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Abstract

This paper presents a parametric wave disturbance model for an improved representation of the overall system dynamics of a

floating wind turbine (FOWT). Hydrodynamic panel codes calculate the frequency-dependent first-order wave excitation force co-

efficient on rigid floating bodies. This transfer function from wave height to the forces and moments on the body is approximated in

this work by a linear time-invariant model. With a causal problem definition the fit to an impulse response shows a good agreement

in frequency and time domain for spar-type and semi-submersible-type platforms of floating wind turbines. The disturbance model

was coupled to a linear structural FOWT model and the effect of the wave height on the tower-top displacement was compared

to the nonlinear model with good agreement. Applications of this parametric model are the inclusion of disturbance dynamics in

model-based controller design as well as feedforward control for fatigue load reduction.
c© 2016 The Authors. Published by Elsevier Ltd.
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1. Introduction

Offshore wind turbines increase significantly in size as the development and experience with large plants builds

up. The rotors of these turbines make the offshore wind turbine the largest existing rotor-dynamic system. Simplified

models, which are the focus of this paper, can be used for conceptual optimization and controller design. Espe-

cially linearized models provide the fundamental understanding of the system dynamics through eigenvalue analyses

and transfer functions. This knowledge is essential for system and controller design. In general, floating wind tur-

bines (FOWT) are simulated in time domain, taking the structural flexibilities into account. The coupling of the

structural deformation with hydrodynamics and aerodynamics stresses the importance of transients, which increases

the complexity of linear rigid-body models commonly used in ocean engineering. Cummins equation is the standard

approach for the time-domain representation of the first-order radiation and diffraction of a floating body. The wave

excitation part of Cummins equation is the focus of this paper. Yu and Falnes [1], developed a state-space model of
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the wave excitation force of a vertical cylinder in heave direction, aiming at the control of wave energy converters.

They analyzed extensively the non-causality of the wave excitation function, or force-RAO, which is due to the fact

that the wave forces might arrive at the hull prior to the corresponding free-surface elevation at the location of the

floating body.

The objective of this work is to find a parameterized representation of the wave excitation force coefficient, the

transfer function from the wave height to the six forces and moments on the floating foundation of a wind tur-

bine, G f rc = Gη⇁F , see Fig. 1. This means that the wave excitation force time series do not have to be calculated

prior to a simulation through an inverse Fourier transform, the wave height is a direct input to the model. Also,

this disturbance model is advantageous for the design process of the blade-pitch controller and, furthermore, as an

integrated real-time model for model-based control approaches. With wave scanning methods a feedforward control

for disturbance attenuation is conceivable, where an incident wave elevation measurement is fed into the LTI model

in order to optimize the actuator trajectory for future timesteps. This is comparable to Dynamic Positioning (DP)

control, which compensates the motion from second-order hydrodynamic forces. Signal filtering, necessary for an

implementation of such a system, is not considered in this work. The methodology in this work follows the model

proposed by Yu and Falnes [1]: The solution of the wave excitation function in surge-, heave- and pitch-direction is

calculated with a hydrodynamic panel code, see Section 2. The frequency-dependent function is then transformed to

time-domain and the resulting impulse response is shifted such that the response in negative times is negligible. This

causalized response is then the time-domain data for the system identification. A linear time-invariant (LTI) model is

subsequently fitted to the given data with a variable number of poles and zeros in Section 3. The performance of the

fitted model can be evaluated with the wave force impulse response directly, but also with the time-domain wave force

response to a stochastic wave train. The same wave train can then be used to calculate its corresponding complex

energy spectrum, which gives, when multiplied with the wave force transfer function, the wave force response to the

same excitation as for the identified model. The method has been applied to two generic floating offshore wind turbine

platform geometries, both for the NREL 5 MW reference wind turbine, see [2]. The first is the spar-type shape of the

OC3-Hywind model, see [3] with a rather simple cylindrical shape, whereas the second model is the OC4-DeepCwind

semi-submersible, see [4]. This one consists of three outer columns with heave-plates at their bottom ends, one central

column and braced connectors.

The knowledge of the transfer function from wave height to the system outputs such as rotor speed, tower-top

displacement or platform displacements is crucial for the design of controllers using loop-shaping methods. Therefore,

the LTI wave excitation model is incorporated in a flexible multibody model for floating wind turbines as shown in

Fig. 1, where a general FOWT dynamic system is assembled in terms of linear block diagrams with the identified

wave disturbance model. Through a linearization of the nonlinear equations of motion a transfer function from the

disturbances like wave height or wind speed to the system states can be obtained. This is shown in Section 4 before

summarizing and concluding this work.

2. Time-domain simulation of linear hydrodynamics

As transient load situations are often design-driving for floating wind turbines all relevant standards require various

time-domain simulations with wind and wave loads. Therefore, state-of-the-art simulation tools for floating wind tur-

bines are based on a frequency-to-time-domain transformation of the hydrodynamic coefficients. Hydrodynamic panel

codes solve a potential flow problem with 3D surface meshes as boundary conditions. Usually the decoupled problems

of radiation (or maneuvering) and diffraction (or seakeeping) are considered: The radiation problem is solved for still

water with the floating body oscillating at various frequencies. Its linear solution is the 6 × 6 frequency-dependent

radiation damping matrix B(ω) and the 6 × 6 frequency-dependent added mass matrix A(ω). The diffraction problem

is solved for a fixed floating body with waves of different frequencies (and directions) as boundary condition. The

linear solution of the diffraction problem is the frequency-dependent 6 × 1 wave excitation force coefficient X(ω). In

frequency-domain the equation of motion can be set up assuming a linear superposition of the radiation and diffraction

problem as

− ω2 [M + A(ω)] ξ̃ + jωB(ω)ξ̃ + Cξ̃ = X(ω)η̃(ω) (1)
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Fig. 1: Coupled FOWT model including dynamic subsystems and disturbance transfer function as block diagram.

with the hydrostatic stiffness C and the 6 × 1 complex vector of differential generalized coordinates of the uncon-

strained body in all three directions and orientations ξ̃ and the complex free-surface elevation η̃(ω), see also [5].

The two potential flow solutions of the coefficients of the left and the right-hand side of eqn. (1) are now specifically

useful: The matrices A(ω) and B(ω) represent the system properties, whereas X(ω) represents the excitation force

properties of waves on the floating body.

2.1. Frequency-to-time domain transformation

For time-domain simulations of freely floating bodies, Cummins has derived a valid frequency-to-time-domain

conversion of eqn. (1). The linear and stationary description in frequency-domain of eqn. (1) needs to be extended to

account for transient effects. These transients can be seen as the pressure forces due to radiated waves by a motion

impulse of the hull. The frequency-domain dynamics of the fluid particles surrounding the hull are

K( jω) = B(ω) + jω [A(ω) − A] . (2)

The “retardation” function K( jω) has a real and an imaginary component. While the summand of the damping

coefficient is real the one of the added-mass coefficient is imaginary. The time-domain fluid impulse response func-

tion K( jω) can be obtained according to Ogilvie, [6], by transforming the real part or the imaginary part of eqn. (2) to

the time-domain as

K(t) =
2

π

∫ ∞
0

B(ω) cos(ωt)dω = −2

π

∫ ∞
0

ω [A(ω) − A∞] sin(ωt)dω. (3)

Consequently, the retardation function K( jω) can be computed from the panel code results and subsequently trans-

formed into time-domain to obtain the impulse response function K(t).

The integral radiation pressure forces can now be written in the time-domain with an acceleration-dependent term

with constant coefficient A and the convolution of the impulse response function K(t) with the body velocity ξ̇ ac-
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cording to Cummins, [7], as

Frad = −Aξ̈ −
∫ t

0

K(t − τ)ξ̇dτ. (4)

This is commonly implemented in state-of-the-art floating wind simulation tools, like FAST, Bladed and others.

Cummins equation is the time-domain equation of motion of a rigid floating body with its center of mass as reference

(M + A∞)ξ̈ +

∫ t

0

K(t − τ)ξ̇(τ)dτ + Cξ = Fwave. (5)

The convolution integral in eqn. (5) brings some computational burden since a time history of platform velocities has

to be stored and an integration over a number of past time steps needs to be performed. The number of time steps

necessary has to be determined according to the platform model.

In general, the magnitude of the radiation forces on floating wind turbines is not decisive but the effects involved

in the radiation problem do alter the dynamics: Although radiation damping contributes only a small portion to the

overall damping (which is generally dominated by viscous damping through vortex shedding) the component of the

radiation damping force Frad in eqn. (4) which is in phase with the acceleration does change the apparent added mass

and inertia at the frequency of oscillation. This is the most significant disadvantage of using the simplified “constant

matrix” approach where eqn. (1) is transformed to the time-domain assuming constant coefficients for the added mass

and radiation damping A and B, respectively as

(M + A(ωc))ξ̈ + B(ωc)ξ̇ + Cξ = Fwave. (6)

Here, the constant frequencies of vector ωc can be selected according to the respective eigenfrequencies of the rigid

floating body. The linear damping term with the panel code radiation damping coefficient B(ωc) can be augmented

by damping coefficients from experiments or high-fidelity simulations. Here, the damping coefficients, defined in the

definitions of the generic platforms have been used, see Section 4.

The driving force of the right-hand side of eqn. (1) and eqn. (5), the wave excitation force, can be obtained in the

frequency-domain by multiplying the force coefficient X with the complex wave spectrum η̃(ω)

Fwave(ω) = Xη̃(ω). (7)

For conventional time-domain simulations of FOWTs the spectral wave data is a model input. Prior to the simulation

the wave force timeseries in all six directions Fwave(t) is calculated for the entire simulation time through an inverse

Fourier transform

Fwave(t) =
1

2π

∫ ∞
−∞
η̃(ω)X(ω)e jωtdω. (8)

Note that the wave spectrum η̃(ω) in eqn. (8) is the amplitude spectrum of the wave height, not the commonly used

power spectrum. It is a complex amplitude spectrum with a random phase. This random phase introduces equally

random time realizations, see also [8] for a clear derivation.

In summary, frequency-to-time domain conversions can be used directly with the hydrodynamic coefficients cal-

culated by panel codes. The disadvantage is that computationally expensive integrations are necessary either prior

to a simulation, in the case of the wave excitation force Fwave, or during the simulation in the case of the radiation

force Frad. The next section deals with an alternative description, which represents the wave excitation dynamics

through parametric linear time-invariant models.

2.2. Parametric dynamic models

When we talk about a “parametric” model we mean an LTI model with a nonzero number of states in the case

of a state-space model or poles, in the case of a linear transfer function. The coefficients of these models (of the

characteristic polynomial) are parameterized such that the new LTI model represents the best fit to the original model
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from the panel code through methods of system identification. The advantage of these models is mainly that the

complete time-domain dynamics are described as a “unified”, parametric system without numeric transfer functions

ẋ = Ax + Bu
y = Cx + Du.

(9)

The state vector is denoted by x, the input vector by u and the output vector by y. On the wave-excitation side this

means that the linear wave dynamics from the wave elevation to the forces on the platform are described through a lin-

ear dynamic model as explained in the next section. Also for radiation models, the dynamics from the body motion in

all six directions to the forces exerted on the moving body itself through the radiated waves. Such LTI models for the

radiation problem (representing the convolution integral of eqn. (5)) have been proposed in the literature. See [1], [9]

for wave energy converters and [10] and [11] for vessels with the description of the corresponding Matlab toolbox

in [12]. The method of fitting a state-space model to a convolution integral has been applied to floating wind turbines

and incorporated in NREL’s FAST model, [13] in [14]. It is therefore possible to directly compare the performance

of coupled time-domain simulations of floating wind turbines using Cummins equation with the fitted LTI radiation

model.

Thus, the radiation problem is part of the system matrix A, whereas the wave excitation (or diffraction) dynam-

ics is part of the input matrix B. Eventually, no integrals appear in the equations of motion and the wave height

as ”measurable sensor” is a system input instead of the hydrodynamic forces calculated in a pre-processing step. This

is especially advantageous for the set up of parametric transfer functions, either of the plant (from system inputs u to

outputs y, or system states x) or from a disturbance (wave height η to outputs or system states). These “disturbance

models” are essential for vessel stabilization and disturbance rejection such as DP control, see [15]. Here, a slow

feedback control attenuates the excitations from second-order drift forces on offshore supply vessels. For the complex

dynamics of floating wind turbines such disturbance rejection methods are very promising, see e.g. [16] for structural

control using tuned mass dampers, [17] and [18] for nonlinear and linear model predictive control and [19] for feed-

forward control. Feedforward control is seen as a very promising application of the wave model of this work since a

better system description together with advanced wind and wave sensors can help to reduce fatigue and also extreme

loads. Here, first-order wave loads drive the fatigue loads and impact the power fluctuation of FOWTs, which differs

from the objectives of DP control. For FOWT feedforward control with the blade pitch angle as controlled variable is

conceivable: Using the LTI model of this work for the first-order wave loads one can design a feedforward controller,

which reduces the loads or the motion of the floater.

Fitted LTI models of the first-order wave excitation force Fwave of eqn. (8) have not been applied yet to floating

wind turbines. In the following the method that was applied to a floating vertical cylinder in heave direction by [1]

will be applied to two FOWT hulls in surge, heave and pitch-direction.

3. Identification of the wave excitation force

This section deals with the system identification of the frequency-dependent wave excitation force coefficient X(ω).

It is originally calculated by 2D strip-theory or 3D panel codes employing linear potential flow theory. The force

vector X(ω) contains two components: The Froude-Krylov force due to the incident wave pressure on the hull and the

force due to diffraction of the wave field. The difficulty of fitting the wave excitation force to an LTI model is the fact

that the wave height η used as reference in the panel code for the calculation of X(ω) is the wave height at the position

of the floating body. This results in a “non-causal” transfer function, which means that the forces might arrive at the

floating body prior to the wave elevation. In this case the disturbance model input η would no longer be the cause for

the output, the wave excitation force. Since potential flow theory shows that ocean waves are dispersive they travel at

different phase velocities vp depending on the wavenumber k or the wavelength λ

vp =
1

2

√
g
k
=

1

2

√
gλ
2π
. (10)
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When selecting a wave height sensor position at some distance from the body against the wave direction the wave

excitation force model can be made causal. Falnes has elaborated this problem comprehensively in [20].

System identification can be done based on measurement data of physical experiments, such as model tests, or

based on simulation results of a different model. The latter approach is selected here, where we want to avoid the

numerically expensive calculation of a convolution integral and identify an LTI model instead. Either time-domain

or frequency-domain data can be the basis for system identification, see [21] for a general introduction. Here, an

impulse response will be used to fit the parametric model. The next sections will address the causalization of the wave

excitation force and the model fit to the impulse response.

3.1. Causalization

In this section the wave excitation problem, or the wave excitation transfer function will be modified to obtain a

causal relationship between the wave height η and the six forces on the platform Fwave. Figure 2 shows the response

of the wave excitation force coefficient X(ω) to a wave height impulse at t = 0 s in red. The response has been calcu-

lated through an inverse Fast Fourier transform of the wave excitation force coefficient X(ω). It can be seen that there

is a response at negative times, showing the non-causality as described above. A model fit of a non-causal transfer

function is not possible and therefore, as discussed above and in [20] a time delay τc will be introduced in order to

make sure that the transfer function vector G f rc is causal for all directions i.

The time delay τc is the time by which the causalized impulse response is lagged compared to the original one

shown in Fig. 2. This means that the response time of the causalized system is tc = t − τc. Thus, a wave height

timeseries at the position of the platform at time t yields its physically corresponding wave force response at the

time tc. In frequency domain the time delay τc is converted to a frequency-dependent phase lag ϕc(ω) as

ϕc(ω) = ω τc. (11)

The time delay τc selected for the OC3-Hywind spar in Fig. 2 is τc = 6 s. It is noted that, due to the dispersion

Time [s]

im
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re
sp

.
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N
]
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−0.5
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Fig. 2: Non-causal (red) and causalized (grey) wave excitation impulse response of the OC3-spar in surge.

relationship, eqn. (10), the exact position of the wave sensor is not explicitly defined, this can be done with eqn.(10)

resulting in a frequency-dependent time-delay. In reality a radar scanner would be employed for this problem to scan

a 2D or 3D wave field, compare, e.g. [22].

3.2. Impulse response fit

The causalized impulse response is subject to the system identification. For an identification in the time-domain the

error of the original impulse response ŷ(t) compared to the simulated response y is minimized through an optimization

of the model parameters and the initial conditions x0. The model parameters are the parameters of a state-space system

with m states, which has therefore m free parameters in canonical form. The input dynamics are modeled through the

parameters of the B-matrix. Usually a nonlinear least-squares algorithm is used. Following the notation of [1] the

cost function takes the form

Q =
n∑

k=1

G(tk)
[
ŷ(tk) − CeAtk B

]
(12)
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(a) OC3-Hywind spar [3]. (b) OC4-DeepCwind semi-submersible, [F. Amann, SWE].

Fig. 3: Example FOWT platform geometries.

with the time-dependent weight matrix G(t) and input and output vectors B and C, respectively. The initial conditions

are here zero but the input is an impulse, which can be realized setting x0 = B. Specific methods exist for the ini-

tialization of the parameters, for which the reader is referred to [21]. In this work the prediction-error minimization

method of Matlab’s system identification toolbox, see [23], is used with the Instrumental Variable (IV) method for

pre-filtering with default settings. The discrete-to-continuous time signal conversion assumes a zero-order-hold (zoh)

as inter-sample behavior. A review of state-of-the-art system identification techniques and a comparison of Matlab’s

system identification toolbox [23] with the CONTSID toolbox by the University of Lorraine can be found in [24].

Another possible method is the state-space realization of an impulse response using Hankel singular value decom-

position (Matlab’s imp2ss command). The latter method has been applied by [10] for a fit of the radiation impulse

response function. The model structure is selected such that the infinite frequency limit of the identified transfer func-

tion Gi( jω) is zero, lim
ω→∞Gi( jω) = 0. Therefore the relative degree is r ≥ 1 and the transfer function Gi( jω) is strictly

proper. A nonzero steady-state amplification is not a problem here. A relatively small number of states (or poles)

around n = 6 has given reasonable results for the studied geometries. As examples the OC3-Hywind spar, [3] and

the OC4-DeepCwind semi-submersible, [4] have been selected. Their geometries are shown in Fig. 3 and the basic

dimensions collected in Table 1.

Table 1: FOWT platform model dimensions.

OC3-Hywind spar OC4-DeepCwind semi-submersible

Mass including ballast [t] 7,466 13,473

Volume of displaced water [m3] 0.803 · 104 1.39 · 104

Draft [m] 120.0 20.0

Breadth [m] 9.4 74.0

3.2.1. OC3 spar
For the OC3 spar the panel code Wamit, [25], has been used with a constant frequency resolution of Δ f = 0.008 Hz

up to a frequency of f = 0.8 Hz. The results are taken from [4]. The impulse response of the wave excitation transfer

function G f rc has been shifted in time for causalization as explained in section 3.1 with a time delay τc = 6 s. In

order to study the necessary number of states for the model fit the panel code wave excitation transfer function as

magnitude and phase components as well as the impulse response through an inverse Fourier transform as eqn. (8)

has been plotted together with models of n = [4, 6, 8] states in Fig. 4. The agreement of the model fit in terms of

percent fit and Mean-Squared Error (MSE) can be found in Tab. 2. The 4-state model has clear deviations visible in

the transfer function but also in the impulse response, especially in surge. The 6- and 8-state model on the other side

converge better to the target model of the panel code. A model with n = 6 states and an agreement to the original

model of 87.9 % has been chosen for all remaining calculations in this paper. The model has input dynamics with an

order of 5 and consequently the transfer function G f rc has a relative degree r = 1 for all directions i.
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Fig. 4: Panel code (green), causalized (red), model fit with nstates = [4, 6, 8] (grey, increasing darkness), OC3 spar.

Figure 5 shows the response of the fitted model to irregular waves with a comparison to the inverse Fourier trans-

form of eqn. (8). The wavetrain used is of the Jonswap spectrum with peak periods of Tp = [5, 10, 15] s and a

significant wave height Hs = 3 m. The fitted model for the OC3 spar is the one with n = 6 states and a time de-

lay τc = 6 s. The surge and pitch responses show a very good agreement, also for high-frequency waves of Tp = 5 s on

top of Fig. 5. For the heave responses, especially for Tp = 15 s some small differences to the original data is visible.

3.2.2. OC4 semi-submersible
For the more complex hull shape of the OC4 semi-submersible the same comparison has been made with the

transfer function and the impulse response for the panel code result and the fitted model. The panel code transfer

function shows for this three-column semi-submersible more peaks than the one of the spar-type OC3 platform. The

panel code calculations have been performed by [4] with a frequency resolution of d f = 0.0016 Hz up to a frequency

of fmax = 0.79Hz. The hydrodynamic forces of this semi-submersible differ from the previously described cylindric

shape. Therefore, viscous effects, among others, might be of importance. They are only represented in the model

used here by linear damping coefficients, defined in [4]. For the model fit the impulse response function has been

shifted in time with a time delay of τc = 7.5 s. The quality of the model fit is shown in Fig. 6. Again, with the transfer

function and impulse response for n = [4, 6, 8] states. It was to be expected that for this more complex hull n = 4

states would, as for the OC3 spar, not suffice. But as in the case of the OC3 spar the models with four and six states

show a good agreement in both, the frequency and time response. Thus, also for the OC4 semi-submersible a model

of n = 6 states has been chosen for the remainder of the paper. This model has input dynamics with an order of 5
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Fig. 5: Wave force response by inverse Fourier transform (red) and 6-state fitted model (grey) for Tp = [5, 10, 15]s, OC3 spar.

Table 2: Panel code and fitted model data of OC3 and OC4 platforms.

OC3-Hywind spar OC4-DeepCwind semi-submersible

Panel code freq. resolution d f [Hz] 0.008 0.0016

Panel code max. frequency fmax [Hz] 0.79 0.79

Model fit time delay τc [m] 6.0 7.5

4-state model [−]

Model fit [%] 81.2 64.0

Mean Square Error (MSE) [−] 9.5 · 1010 1.8 · 1011

6-state model [−]

Model fit [%] 87.9 74.9

Mean Square Error (MSE) [−] 4.0 · 1010 9.0 · 1010

8-state model [−]

Model fit [%] 89.5 76.2

Mean Square Error (MSE) [−] 3.0 · 1010 8.0 · 1010

and so the transfer function G f rc also has a relative degree r = 1. Figure 7 shows the response of the fitted model

to irregular waves with a comparison to the inverse Fourier transform as above for the OC3 spar. Especially for

the high-frequency waves on top of Fig. 7, the identified model does not capture all characteristics. For the longer

waves of Tp = 10, 15 s the surge and pitch responses show a better agreement than the heave response. This might

be due to the shape of the phase response of the causalized model, which is not captured for all frequencies f < 0.1 Hz.

The OC3-Hywind floating wind turbine model is, in terms of geometry, quite close to the one studied by [1]. How-

ever, floating wind turbine foundations have often more complex hull shapes, like for example, the OC4-DeepCwind

semi-submersible. The results show that a very good fit is possible for the OC3-Hywind shape but surprisingly a
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Fig. 6: Panel code (green), causalized (red), model fit with nstates = [4, 6, 8] (grey, increasing darkness), OC4 semi-submersible.

fit with only 6 states for the shape of the OC4-semi-submersible gives an approximation that is considered accurate

enough for the purpose of representing the overall system dynamics. Table 3 shows the numeric transfer function val-

ues for the two geometries. The next section will address the coupled FOWT system as flexible multi-body (FMBS)

model in order to assess the disturbance transfer function from wave height to the states of the FOWT model.

Table 3: 6-state transfer functions and delay time τc for OC3 and OC4 platforms, wave propagation is aligned with x.

Dir τc Numerator coefficient Denominator coefficient

[s] s5 s4 s3 s2 s1 s0 s6 s5 s4 s3 s2 s1 s0

O
C

3

1 6.0 2.4 · 105 −6.5 · 105 1.8 · 106 −1.7 · 106 1.4 · 106 9.2 · 103 1.0 1.6 4.7 4.4 4.4 1.7 0.4

3 6.0 1.1 · 104 9.0 · 104 −2.8 · 104 2.2 · 105 −2.9 · 104 9.6 · 103 1.0 1.6 3.2 2.5 1.7 0.4 0.08

5 6.0 −4.3 · 106 −1.7 · 106 −3.0 · 107 5.9 · 106 −3.3 · 107 8.9 · 105 1.0 2.4 4.2 4.4 2.8 1.0 0.2

O
C

4

1 7.5 −1.0 · 105 −1.0 · 106 1.1 · 106 −8.7 · 105 5.3 · 105 9.0 · 104 1.0 1.0 2.3 1.4 1.3 0.4 0.1

3 7.5 7.9 · 104 7.4 · 105 −1.8 · 105 7.1 · 105 −3.3 · 104 9.9 · 104 1.0 1.0 1.8 1.0 0.7 0.2 0.03

5 7.5 7.0 · 106 1.8 · 107 −2.1 · 105 1.9 · 107 −4.1 · 106 −7.4 · 105 1.0 1.1 2.3 1.6 1.4 0.4 0.2
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Fig. 7: Wave force response by inverse Fourier transform (red) and 6-state fitted model (grey) for Tp = [5, 10, 15]s, OC4 semi-submersible.

4. Structural floating wind turbine model

The coupled FOWT is a multi-disciplinary system of various components, each one having its own dynamics,

see Fig. 1. The usual modeling approach is a flexible multibody model with modal shape functions for the flexible

bodies of tower and blades. Hydrodynamics are usually modeled through Cummins equation as described in Sec-

tion 2.1 and aerodynamics are commonly modeled through the iterative solution of the Blade-Element Momentum

Theory (BEM). State-of-the-art tools are the open-source FAST code by NREL or the commercial software HAWC2

by DTU and Bladed by DNVGL. Here, a somewhat different approach is chosen: A simplified model, developed at

the University of Stuttgart, integrated in Matlab/Simulink with a modular structure and symbolic equations of mo-

tion is used. The work on the model started in 2012 with the objective of standalone symbolic equations (the whole

right-hand side of the ordinary differential equation is not set up step by step as numeric values but is available in the

program code directly in terms of symbolic variables). This has first the advantage of computational speed but it is

also straightforward to implement the equations in other environments like real-time systems for model-based control.

The nonlinear symbolic equations can be linearized for linear system analysis. The tool started with Newton-Euler

equations for rigid bodies linked by spring-damper elements and Morison Equation for hydrodynamics, quasi-static

mooring lines and ”actuator-point aerodynamics”, see [26]. It has now been extended for flexible bodies and is coupled

to the AeroDyn-BEM model by NREL. It has been applied for fast design load calculations [27], as internal model

for linear and nonlinear model-predictive control [17], [18] and for controller design of floating wind turbines in [28].

The latter is an important driver for the present work: With the wave excitation ”disturbance” transfer function the

dynamics from the input wave height to the system output, like e.g. tower bending is known and can be incorporated

the design of the controller for optimal disturbance attenuation.

The model is shortly introduced for the reader to understand the basic assumptions in the next sections before the

linear disturbance dynamics are verified with the nonlinear model.
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Fig. 8: Topology of the simplified multibody model.

4.1. Flexible multibody system description

A multibody model is based on the assumption of a large rigid-body reference motion together with small elastic

deformations. If no flexible bodies are involved the rigid-body system consists of point-mass bodies coupled with

spring-damper elements. Newton’s second law for translational motion and Euler’s law for rotational motion is set

up for each of the different bodies i and thus, no conservation of energy is applied as in Lagrange’s principle, but

the momentum equations are set up directly. Forces f i and moments li acting on the bodies can be defined as state-

dependent or time-dependent applied forces, where the latter result from a system input.

An input file for setting up the equations of motion includes the position vector ri(q) to the center of mass of each

body in inertial coordinates and the angular velocity vector ωi(q) based on the generalized coordinates q. Also the

point mass properties as mass mi and inertia tensor Ii are necessary. In this work the equations of motion have been

set up for four DOFs in 2D: Three rigid DOFs as platform surge xp, platform pitch βp and rotor azimuth ϕ combined

in qr and the elastic tower fore-aft deformation xt in qe

q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
xp

βp

ϕ
xt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , qr =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
xp

βp

ϕ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , qe =
[

xt

]
. (13)

The rigid bodies are the platform, nacelle and the rotor and the only elastic body is the tower, see Fig. 8. The tower

shape function used is the first fore-aft mode shape. The wind turbine is the NREL 5 MW wind turbine, of which the

properties can be found in [2]. The individual rotor blades are not included in this model but the rotor is modeled as a

rigid disk. This method neglects the coupling of edgewise blade dynamics with the tower modes. It is still used here

because it simplifies the model to a significant extent and allows a clearer view on the main system dynamics. With
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this the translational and angular velocity and acceleration of each body’s center of mass in inertial coordinates can

be calculated by the kinematic equations. Here, the kinematics are set up based on Jacobi matrices, following [29]

JTi =
∂ri

∂q
JRi =

∂ωi

q̇
. (14)

This is advantageous for a numerical setup of the kinematics function. The velocity and angular velocity vectors

remain for each body i as

vi = JTi q̇ ωi = JRi(q) · q̇, (15)

if no time-dependent boundary conditions exist (scleronomic system). Accordingly, the translational and rotational

accelerations of body i are

ai = v̇i = JTi · q̈ + J̇Ti · q̇ αi = ω̇i = JRi · q̈ + J̇Ri · q̇. (16)

The Newton-Euler equations with three rows for Newton’s law and three rows for Euler’s law for each body i remain

as ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

miE · JTi
...

Ii · JRi
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
q̈ +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

miEJ̇Ti · q̇
...

Ii J̇Ri · q̇ + ω̃iIiωi
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f i
...
li
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ Fc. (17)

Although the Newton-Euler equations are written for each body in all six directions the motion is usually constrained.

The unknown reaction forces Fc are the forces pointing into these constrained directions. These forces are not neces-

sary for the calculation of the motion response and will be eliminated later.

Now the difference to elastic bodies compared to rigid bodies will be elaborated. Since the derivation of the equa-

tions for 3D kinematics and kinetics is rather complex an overview will be given with a reference to the respective

literature. Here, the “floating frame of reference” method is followed, see [30]: A reference coordinate system for

the flexible body is chosen, which is not necessarily its center of mass but any reference point that is convenient for

the description of the elastic properties. The coordinate system used in the floating frame of reference formulation is

the inertial one in [31] but here, the moving, body-fixed coordinate system is selected, as in [32]. This formulation

simplifies parts of the equations and is useful for a pre-computation of the elastic properties of the bodies. Eventually,

the kinematics of an elastic body i can be described by the reference kinematics and the generalized elastic coordi-

nates qe,i. Thus, the translational and angular velocity and the acceleration of an elastic body i under the notation

adopted from [33] is given by

zII,i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
Rvi
Rωi

q̇e,i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

JT,i(q)

JR,i(q)

JE,i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ q̇ and zIII,i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
Rai
Rαi

q̈e,i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

JT,i(q)

JR,i(q)

JE,i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ q̈ +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
J̇T,i(q̇)

J̇R,i(q̇)

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ q̇. (18)

Consequently, the kinematics of elastic bodies are described by a reference translational and rotational motion as for

rigid bodies, see eqn. (15) but additionally with the generalized coordinates of the elastic motion. Note that in the case

of elastic bodies the reference coordinates are written in the local coordinate system denoted by the superscript R.

The selection matrix JE,i assigns the elastic coordinates qe,i of q to the corresponding bodies. With these kinematics

the Newton-Euler equations for elastic bodies can be set up as in the case of rigid bodies, eqn. (17). The kinetics of

elastic bodies include further the quadratic velocity vector hω,i with Coriolis, centrifugal and gyroscopic forces, the

inner elastic forces he,i, based on the selected deformation tensor, external and applied forces, including gravitational

forces, ha and again, the constraint forces hc. These are summed up together with the inertia forces from the mass

matrix Mi resulting in the translational and rotational momentum equation

Mi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
Rai
Rαi

q̈e,i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ + hω,i + he,i − ha,i + hc,i = 0. (19)
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The details of these equations can be found in [32] or in [31].

The global Newton-Euler equations of each, rigid and elastic, body are now transformed into “minimal coordi-

nates” with each row representing one degree of freedom. Here, the unknown reaction forces have been eliminated

using d’Alembert’s principle: A transformation of eqn. (19) with the global Jacobian matrix J, the assembly of the

translational and rotational Jacobi matrices of all bodies yields the nonlinear equations of motion in minimal coordi-

nates. These can be transformed directly into state space

ẋ =
∂x
∂t
=

[
q̇
q̈

]
=

[
ẋ

M−1(p(q, q̇) − k(q, q̇))

]
, (20)

where the input forces on the platform, the mooring forces and wave excitation forces Fhydro = Fmoor + Fwave, are part

of vector p.

4.2. Mooring line model

The mooring lines are the ones described in the OC3 and OC4 definition papers [3] and [4]. A quasi-static mooring

model has been used to obtain the force-displacement relationships for one line. The resulting overall forces on

the platform body Fmoor as functions of the mooring line kinematics are calculated in each timestep.

4.3. Linearized equations of motion

With the wave excitation force transfer function of Section 3 we want to calculate the linear transfer function from

wave height η to the FOWT structural states. For this end the nonlinear equations of motion are linearized around the

set point of the states x0 and the disturbance inputs u

x = x0 + Δx u = u0 + Δu. (21)

where Δx and Δu are the new vector of differential states and inputs, respectively. Ensuing the linearization the

coupled equations of motion in state space description from equation (20) can be separated for position- and velocity-

dependent terms. It remains with the input (BΔu)

Δẋ =
[

0 E
−M−1Q −M−1 P

]
︸������������������︷︷������������������︸

A

Δx + BΔu. (22)

One can identify the position-dependent matrix Q and the velocity-dependent matrix P, which result from the trans-

formation of the vector of Corliolis, centrifugal and gyroscopic forces and the applied forces. The linearization is

especially critical for the aerodynamic force coefficients due to the high nonlinearity.

4.4. Disturbance transfer functions

With the linearized FOWT model the disturbance transfer function from wave height to any output of the FOWT

system can now be calculated, see Fig. 1. For a verification of the fitted wave excitation transfer function G f rc and

the structural transfer function from wave forces Fwave to the tower-top displacement xt, eqn. (22), they have been

compared to the nonlinear model of the OC4 semi-submersible: The nonlinear model, eqn. (20) has been run with

regular unit-amplitude wave force timeseries as input, eqn. (8), until it reached a steady state. The amplitude and phase

of the tower-top displacement xt against the wave signal η(t) was calculated by a Fourier transform of the timeseries

for different wave frequencies. The OC4 semi-submersible has been simulated with an overall linear hydrodynamic

damping coefficient of ξ11 = 2 % and ξ55 = 1 % and a constant added-mass coefficient of A11,c = 7.9 · 106 kg

and A55,c = 6.09 · 109 kgm2. In order to focus on the wave model no aerodynamic forces act on the system. Figure 9

shows the comparison of the results of the linear model and the nonlinear model. Both, amplitude and phase fit very

well and therefore the linear model is considered valid. It is mentioned that a higher-order viscous damping model
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Fig. 9: Transfer function from wave height η to tower-top displacement xt for OC4 semi-submersible. Linear model (grey), nonlinear model (red).

and a radiation model might alter the results of the linear and the nonlinear model. However, the simple narrow-band

approach allows to better evaluate the difference coming from the fitted wave force model compared to the direct

calculation of force timeseries.

5. Conclusions

An LTI model has been fitted to the linear wave excitation force coefficient from a panel code. The fitted model

of two example platforms for FOWTs has been compared to the original panel code data in frequency and time-

domain. The results show that with a little number of states it is possible to obtain a good agreement for realistic

wave frequencies, even for a comlex semi-submersible shape in surge, heave and pitch direction. The wave excitation

transfer function has been used to represent the disturbance dynamics of a coupled FOWT model and the overall

transfer function from wave height to the wind turbine tower-top displacement has been calculated and verified through

a comparison with the nonlinear FOWT model with the wave force timeseries as input. The fitted model is important

for model-based controller design because the knowledge of the wave excitation dynamics can be used to design

controllers for optimal disturbance rejection and load reduction.
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