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SUMMARY

Nuclear receptor signaling plays an important
role in energy metabolism. In this study we
demonstrate that the nuclear receptor core-
pressor RIP140 is a key regulator of metabolism
in skeletal muscle. RIP140 is expressed in a fiber
type-specific manner, and manipulation of its
levels in null, heterozygous, and transgenic
mice demonstrate that low levels promote while
increased expression suppresses the formation
of oxidative fibers. Expression profiling reveals
global changes in the expression of genes
implicated in both myofiber phenotype and
metabolic functions. Genes involved in fatty-
acid oxidation, oxidative phosphorylation, and
mitochondrial biogenesis are upregulated in
the absence of RIP140. Analysis of cultured
myofibers demonstrates that the changes in
expression are intrinsic to muscle cells and
that nuclear receptor-regulated genes are
direct targets for repression by RIP140. There-
fore RIP140 is an important signaling factor in
the regulation of skeletal muscle function and
physiology.

INTRODUCTION

Skeletal muscles required for sustained contractile activity

such as the soleus contain mainly ‘‘slow-twitch’’ oxidative

fibers rich in mitochondria, while those involved in rapid,

shorter bursts of activity such as the gastrocnemius and

extensor digitorum longus (edl) contain more ‘‘fast-twitch’’

fibers rich in glycolytic enzymes for anaerobic metabo-

lism. Slow fibers tend to express type I myosin heavy

chains (MyHC) while fast fibers express type IIA and IIB

MyHC (Bassel-Duby and Olson, 2006; Schiaffino and

Reggiani, 1996). Skeletal muscle may also contain a fourth

Open access under CC BY license.
236 Cell Metabolism 6, 236–245, September 2007 ª2007 Elsev
type of fiber, IIX, that exhibits fast-twitch properties inter-

mediate between IIA and IIB fibers but that may be oxida-

tive like type I fibers (Larsson et al., 1991). Fiber-type

composition can be modulated by a number of different

factors such as exercise, aging, or hormonal changes

(Wu et al., 2003). Exercise tends to shift MyHC expression

and fiber-type properties following the pathway IIB/

IIX/IIA/I (Baldwin and Haddad, 2001). Mechanistically,

altered motor neuronal activity leading to changes in intra-

cellular calcium concentration is thought to underlie these

changes (Chin et al., 1998; Olson and Williams, 2000), and

although a number of transcriptional regulators that are

able to remodel skeletal muscle have been identified (Lin

et al., 2002; McCullagh et al., 2004), it is still uncertain

how the signaling pathways are coordinated.

Nuclear receptors and their associated cofactors are

emerging as important regulators of transcriptional control

of energy metabolism and fiber types in skeletal muscle.

Targeted expression of an activated form of peroxisome

proliferator-activated receptor d (PPARd) in skeletal mus-

cle promotes fast to slow muscle transformation and

increases the expression of muscle genes involved in

fatty-acid oxidation, mitochondrial respiration, and slow-

twitch contractile apparatus (Wang et al., 2004). Similarly

overexpression of the orphan nuclear receptor estrogen-

related receptor a (ERRa) in C2C12 myotubes results in

the upregulation of a subset of genes involving the same

metabolic pathways, although an effect in vivo on fiber-

type switching has not been analyzed (Huss et al., 2004).

Both PPARd and ERRa can be activated by PPAR coacti-

vators, (Kamei et al, 2003). The expression of PGC-1a is

higher in type I oxidative muscles such as the soleus com-

pared with fast-twitch muscles such as edl and has been

demonstrated to activate mitochondrial biogenesis and

oxidative metabolism (Wu et al., 1999). Moreover, overex-

pression of this cofactor in muscle leads to the conversion

of fast to slow fibers accompanied by increased expres-

sion of metabolic genes (Lin et al., 2002). PGC-1b is also

expressed in the soleus muscle, but the highest levels

are found in the edl and overexpression has recently

been found to promote the formation of oxidative type
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IIX fibers (Arany et al., 2007). These data indicate that the

metabolic properties of skeletal muscle can be regulated

by nuclear receptors with coactivators playing a key role.

In contrast to transcriptional activation, the contribution

of transcriptional repression by nuclear receptors in mus-

cle physiology is poorly understood. We have studied the

role of the nuclear receptor corepressor RIP140 (Cavailles

et al., 1995; L’Horset et al., 1996), which regulates fat stor-

age in adipose tissue (Leonardsson et al., 2004) at least in

part by repressing the expression of metabolic genes

(Powelka et al., 2006). In this study we demonstrate in

genetically manipulated mice that RIP140 plays an impor-

tant role in skeletal muscle regulating gene networks that

determine mitochondrial activity and fiber type. Analysis

of differentiated myofibers in culture demonstrates the re-

cruitment of RIP140 to the promoters of target genes that

are subject to regulation by PPARd and ERRa. Thus we

conclude that RIP140 is required for the coordinated con-

trol of glucose and fat metabolism and plays an important

role in skeletal muscle physiology.

RESULTS

Reduction in RIP140 Expression Increases
Oxidative Fibers in Skeletal Muscle
Analysis of skeletal muscle for RIP140 mRNA expression

indicated that the corepressor is relatively highly ex-

pressed in gastrocnemius and edl muscles that are rich

in glycolytic fast-twitch fibers, while in contrast expression

is low in soleus and diaphragm that are rich in oxidative

slow-twitch fibers (Figure 1A). The deletion of the RIP140

gene leads to a change in appearance with the gastrocne-

mius, tibalis anterior, and edl muscles becoming redder

than controls (Figure 1B). To investigate these differences

we determined oxidative capacity by analyzing mitochon-

drial activity. Histochemical measurement of succinate

dehydrogenase (SDH) activity demonstrates increased

intensity of staining in the gastrocnemius and the edl in

the absence of RIP140 but minimal changes in the soleus,

which already exhibits appreciable SDH activity

(Figure 1C). RIP140 heterozygous mice express reduced

levels of RIP140 in the gastrocnemius and in the edl

(data not shown), resulting in intermediate levels of mito-

chondrial activity as judged by SDH staining (Figure S1

available with this article online).

Increased SDH activity observed in RIP140 null mice

indicates that loss of RIP140 leads to either an increase

in the total number of mitochondria, the activity of the

mitochondria, or both. Transmission electron microscopy

of the edl indicates an increase in both size and quantity of

mitochondria in null mice in comparison to normal controls

(Figure 1D) with intermediate values for heterozygous

mice (Figure S2A). Quantitation of the mitochondrial en-

coded gene cox II normalized to nuclear DNA (Figure S2B)

indicated that mitochondrial DNA increased 2-fold in the

absence of RIP140.

To determine fiber-type composition, metachromatic

ATPase and MyHC staining of muscle sections derived

from wild-type (WT) and RIP140 null mice was analyzed
Cell Me
(Figure S3 and data not shown). By immunostaining with

specific antisera (Lucas et al., 2000) the relative propor-

tions of type I, IIA, IIX, and IIB fibers in the soleus and

edl muscles were determined in the presence and

absence of RIP140. Analysis of serial sections of edl dem-

onstrated an increase in the proportion of fibers express-

ing myosins IIA and IIX and a corresponding reduction in

myosin IIB (Figure 1E and Table S1) consistent with the

increase in oxidative capacity of this muscle. In the soleus,

there was a small increase in the proportion of type 1 fibers

at the expense of type IIA and IIX fibers although all three

types of fiber are predominantly oxidative (Table S1).

To investigate the effect of RIP140 on myosin expres-

sion, protein extracts from edl and soleus were analyzed

for specific isoforms by SDS-PAGE and silver staining.

The edl contains predominantly MyHC IIB and the soleus

contains MyHC I, IIA, and IIX (Figure 1F). In RIP140 null

mice myosin IIX increases in the edl muscle while in the

soleus the level of IIX is reduced with minimal changes in

the other myosin proteins. We conclude that RIP140 sup-

presses the formation of oxidative fibers in the edl muscle,

given the SDH staining results, with a modest effect on

myosin gene expression. In addition to myosin levels we

also examined expression of myoglobin, an oxygen trans-

porter responsible for the red coloration of oxidative

fibers, and AMPKg3, an isoform predominantly expressed

in glycolytic skeletal muscle. In gastrocnemius and edl,

the expression of myoglobin showed a dose-dependent

increase with decreasing expression of RIP140

(Figure 1G). Conversely the expression of AMPKg3, ex-

pressed in glycolytic fibers, showed a pronounced de-

crease with the removal of RIP140. In soleus, the absence

of RIP140 had no effect on myoglobin expression, consis-

tent with the lack of change in SDH staining; however, the

expression of AMPKg3 decreased, suggesting reduced

glycolytic activity and indicating that the low levels of

RIP140 expressed in this muscle group are still function-

ally significant.

Overexpression of RIP140 Reduces Oxidative
Activity in Skeletal Muscle
The effect of overexpression of RIP140 in transgenic mice

was examined focusing on the soleus muscle, where

endogenous RIP140 levels are low and a putative repres-

sive action may be most clearly observed. The expression

of RIP140 was about 15-fold higher than endogenous

levels, similar to those normally found in the edl muscle

(Figure 2A). This results in a decrease in the intensity of

SDH staining in comparison to controls (Figure 2B), con-

sistent with a reduction in oxidative activity. In addition,

myoglobin expression was decreased whereas AMPKg3

expression was increased, suggesting an increase in gly-

colytic activity (Figure 2C). Thus the expression level of

RIP140 is a key determinant of the relative oxidative activ-

ity exhibited by different types of muscle types.

To investigate whether RIP140 may act to repress the

transformation of fibers with increased oxidative activity

that occurs during physical activity we investigated the

effects of exercise on the tibalis anterior muscle. Following
tabolism 6, 236–245, September 2007 ª2007 Elsevier Inc. 237
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igure 1. Decreased RIP140 Expression Increases the Proportion of Oxidative Type I Fibers in Skeletal Muscle and Expression of

yosin Isoforms and Fiber-Type Markers

A) Real-time PCR analysis of RIP140 mRNA expression in type I and II muscle groups. Type II: gas, gastrocnemius; edl, extensor digitorum longus.

ype I: sol, soleus; dia, diaphragm (n = 4). Data are expressed as mean ± standard error of the mean (SEM).

B) Morphology of muscle from wild-type (WT) and RIP140 null mice. gas, gastrocnemius; edl, extensor digitorum longus; ta, tibalis anterior;

ol, soleus.

C) Histochemical staining for succinate dehydrogenase in muscle sections from WT and RIP140 null mice taken from the indicated muscle groups

scale bars = 100 mm).

D) Transmission electron microscope analysis of edl muscle from WT (RIP140+/+) and null (RIP140�/�) mice (35600 magnification). m, mitochondria;

, z line (scale bars = 2 mm).

E) Analysis of myosin IIX and IIA expression in edl of WT and RIP140 null mice. Asterisks in upper panels indicate IIX-positive fibers identified with 6H1

ype IIX-specific antibody. Asterisks in lower panels indicate position of IIA-positive fibers.

F) Analysis of edl and soleus muscle protein extracts by SDS-PAGE and silver staining.

G) Real-time PCR analysis of fiber-type markers myoglobin and AMPg3 expression in WT, heterozygous, and null mice in indicated muscle groups

n = 3–5). Data are expressed as mean ± SEM.
6 weeks of voluntary exercise in WT mice, oxidative activ-

ity was increased and the proportion of IIA fibers was

increased by 10% with a corresponding decrease in IIB

fibers (Figure S4). This exercise-induced transformation
38 Cell Metabolism 6, 236–245, September 2007 ª2007 Else
was maintained in the RIP140 transgenic mice with an

increase in oxidative activity and a 17% increase in the

proportion of IIA fibers at the expense of IIX and IIB fibers,

both of which declined by approximately 8% (Figure S4).
vier Inc.
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Thus we conclude that RIP140 does not prevent the

formation of oxidative fibers during exercise but is a key

determinant of the relative oxidative activity.

Absence of RIP140 Enhances Multiple Metabolic
Pathways in Skeletal Muscle
To investigate potential molecular mechanisms leading to

the changes observed in muscle physiology in the

absence of RIP140, we used Affymetrix microarrays to

perform expression profiling on RNA isolated from the

gastrocnemius of WT and RIP140 null mice. The number

of probe sets that were differentially expressed with a sig-

nificance p value of 0.05 was 3044, of which 1196 (39%)

were upregulated and 1848 (61%) downregulated. (For

a list of genes see Table S2.) Inspection of genes with

functions in myoblast differentiation, structure, or function

indicated that 10 genes were upregulated and 18 downre-

gulated (Figure 3A). The upregulated genes included Fatty

Acid-Binding Protein (FABP3), which was increased by

exercise in type II muscle (van Breda et al., 1992; Wu

et al., 2003). A second gene set consisting of enzymes in-

volved in oxidative phosphorylation, fatty-acid oxidation,

TCA cycle, glycolysis, and triglyceride synthesis (Tables

S3A, S3B, and S3C) indicates that 47 (94%) of these

Figure 2. Exogenous Expression of RIP140 Reduces the

Proportion of Oxidative Fibers in Skeletal Muscle

(A). Expression of endogenous RIP140 and RIP140 transgene in soleus

muscle (n = 7). Data are expressed as mean ± SEM.

(B) Histochemical staining for succinate dehydrogenase in muscle

sections from WT and RIP140 Tg mice taken from soleus muscle (scale

bars = 20 mm).

(C) Real-time PCR analysis of mRNA expression of fiber-type markers

in WT and transgenic (RIP140 Tg) mice soleus muscle (n = 7). Data are

expressed as mean ± SEM.
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genes were upregulated whereas only 3 were downregu-

lated (Figure 3B). The asymmetrical effect of RIP140

deletion on metabolic gene expression is dramatically

illustrated when hierarchical clustering is applied to the

gene set. This pattern of gene regulation contrasts with

the heat map generated for the muscle-specific genes

that showed slightly more downregulated genes, in line

with the global pattern of expression changes. Of the

five pathways examined, fatty-acid oxidation was the

pathway most affected by RIP140 deletion with 20 of

the 27 genes on the list significantly upregulated. Only

three genes were downregulated by the loss of RIP140.

Two of these genes, pyruvate carboxylase and glycerol

phosphate dehydrogenase, encode glycolytic enzymes,

reflecting the change observed in fiber type from glyco-

lytic to oxidative. We also examined the effects of high-

fat feeding for 3 months since flux through metabolic path-

ways is primarily regulated by nutrient intake. Interestingly

mice lacking RIP140 still showed an upregulation of met-

abolic genes, including those involved in fatty-acid oxida-

tion (Figure 3B). The clustering indicates that the muscle of

WT mice responds to the high-fat diet with a shift in phys-

iology resulting in increased expression of these meta-

bolic genes; nevertheless the expression levels are still

less than those observed in null mice on either diet. Overall

these results indicate that the corepressor RIP140 is an

important regulatory factor in skeletal muscle for the coor-

dinated regulation of many key components in glucose

and fat metabolism.

The physiological role of RIP140 was examined by

determining the diurnal pattern of O2 consumption in

mice maintained on either normal chow or high-fat diet.

These studies demonstrate that RIP140 null mice have

an approximately 25% increased rate of oxygen con-

sumption compared to controls (Figure 3C); furthermore

the increased energy expenditure exhibited by the null

mice is maintained after a 3 month period of high-fat feed-

ing (Figure 3D), consistent with the maintenance of differ-

ential metabolic gene expression. Mice lacking RIP140

exhibit a decreased respiratory exchange ratio (RER) in

comparison to WT controls (Figure 3E), indicating that

the null mice utilize a greater proportion of fat as an energy

substrate in agreement with the upregulation of fatty-acid

oxidation genes. As expected, high-fat feeding decreases

the RER as a greater proportion of fat is oxidized

(Figure 3F) with a similar trend observed in the null mice.

Therefore, although a lack of RIP140 leads to an alteration

in the metabolic function of skeletal muscle the ability of

RIP140 null mice to respond to a dietary challenge is

maintained.

A Subset of the Target Genes of the Nuclear
Receptors PPARd and ERRa Are Targets
for Repression by RIP140 In Vivo
A number of nuclear receptors, including PPARd and

ERRa, have also been implicated in the control of mito-

chondrial activity, and so we investigated their expression

as well as that of some of their target genes involved in

fatty-acid oxidation in the gastrocnemius and soleus
abolism 6, 236–245, September 2007 ª2007 Elsevier Inc. 239
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Figure 3. Expression Profiling and Metabolic Studies in WT and RIP140 Null Mice

(A) Cluster analysis of genes significantly altered in the null muscle tissue with a significance value of p < 0.01 with a specific defined role in muscle cell

development, structure, or function. Red and green colors indicate relative expression levels (red = increased expression, green = reduced expression).

(B) Cluster analysis of genes significantly altered in the null muscle tissue with a significance value of p < 0.01 with a specific defined role in metabolic

pathways (red = increased expression, green = reduced expression).

(C)Forty-eight hour profile of oxygenconsumption inWT andRIP140null (KO) mice (n = 6) maintainedon normaldiet. Data areexpressed as mean± SEM.

(D) Forty-eight hour profile of oxygen consumption in WT and RIP140 null (KO) mice (n = 6) maintained on high-fat diet. Data are expressed as mean ±

SEM.

(E) Forty-eight hour profile respiratory exchange ratio (RER) in WT and RIP140 null (KO) mice maintained on a normal diet. Data are expressed as mean ±

SEM.

(F) Forty-eight hour profile RER in WT and RIP140 null (KO) mice maintained on a high-fat diet. Data are expressed as mean ± SEM.
muscles (Tables S4 and S5). FABP3 was one of a number

of target genes that was increased in the gastrocnemius in

the absence of RIP140 and decreased in the soleus mus-

cle from RIP140 transgenic mice (Figure 4A). There was no

alteration in PPARd expression (Figure 4A), but the levels
240 Cell Metabolism 6, 236–245, September 2007 ª2007 Else
of PGC-1a decreased by 30%–40% in both muscle types.

Importantly, the removal of RIP140 in the gastrocnemius

leads to expression levels of FABP3 equivalent to those

normally observed in the soleus; conversely overexpres-

sion of RIP140 in the soleus in the transgenic mice leads
vier Inc.



Cell Metabolism

RIP140 Regulates Muscle Metabolism
Figure 4. RIP140 Regulates Expression of FABP3 and MCAD

in Type I and Type II Muscle and in Differentiated Myoblasts

(A) Real-time PCR analysis of PPARd and target gene FABP3 mRNA

expression in gastrocnemius (gas) or soleus (sol) muscle of mice either

devoid of or overexpressing RIP140 (n = 4–7). Data are expressed as

mean ± SEM.

(B) Real-time PCR analysis of ERRa and target gene, MCAD, mRNA ex-

pression in gastrocnemius or soleus muscle of mice either devoid of or

overexpressing RIP140 (n = 4–7). Data are expressed as mean ± SEM.

(C) Real-time PCR analysis of myoblast differentiation markers myoge-

nin and p21 in proliferating WT and RIP140 null myoblasts and differen-

tiated myotubes. Data are expressed as mean ± SEM.
Cell Me
to a decrease in FABP3 expression with levels similar to

those found in the gastrocnemius. A number of ERRa

target genes were regulated similarly including medium

chain acylcoenzyme A dehydrogenase (MCAD), although

the expression of ERRa is altered by changes in RIP140

expression (Figure 4B, Table S5). The pattern of opposing

transcriptional changes between RIP140 null and trans-

genic mice provides strong evidence that the differentially

expressed targets are regulated by RIP140. Furthermore

the observation that altering the amount of RIP140 results

in a switch in the level of expression of FABP3 and MCAD

to that which closely resembles the endogenous expres-

sion of these genes in type1/II fibers emphasizes the phys-

iological significance of the regulation by RIP140.

FABP3 and MCAD Are Direct Targets for RIP140
Repression in Differentiated Myoblasts
To study the intrinsic role of RIP140 in muscle cells we

generated conditionally immortal WT and RIP140 null

myoblast cell lines that could be induced to differentiate

as judged by myotube formation and fusion and the

expression of myotube markers such as myogenin and

p21 (Andres and Walsh, 1996) (Figures S5 and 4C). In

the absence of RIP140 the myotube cells expressed

more MyHC I and IIA and a slight reduction of MyHC IIB

(Figure 4D), which is consistent with the increased propor-

tion of oxidative fibers in RIP140 null mice. Importantly we

observed elevated levels of FABP3 and MCAD in the

RIP140 null differentiated myotubes, consistent with our

in vivo observations. To explore the potential role of

PPARd and ERRa, respectively, in the differential expres-

sion of these genes we used specific receptor ligands.

Treatment of WT myotubes with 9-cis retinoic acid and

the PPARd agonist GW501516 increased the expression

of FABP3 as shown previously (Dressel et al., 2003).

Importantly the upregulation of FABP3 was more marked

in cells lacking RIP140 (Figure 4E), supporting the hypoth-

esis that RIP140 is recruited to PPARd/RXR heterodimers

in a ligand-dependent manner to repress transcription. To

investigate the role of ERRa we used the inverse agonist

(D) Real-time PCR analysis of MyHC isoform expression in proliferating

(prolif) WT and RIP140 null myoblasts and differentiated (diff) myo-

tubes. Data are expressed as mean ± SEM.

(E) Ligand-dependent repression of FABP3 mRNA expression in WT

and RIP140 null myotubes. Myoblasts were differentiated for 4 days

as described (Experimental Procedures). Subsequently, the myotubes

were treated with agonists for RXR (9-cis retinoic acid; 0.1 mM), PPARd

(GW501516; 1 mM), both together, or vehicle (0.1% DMSO, 0.01%

EtOH) as control. After 24 hr, total RNA was harvested and analyzed

using quantitative real-time PCR. Data are expressed as mean ± SEM.

(F) Expression of MCAD in myotubes lacking RIP140 is reduced by

treatment with the XCT790. WT and null myoblasts were differentiated

as described. Subsequently, the myotubes were treated with an

inverse agonist for ERRa (XCT790; 10 mM) or vehicle (0.1% DMSO)

as control. After 48 hr, total RNA was harvested and analyzed using

quantitative real-time PCR.

(G) Chromatin immunoprecipitation of the FABP3 and MCAD pro-

moters in differentiated WT (RIP140+/+) or RIP140 null (�/�) myoblasts

with control (IgG) or RIP140 antibody.
tabolism 6, 236–245, September 2007 ª2007 Elsevier Inc. 241
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XCT790 (Willy et al., 2004), which reduced the expression

of MCAD in null cells to the levels found in cells expressing

RIP140 (Figure 4F), suggesting that enhanced activity of

ERRa is responsible for the increased expression of

MCAD observed in RIP140 null myotubes.

To determine whether FABP3 or MCAD are direct tar-

gets for repression by RIP140 we carried out chromatin

immunoprecipitation assays. Although the promoter for

the fabp3 gene has yet to be fully characterized we noted

a direct repeat element with strong homology to a PPARE

or RAR binding site approximately 900 base pairs

upstream of the transcription start site. Primers were

designed around this putative PPARE and also around

the nuclear receptor response element 1 (NRRE-1),

located in the MCAD promoter, which has been previously

shown to be important in the ERRa-mediated regulation of

this gene (Hainline et al., 1993; Kamei et al., 2003; Sladek

et al., 1997). An antibody specific for RIP140 precipitated

the FABP3 and MCAD promoter in differentiated WT myo-

blasts but not RIP140 null cells (Figure 4G). Thus RIP140 is

recruited to FABP3 and MCAD promoters in differentiated

myoblasts.

DISCUSSION

The metabolic activity and fiber-type composition of indi-

vidual muscle groups are highly responsive to surrounding

environmental cues. In this paper, we propose that the

corepressor RIP140 may play an important role in regulat-

ing programs of gene expression in skeletal muscle relat-

ing to metabolic activity and fiber type. Using genetically

modified mice we examined the consequences of both

gain and loss of RIP140 function and found that the rela-

tive levels of RIP140 are a key determinant of these pro-

cesses. In the absence of the corepressor, muscles

exhibited a marked increase in mitochondrial activity

accompanied by a corresponding shift in myofibers favor-

ing the more oxidative types. Conversely, increased

expression of RIP140 resulted in a decrease in both mito-

chondrial activity and the number of oxidative myofibers.

Expression profiling identified many metabolic genes,

including genes involved in mitochondrial biogenesis,

fatty-acid oxidation, and oxidative phosphorylation, that

were increased in the absence of RIP140, consistent

with the function of RIP140 as a corepressor. Increased

metabolic gene expression was supported by whole-ani-

mal physiological studies that demonstrated increased

fat utilization and energy expenditure in RIP140 null mice

relative to WT mice. Interestingly, these changes persist

after long-term high-fat feeding with increased flux

through these metabolic pathways, suggesting that a nor-

mal response to changes in nutrition is maintained in the

absence of RIP140. Although the contribution of RIP140

expression in skeletal muscle to whole-animal physiology

is still to be determined, gene expression analysis indi-

cates that the repressive effects of RIP140 are maintained

in cultured myoblasts, indicating that the corepressor

functions as an intrinsic regulator of genes involved in cat-

abolic pathways in muscle.
242 Cell Metabolism 6, 236–245, September 2007 ª2007 Elsev
Consistent with the metabolic changes, the relative pro-

portion of oxidative fibers varies according to the RIP140

expression level. The increase in oxidative capacity found

in the edl muscle of RIP140 null mice is accompanied by

an increase in the proportion of type IIA and IIX expressing

fibers at the expense of IIB fibers. While the changes in

MyHC proteins are relatively modest, there is an increase

in IIX relative to IIB in the absence of RIP140 together with

increased myoglobin and reduced AMPKg3 expression,

markers of oxidative and glycolytic fibers, respectively.

Interestingly overexpression of RIP140 in transgenic

mice does not result in impaired muscle fiber remodeling

in response to voluntary exercise. Several lines of evi-

dence point to a specific regulatory role for RIP140 in

the composition and function of myofibers rather than

a more extensive role in the developmental regulation of

myogenic transcription. First, skeletal muscle from mice

lacking RIP140 shows no major differences in the expres-

sion of key early and late myogenic markers. Second, the

absence of RIP140 in differentiated myoblasts in vitro

results in increased levels of expression of MyHC I and

reduced expression of MyHC IIB with minimal changes

in the myogenic program. Third, the variation in level of

RIP140 expression between RIP140 null, heterozygous,

WT, and RIP140 transgenic mice results in a pattern of

gene expression that parallels the transcriptional program

normally found in different types of muscle, which vary in

the level of their endogenous RIP140 expression.

PPARd and the coactivator PGC-1a have been estab-

lished as important factors that promote mitochondrial

activity and fiber-type switching (Leone et al., 2005; Lin

et al., 2002; Wang et al., 2004). Both PPARd and PGC-1a

transgenic mice exhibit a switch from reductive to oxida-

tive fibers, and muscle-specific ablation of PGC-1a leads

to reduced expression of MyHC I and IIA in oxidative fibers

and impaired exercise capacity (Handschin et al., 2007).

Expression of PGC-1b in transgenic mice leads to mito-

chondrial biogenesis, a decrease in fiber size, and, in par-

ticular, induction of fast-twitch oxidative type IIX fibers

(Arany et al., 2007) while PGC-1b null mice exhibit a reduc-

tion in mitochondrial volume in soleus muscle (Lelliott

et al., 2006). Thus, the PGC1 coactivators and the

RIP140 corepressor seem to promote opposing physio-

logical functions with increased mitochondrial activity

resulting from exogenous coactivator expression or

reduced RIP140 expression. On the other hand, reduced

mitochondrial activity is observed in the soleus of mice

devoid of PGC-1 coactivators or in RIP140 transgenic

mice. Thus it appears that PGC-1 coactivators and the

RIP140 corepressor serve mutually antagonistic functions

in the regulation of mitochondrial activity and, to a lesser

extent, fiber-type composition.

We propose that the ability of RIP140 to suppress met-

abolic activity in skeletal muscle is achieved, at least in

part, by its recruitment to nuclear receptors that regulate

transcription from specific gene clusters. To investigate

the role of RIP140 in the regulation of metabolic processes

in skeletal muscle we focused on two key genes in fatty-

acid oxidation, namely FABP3 and MCAD, both of which
ier Inc.
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are upregulated in skeletal muscle in the absence of

RIP140. FABP3 belongs to a multigene family of intracel-

lular proteins involved in fatty-acid transport and utilization

(Veerkamp and Maatman, 1995), and MCAD mediates the

initial step in fatty-acid beta-oxidation (Hainline et al.,

1993). The expression of these genes seems to reflect

the capacity of metabolic tissues to oxidize fatty acids

(Hainline et al., 1993; Veerkamp and van Moerkerk,

1993). FABP3 is regulated by PPARd while MCAD is regu-

lated by ERRa (Sladek et al., 1997; Mootha et al., 2004),

and so it was possible to address the role of these recep-

tors in mediating transcriptional repression by RIP140.

Chromatin immunoprecipitation assays demonstrated

that RIP140 was recruited to the promoters for both

FABP3 and MCAD, suggesting that they are direct targets

for the corepressor. RIP140 bound in the vicinity of a puta-

tive response element for PPARs in the FABP3 promoter

that is conserved in both mice and rats and to a nuclear re-

ceptor response element located in the MCAD promoter

(Hainline et al., 1993; Kamei et al., 2003; Sladek et al.,

1997). We were able to confirm that the ability of PPARd

to stimulate FABP3 expression was maintained in differ-

entiated myoblasts, but importantly the increase was

greater in cells devoid of RIP140. Interestingly treatment

with 9-cis RA, a ligand for RXR, also potentiated FABP3

expression to a greater extent in the absence of RIP140.

These observations, together with the chromatin immuno-

precipitation experiments, suggest that RIP140 recruit-

ment to PPARd-RXR heterodimers is responsible for

repressing FABP3 expression in skeletal muscle. The abil-

ity of ERRa to activate transcription from target genes is

dependent on the recruitment of PGC-1a or PGC-1b

(Kamei et al., 2003; Mootha et al., 2004). That ERRa is a di-

rect target for RIP140 is supported by the observation that

myotubes devoid of the corepressor express increased

levels of MCAD and that this increase was blocked by

a specific inverse agonist for this receptor. The depletion

of RIP140 is, however, accompanied by an increase in

ERRa expression, which may also contribute to the upre-

gulation of MCAD. Thus it appears that the regulation of

metabolic gene networks by PPARd and ERRa may be

determined by the relative levels or activity of PGC-1

coactivators and the RIP140 corepressor.

Previous studies have shown that RIP140 represses

metabolic gene networks in white adipose tissue where

lack of the corepressor results in increased expression

of many genes, including UCP1, a protein normally only

expressed in brown adipose tissue (Leonardsson et al.,

2004; Powelka et al., 2006). The induction of UCP1 and

the conversion of white adipocytes to a brown fat pheno-

type has also been achieved by the ectopic expression of

PGC-1a (Puigserver et al., 1998). It appears therefore that

RIP140 and PGC1a have mutually antagonizing roles in

the regulation of metabolism in both muscle and fat and

potentially other tissues where the cofactors are coex-

pressed. It is conceivable that such antagonism may be

regulated by alterations in the relative expression of the

cofactors, posttranslational modifications (Christian

et al., 2006; Gerhart-Hines et al., 2007), or their subcellular
Cell M
localization (Lerin et al., 2006). Therefore it is conceivable

that RIP140 may function in combination with specific

isoforms of PGC-1 and with nuclear receptors such as

PPARd and ERRa in signaling pathways that promote

fiber-type transitions.

Several animal models have shown that muscle fiber-

type transformation is associated with a shift in the meta-

bolic parameters to a more insulin-responsive phenotype

and protects against the development of diet-induced glu-

cose intolerance (Ryder et al., 2003; Wang et al., 2004). In

keeping with this we have shown that mice lacking RIP140

are protected from the insulin resistance associated with

high-fat feeding or aging and this is due to an increase in

insulin sensitivity (Powelka et al., 2006). In conclusion, it

is clear from this study that the precise level of expression

of RIP140, as shown by the progressive changes

observed in null, heterozygous, WT, and overexpressing

transgenic animals, is an important factor in muscle func-

tion and physiology. It is conceivable that modulation of

RIP140 signaling in muscle may be an important target

in the treatment of insulin resistance and type 2 diabetes.

EXPERIMENTAL PROCEDURES

Animals

The generation of RIP140 null mice has previously been described

(White et al., 2000). Mice used in this study were backcrossed eight

generations to C57BL/6J background, except those used for the

microarray profiling that were on a mixed or a high-fat diet (45%

kcal) (Research Diets, NJ), as indicated.

RIP140 transgenic mice were generated using the human RIP140

coding sequence fused to a b-globin polyA sequence and placed

downstream of a CMV enhancer and chicken b-actin promoter.

From six independent transgenic mouse lines, two were studied in

detail and data from line 51 are presented here.

RIP140 null mice were crossed with H-2Kb –tsA58 transgenic mice

expressing an inducible temperature-sensitive version of SV40 T

antigen (Jat et al., 1991), and second generation WT or RIP140 null

offspring were used to generate myoblast cultures.

In voluntary exercise studies male mice aged 3 weeks were housed

in groups of three animals and allowed constant access to exercise

wheels (Bio-Serv) for a total of 6 weeks. Control groups were housed

in the absence of wheels for the duration of the experiment.

Oxygen consumption and carbon dioxide production were simulta-

neously determined in an Oxymax metabolic chamber system by indi-

rect calorimetry (Columbus Instruments) (n = 5–6 per group).

All animal studies were carried out according to UK Home Office

guidelines.

Myoblast Cell Cultures

Conditionally immortal myogenic clonal cell lines were derived from

the edl as previously described (Morgan et al., 1994). The effects of

nuclear receptor ligands on gene expression in differentiated myo-

blasts (4 days) were investigated by the addition of agonists for PPARd

(GW501516, 1 mM), RXR (9-cis retinoic acid [100 nM Sigma]), ERRa

(XCT790, 10 mM), or vehicle (0.1% DMSO and 0.01% EtOH) as control

for 24 hr.

Histochemistry

Histochemical analyses were carried out for SDH and metachromatic

ATPase as previously described (Ogilvie and Feeback, 1990). Fiber

types in soleus, extensor digitorum longus, and gastrocnemius were

characterized by MyHC immunostaining using primary monoclonal

mouse antibodies against type I (BAF-8), IIA (SC-71), IIB (BFF-3), IIX
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(6H1, from Joseph Hoh), or all type II (Sigma anti-fast) myosin isoforms.

Detailed methods are described in the Supplemental Data.

Expression Analysis

The expression of RIP140 and L-19 was determined with specific

primers and Taqman probes, while the expression of other genes

was determined using SYBR green reagent and gene-specific primers.

Expression levels were normalized against the expression of the

ribosomal coding gene L-19. Primer sequences can be obtained on

request.

Transmission Electron Microscopy

Edl samples were fixed for 24 hr in 3% v/v glutaraldehyde in 0.1 M

cacodylate buffer (pH 7.3), post-fixed in osmium tetroxide, and

embedded in Araldite. Ultra-thin sections were examined using a

Philips CM10 TEM (FEI, Cambridge).

Affymetrix Microarray Hybridization and Data Analysis

Expression profiling was performed using Murine 430 2.0 chips.

Hybridization and scanning were performed by the CSC/IC Microarray

Centre (Imperial College London). Data were analyzed with d-CHIP

software (Li and Wong, 2001). p values were generated in d-CHIP by

a two-tailed unpaired Student’s t test to use as a ranking and filtering

device. The microarray data are available at http://www.ebi.ac.uk/

arrayexpress/ under accession number E-BAIR-13.

Chromatin Immunoprecipitation Assay

Differentiated myoblasts (day 5) were crosslinked and immunoprecip-

itated as described previously (Christian et al., 2005) using anti-RIP140

(a gift from Dr D. Chen). Primer sequences are available on request.

Supplemental Data

Supplemental Data include Supplemental Experimental Procedures,

five figures, and six tables and can be found with this article online at

http://www.cellmetabolism.org/content/full/6/3/236/DC1/.
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