  [] 

4. Solution of the diseretized linear system 

A considerable interest has been devoted to the solution of the set of linear equations (3.24) in 
recent years. These systems arise frequently, e.g. from mixed finite element or finite difference 
discretizations of the Stokes equat ions in computa t iona l  fluid dynamics or other second-order  
elliptic problems. 

We will briefly recall some possible ways for the solution of (3.24) and particularly we will 
concentrate  on some approaches  which we consider to be promising. 

Consider  first the Uzawa-like approach  (see I-6, 5]), often advocated as an efficient solution 
technique. These algori thms are in fact variants of some classical iterative schemes applied to the 
system of linear equations. As an example, the inexact Uzawa scheme for (3.24) uses the splitting 
matrix of the form 

QA 
M =  B T QMn/ct 

C T O c/13 
(4.1) 

where QA is an approximat ion  of the matrix A; QMB and QMc are some precondi t ioning matrices 
and ~, fl are fixed parameters.  This leads to the iterative scheme: 

ui+ x = ul + Q j  l(ql -- (Aui + Bpl + C2i)), 

Pi+ 1 = Pi d- O~QMI(q2 -- BTui+ 1), 

J'i+ 1 = hl + flQMl(q3 -- CTui+ 1). 

Note  that  in the "exact" case (Qa = A) this is a first-order Richardson iteration with the two fixed 
parameters  applied to the Schur complement  system for the unknowns  (pX, 2T)T precondi t ioned by 
the matrix diag(QMn, QMc). 

Since the Uzawa-like algori thms are stationary iterative methods  it is only natural  to apply the 
s tandard and powerful nonsta t ionary conjugate gradient me thod  for the solution of systems with 
a symmetric  positive definite matrix (see [8]). We have two possible ways to reduce the problem 
(3.24) to subproblems with a symmetric  and positive-definite matrix. We can use a partial 



J. Mary}ka et al./Journal of Computational and Applied Mathematics 63 (1995) 383-392 391 

substitution for the unknown u to obtain the Schur complement system for the unknowns (pT, 2T)T. 
This approach was discussed in [9]. Similarly, two successive substitutions were used in [2], where 
Schur complement system for the unknown vector 2 was solved. 

Although a block-diagonal block matrix can be easily invertible in scalar computing environ- 
ment, another efficient strategy may be based on the solution of the global system (3.24) by the 
preconditioned conjugate gradient method. The system (3.24) is, however, symmetric indefinite. 
Motivated by [3] and [5], suppose that QA satisfies 

(v, Av) 
1 <o~ 1 ~ - - ~ a  2 (v, Q v) 

and let QT be an approximation of the matrix 

((A - Q a ) Q j ' A  (A - QA)QjlB'~ 
T = \ B T Q j a ( A  _ Qa) BTQj 'B J 

such that 

(v, Tv) 
1 < f l 1 ~ < - - ~ < 3 2 .  

(v, Qr  v) 

Then the product of matrices (AOA )(0 1 
1 B T Q j  1 -- I B T 

I C T Q j  i -- I C T 

(4.2) 

is a symmetric positive-definite matrix (see [3]). Premultiplying (4.2) by the matrix 

QT 1 ) 

C T Q j ' ( A  - QA B)Qr ~ - I ' 

we obtain a symmetric positive matrix with respect to the inner product 

I( i)] (;tt 
x + (,L 

p ,  = T  , - Q r p ,  

Consequenty, the matrix of the system (3.24) is symmetrizable and, following Hageman-Young [7], 
we can apply the conjugate gradient method. 

Another conjugate gradient-type method, which can be applied also to a symmetric indefinite 
system is the MINRES method presented in [13]. This strategy, based on the preconditioned 
MINRES scheme, has been tested in [14] and [15], where different types of preconditioners were 
investigated. Our preconditioner is based on the incomplete Bunch-Parlett decomposition of 
(3.24), which is obtained from the left-looking algorithm based on the directed graph model (see 
[1]) to get a structure of the rows of the Bunch-Parlett factor L. 
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Deta i led  results of  numer ica l  exper iments  and  a c o m p a r i s o n  of  different app roaches  used in o u r  
u n d e r g r o u n d  wate r  flow appl ica t ions  will be publ i shed  in the fo r thcoming  pape r  [11].  
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