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solutions which radially converge at infinity under certain hypotheses. c 1990 
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1. INTRODUCTION 

The second order, quasilinear elliptic Dirichlet problem of nondivergence 
type, i.e., the problem of the form 

Qu = a”(~, Du) D,u + b(x, u, Du) = 0 in Q, 

u(x) = v(x) on aa, 
(1.1) 

will be considered, where /;2 is a unbounded subdomain of R” with C*.” 
boundary, m Z 2, CI E (0, 1). 

The elliptic boundary problem in unbounded domains is an important 
and active area in partial differential equations. A lot of results have been 
obtained for linear or semilinear second order elliptic boundary problems 
in exterior domains. N. Meyers and J. Serrin [Z] discussed the existence 
and uniqueness of solutions for linear exterior problems. E. S. Noussair 
[3], concerning the Dirichlet problem and the third boundary problem of 
semilinear equations, presented some conditions permitting the existence of 
nonnegative solutions, positive solutions, maximal solutions, bounded 
solutions, and solutions which converge to zero uniformly at infinity. Y. 
Furusho and Y. Ogura [S, 61 considered the existence of bounded positive 
solutions of semilinear equations. In recent years, the boundary problems 
for quasilinear equations in exterior domains, especially positive solution 
problems, have also been paid much attention (see [7]). But for general 
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unbounded domains we only know the results on the existence of positive 
solutions of semilinear elliptic boundary value problems (see [4]). 

In this paper, we are interested in the existence and uniqueness of 
classical solutions of the problem (1.1) which radially converge at infinity 
(see Definition 2.1). 

Similarly, the third boundary problem 

Qu=O in Sz, 

;+/+(x) on a52, 

may be discussed, where v is an outer normal direction at dSZ. 

2. PRELIMINARIES 

The unbounded domain D in (1 .l) is assumed to have the form 

where (52,) is a sequence of bounded domains with the following proper- 
ties: 

(1) J=&CL&+, co; 
(2) aa, E C*J, H = 1, 2, . . . . 
(3) (52,) uniformly satisfies the exterior sphere condition, i.e., there 

exists a sphere B of constant volume such that {x} = Bn 02, for every 
xEaa,, n= 1,2, . . . . 

We assume throughout that for every bounded domain GcLL 

(Q,) a”(~, p) E C’(G x R”) and b(x, z, p) E C’(G x R x R”), 
i,j=l,2 m; , . . . . 

(Q,) Q is uniformly elliptic in G, if L(x, p) and A(x, p) denote 
respectively the minimum and maximum eigenvalues of the matrix 
[a”(~, p)], this means that 

4x> P) <& 
xi-z ’ 

for every (x, p) E G x R”; 

(Q,, D,Wx, z, P) 6 0; 

(Q4) WC z, P) sing z d 4.~ PI A(1 + I PI ); 

(Q5) ID&(x, PII, (1 + IpI) lD,,~“b, PM <2(x, P) -4(lzl); 
(Qcd Ih z, PII, I~,& z, PII, PA X,GP)l, (I+ IPl)l~,,W~~>P)l 

505ow-5 
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< n(x,p) J&( lzl)( 1 + lpi), where J%‘, , J& are constants, and J’~~([zI), 
d4( IzI ) are positive and increasing functions of IzI. 

Denote 

r= {x/1x1: xd\{O}}. 

DEFINITION 2.1. Let f be a continuous function on S’+ ‘. A function 
U(X) belonging to C*(Q)n C”(G) is a solution of (1.1) which radially 
converges to fat infinity, if it satisfies (1.1) and the condition 

lim U(X) = f(o) for every WET. 
x/lxl + w Lx- - + m 

The conditions q(x) E C2x”(Q) (0 < CI < 1) and 

lim q(x) =f(o) 
x/lx1 - OJ 1x14 + cc 

for every 0 E I- 

will be assumed throughout this paper. From this, we know that q(x) is 
bounded. Let [q(x)1 6 MO, MO > 0. 

DEFINITION 2.2. A function v+(x) (U(X)) EC’(Q) n Co(a) is called a 
global super- (sub-) function relative to Q, q(x), andf, if the conditions 

Qu+(x,<O (Qu-(x)aO) in Q, 

u+(x) 2 v(x) (u-(x) d dx)) on a, 
(2.1) 

are satisfied. 

LEMMA 2.3. Suppose that there exist a superfunction v+(x) and a sub- 
function v-(x). Then we can find a sequence of functions U,(X)E C”(a), 
n = 1, 2, . . . . with the following properties: 

(i) u,(x) E C2+(a,7), n = 1, 2, . . . . 

(ii) @4,(x) = 0 in Sz,, 
n = 1, 2, . . . . 

u,(x) = v(x) on an,, 
(iii) v~(x)~u,(x)~u+(x), n = 1, 2, . . . . 

ProoJ By Theorem 15.10 in [l], we know that the problem 

Qu(x) = 0 in Q,, 

4x) = v(x) on asz,, 
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has a solution U,(X)E C*y”(fi,), n= 1, 2, . . . . Then the functions u,(x) 
defined by 

u,(x) = 1 
U,(x), XEQ,, 
cp(x), x E Q\Q,,, 

n = 1, 2, ..‘) 

are of CO(Q) and satisfy (i), (ii). Moreover, we get (iii) from the com- 
parison principle (Theorem 10.1 in [ 11). The proof is complete. 

LEMMA 2.4. Suppose that b(x, 0,O) = 0, then the sequence {uJx)} in 
Lemma 2.3 is uniformly bounded. 

Proof: We can rewrite 

@i,(x) = a”(x, Dun(x)) Duu,(x) + b(x, u,(x), k,(x)) = 0 

as 

Lu,,(x) = a!(x) DVu,(x) + b:(x) D,u,(x) + c,(x)u,(x) = 0, 

where 

al = al’(x, k,(x)), 

b%) = j-; Dp$( x, u,(x), tDu,(x)l dt, 

c,(x) = j,: D,b(x, u,(x), 0) dt. 

Then the maximum principle (Theorem 3.1 in [ 11) yields that 

bn(xjlO,R d I’P(x)I,~,~ + k~(xh,~,~, G 2Mo for all n = 1, 2, . . . . 

which is just the desired result. 
Denote 

Q,,, = {x E Q,: dist(x, &?,\&2 > E)}, 

where E > 0, N is a positive integer. 

LEMMA 2.5. Let {u,,(x)} in Lemma 2.3 be uniformly bounded in a, i.e., 
lu,(x)l < A4 for all x E 0, where the constant A4 is independent of n. Then for 
any integer N > 0 there are two constants C and PE (0, 1) such that 

Ik?(X)l2,~.iz~. G c/v 3 I’ for every n >, N, (2.2) 
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where p is the radius of the exterior sphere B assumed in (3), and C,, 
P depend on m, M,, M J&, Jat,, J&(M), J&(M), p, diam QN, B yet 
depends on ~1, both independent of n. 

Proof. According to the hypotheses, we see that the structure condition 
(14.9) and the conditions of Theorems 15.2 and 13.6 in [l] are satisfied. 
Hence, we get 

lu,(x)l I,mJ.~N.p/2 6 c for all n > N, 

where the constant C is independent of n. Further, we conclude (2.2) by 
applying Schauder’s interior estimate (Corollary 6.3 in [ 11) and local 
boundary estimate (Lemma 6.5 in [ 11). 

In Lemma 2.5, we gave a uniform C2xp estimate of u,(x) in fiN,p, but not 
in QN. This is because a uniform Cl,’ estimate and C2,8 estimate for 
{uJx)} on aQ,\iXJ cannot be directly acquired under the assumptions. 

THEOREM 2.6. Under the hypotheses of Lemmas 2.3 and 2.5, the problem 
(1.1) has a solution u(x) E C:;,“(0) satisfying 

Proof Let {uJx)} be the sequence in Lemma 2.3. For each positive 
integer N, by lemma 2.5, there exists a positive constant C, independent of 
n such that 

for all n 2 N and some /I E (0, 1). Then, by applying inductively the 
ArzelPAscoli theorem to {U,,(X)} in Q, (N= 1, 2, . ..) and the diagonal 
method, we may obtain a solution U(X) of the problem (1.1) in C’(D), and 
hence in C*,“(fi) by a standard regularity argument based on Schauder’s 
estimate of linear equations. Since u+(x) < u,Jx) < u-(x) in oi, for each 
n = 1, 2, . . . . we know that the function U(X) also satisfies u+(x) G 
u(x) < v-(x) in D. 

COROLLARY 2.7. Suppose that q(x) > 0, b(x, 0,O) > 0 for all x E 0, and 
there is a nonnegative global super-function uO(x), then the problem (1.1) has 
a nonnegative solution u(x) E C:;,“(Q) satisfying 0 <u(x) < vO(x). 

Corollary 2.7 follows by taking v-(x) = 0 and v+(x) = Q(X) in Theorem 
2.6. 
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3. THE EXISTENCE AND UNIQUENESS OF SOLUTIONS 

THEOREM 3.1. Let u,(x), uz(x) E C*(Q) n C”(o) satisfy Qu,(x) = 
Qu2(x) =0 in Sz, uI(x) = +(x) on X2, arzd converge radially to f(w) for 
some f E C”(Sm-‘I). Then u,(x) = u*(x) in D. 

Proof: By the assumptions, it is easy to get 

for any o E r. Thus, for, any n E Z and any o E r, there exist constants 
6,(o) > 0 and R,(o) > 0 such that 

lu,(x) - %(X)1 < l/n, 

provided that XESZ\{O}, Ix/lxl - 01 < 6,,(w), and 1x1 > R,(o). 
Letting 

S,(o)= {xlld:x~~\{0), Ix/b -4 -4(4)? 

n = 1, 2, . ..) then we have 

u S,(o)d=. 
WEI- 

Hence, according to Borel’s covering theorem, for each n E Z we can choose 
an integer k > 0 and corresponding constants a,(~,), . . . . 6,(0,), such that 

ij sn(wi) IJ r9 
i=l 

namely, for every x E 6\ {O} there exists an integer i, (1 < i, <k) such that 

Ixllxl - oif)l < bn(oi~). 

Writing 

then we have 

lu,(x) - uz(x)l < l/n 

provided that x E 0 and 1x1 > R,. Moreover, since 

lim Q,=Q, 
n--rm 
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for each n E Z we can find an integer i > 0 such that 

aszi”\asz c {X E R”: 1x1 > R,}. 

So, from the maximum principle it follows that 

sup lui(x) - @)I G sup lui(x) - &)I < l/n. 
a,. JR,, 

Letting n + co, we thus conclude that ul(x) = uz(x) in 0. This completes 
the proof. 

A direct treatment for the existence of the problem (1.1) is invalid since 
the usual estimates for bounded domains cannot be extend to unbounded 
domains. We plan to approximate a solution of the problem (1.1) by the 
solutions u,(x) of the analogous problems in bounded subdomains Sz, of 
52, n = 1,2, . . . . So, the key is to obtain a uniform bound for {uJx)}. 

DEFINITION 3.2. A function u+(x) (V ~ (x)) is called a global upper 
(lower) barrier in Sz relative to Q, q(x), andfif it satisfies that (i) u+(x) 
(V-(X)) is a super- (sub-) function relative to Q, cp, and f, and (ii) 

lim v+(x) (u-(x)) =f(w) for all w E I7 
x/l.xl -w 1.X - + m 

It is obvious that the barrier is bounded. Hence, we conclude the 
following existence theorem by virtue of Theorem 2.6. 

THEOREM 3.3. Let f(o) E C”(,SmW1) and suppose that there exist upper 
and lower barriers v+(x), v-(x) relative to Q, cp, and f. Then the problem 
(1.1) has a (unique) solution u(x) E Ct;F(li) which converges radially tof at 
infinity. 

Proof Let ~u”(x)~~,~ < Co (Co > 0) and {u,(x)} be the sequence in 
Lemma 2.3, then we have 

Ikz(x)Io,ss G I%f(~)lo,IT, + Icp(x)lo,,,,n 

~ma4~+(x)lo,~~ l~-b)lo,d+~o 
<C,+MrJ, n = 1, 2, . . . . 

Consequently, (U”(X) 1 is uniformly bounded in !Z Thus, by Theorem 2.6, 
the problem (1.1) has a solution U(X)E C:;,“(W) satisfying 

u-(x)<u(x)<u+(x). 
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Further, 

lim u’(x)=f(o) for all WE r 
x/lsl + w 1x1 - + m 

and it follows that u(x) converges radially to fat infinity. The theorem is 
proved. 

In the case that the sequence {U”(X)} in Lemma 2.3 is uniformly 
bounded, we shall motivate the definition of a local barrier. 

DEFINITION 3.4. Let M+ (M-) be a uniform upper (lower) bound of 
(uJx)} in Sz. A function u’(x) (u-(x)) in fi\52,, is a local upper (lower) 
barrier relative to Q, cp, f, and M+ (M-) at infinity for some integer 
n, > 0, if v + (x) (cl - (x)) EC~(Q\~~,,) n C”(0\a,,) and satisfies 

(a) Qu+(x)<O (Qv-(x)20) in 52\an,, 

(b) u+(x) 2 dx) (u-(x) G dx)) in D\a,, , 

(c) v+(X)>M+ (v-(x)<M-) on X?,,\&2, 

(d) r,,‘jlw v+(x) (u-(x))=f(a) for all 0 E ZY 
1’1 - + cc 

Remark 1. If 52,, = G?, = @, the condition (c) may be removed. So, 
Definition 3.4 coincides with Definition 3.2. 

When b(x, 0,O) = 0, we see from Lemma 2.4 that the sequence (U,,(X)} 
is uniformly bounded. In this case, we have the following existence 
theorem. 

THEOREM 3.5. Let b(x, 0,O) = 0, and suppose that there exist local upper 
and lower barriers v+(x), u-(x). Then the problem (1.1) has a (unique) 
solution u(x) E Ck,*(Q) which converges radially to f at infinity. 

ProoJ: Let u’(x) E C’(a\!Z,,,) n C0(n\6?,,), then, according to Tietze’s 
extending theorem (Theorem 2 of Section 2.2 in [8]), we can continuously 
extend u’(x) to v;(x) (K”(n)). Let 

4G(x)=maxW(x)~ CPW 

cPu(x)=min{v;(x), 44x)). 

It is clear that qp$ (x) E C”(a). Therefore the existence theorem for con- 
tinuous boundary values (Theorem 15.18 in [ 11) implies that the problems 

Qu(x) = 0 in m,, 

u(x) = ‘p; (xl on a52,, 
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have solutions uO+ (x) E C”(O,,) n C2(&?,,). Putting 

u;(x) = 
i 

v’(x), x E Q\Q,, 3 
u$ (x), X4,, (3.1) 

we see that v:(x) E C’(6) and satisfy 

u,(x) d q(x) d UC(X) for all x E 1%2 u (a\n,,). 

Let (Us} be the sequence in Lemma 2.3, then we have 

0; (xl 6 cp(x) = u,(x) 6 u:(x) on ao2, 

for all n > no. Moreover, from the assumptions and above argument we get 

Q(x) = z&x) for all x E a,,, 

u;(x) G q(x) = u,(x) < uo’ (x) for all x E aqaa,,, 
u;(x)=v-(x)~u,(x)~v+(x)=uo+(x) for all x E aq,\as2, 

and 

Qu,‘(x) = Qu,(x) = 0 in Q2,,. 

Thus the comparison principle for quasilinear elliptic equations yields that 

u;(x) 6 u,(x) < u:(x) (3.2) 

for all n >n, and XE~,,. Similarly we also get (3.2) in fi,\n,,, and hence 
in 8, for all n > no. Further, we see from (3.1) that 01 (x) are bounded in 
0 and converge radially to f at infinity. So, (3.2) implies that (uJx)} is 
uniformly bounded. We thus obtain the conclusion from Theorem 2.6. 

Remark 2. If we replace the condition (Q2) by the condition 

(Q;) The operator Q is elliptic in G c Q, that is, for any 
(x, p) E G x R”, it holds that 

ntx, PI = 44x3 PI lP12) as IpI-, +m, 

where ,4(x, p) and A(x, p) are as above, 

the conclusion of Theorem 3.5 is still true. 

Remark 3. If 52 is an exterior domain in R,, i.e., 0 = R”\G, where G 
is a bounded domain in R”, the condition v ~ (x) < q(x) d v + (x) for x E fi 
in Definition 2.2 as well as in Definition 3.2 can be replaced by the condi- 
tion v~(x)<(p(x)<u+(x) for XE%& 
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As an application for the results of this paper, we consider the Dirichlet 
problem of the minimal surface equation 

mu=(1+lDu12)du-D,uDiuD,u=0 
(p) {.(x)=c?(l) 

in R, 
on an, 

where D is an exterior domain in R”. It is assumed that the mean 
curvature of the boundary &2 is everywhere nonnegative. 

Let 
I-, = {x: 1x1 = 11. 

PROPOSITION 3.6. Let m 2 3, q(x) E C’,‘(@, and let 

lim cp(x)=h (h is a constant), w E r,, 
x/(x( + “I 1.Y + + 00 

then 

(1) the problem (p) has a (unique) solution u(x) E C:;:(Q) (0 <a < 1) 
satisfying 

lim u(x) = h, CoEr,; 
.x/lxl - w 
1x1 - + cc 

(2) if q(x) >,O on XJ, the problem (p) has a nonnegative solution 
u(x) E C’.*(a) which converges to zero untformly as 1.x + + co; 

(3) tf q(x) > 0 on 852 with strict inequality holding for at least one 
point x E XJ, the problem (p) has a positive solution which converges to zero 
uniformly us 1x1+ -I- co. 

Proof (1) Taking 

v’(x)= kCIxl’-“+h, 

where C=max{l, max,,{(h+ Iv(x)\) Ix\“-*}}, then we have 

(a) mu+(x)= -C3(m-2)3(m-l)~x~~3m+2<0 

+9~v~-(x)=C~(rn-2)~ (m- 1) IxI-~“+*>O 
in Q, 

(b) ~-b)~q(x)6u+(x) on ai2, 

(cl lim v*(x)= h 
.x/lx1 - Q 
1x1 + + m 

as m b 3. 

This means that v+(x) (u - (x)) is a local upper (lower) barrier relative to 
cp, h. Hence the conclusion (1) follows by Theorem 3.3 and Remarks 2 
and 3. 
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(2) Similar to (1 ), we know that 

q)(X) = c IX12-m (C as (1)) 

is a nonnegative bounded super-function. So, by Corollary 2.7, we see that 
the problem (p) has a nonnegative solution U(X)E C%,“(n) satisfying 

O<u(x)<C IX12-m, 

and consequently we have lim,,, _ + cc U(X) = 0 uniformly as m 3 3. 
(3) According to (2), the problem (p) has a nonnegative solution 

u(x). Now it suffices to show that U(X) > 0 in s1. 

We can rewrite 

mu(x) = (1 + lDz4(x))2) du(x) - D,U(X) D,U(X) Dii(x) = 0 

as 

h(x) = a”(X) Dp(x) = 0, 

where 

a”(x) = 1 + IDu(x)l2 - IDiU(X)12, 

a”(x) = - D,u(x) DjU(X), 
i#j,i,j=l,2 ,..., m. 

Then the conclusion (3) follows immediately by E. Hopf’s strong maximum 
principle (Theorem 3.5 in Cl]). 
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