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Radially polarized piezoelectric fibers are now considered to be used in smart composites. The piezoelec-
tric layers in these fibers are generally anisotropic in the transverse direction and therefore difficult to
analyze when dynamic loads are involved. The present paper presents a theoretical study of the dynamic
behavior of radially polarized cylindrical piezoelectric layers between isotropic elastic media. A new
interphase model is developed to provide simple yet accurate evaluation of the dynamic response of such
anisotropic elastic layers. Unlike the traditional interface-spring model, the current interphase model sat-
isfies the equations of motion of the layers and can provide reliable prediction of the stress and displace-
ment. A comparison between the developed model, the interface-spring model and the finite element
analysis is conducted. The results clearly show the advantages of the current model over the traditional
interface-spring model in simulating anisotropic layers. Numerical examples based on this interphase
model for different interphase thicknesses, loading frequencies and material combinations are presented
to evaluate the dynamic behavior of multilayered elastic media.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

In addition to the well known advantages of traditional com-
posites, such as higher strength-to-weight ratio and tailored de-
sign, smart composites also offer multifunctionality (Gibson,
2010) and, therefore, are receiving significant attention from the
research community (Kreja, 2011; Lin and Sodano, 2008). Recent
progress in manufacturing multilayered piezoelectric fibers with
a transverse poling direction in the cross section makes it possible
to develop new smart composites, which can be used in different
high frequency applications (Egusa et al., 2010). The fibers have
been used to design single-fiber resonators and piezoelectric trans-
ducers. It is a natural step to use these fibers to develop smart mul-
tifunctional composite materials.

An important issue in the study of this type of smart composites
is how to evaluate the piezoelectric layer in the fiber. Since the pie-
zoelectric layer is poled transversely in the cross section and is in
general anisotropic, existing solutions for isotropic or trans-
versely-isotropic layers are not sufficient for describing the behav-
ior of the layer. Considering the fact that the piezoelectric layer is
relatively thin compared with the radius of the fiber, simplified
layer models could be used to overcome this difficulty. Modeling
of thin layers in composite materials has been extensively investi-
gated (Kushch et al., 2011; Rajabi and Hasheminejad, 2009; Zhong
and Meguid, 1997) because of its importance. In these cases, an
interphase, which may represent a bonding layer or an imperfect
interface caused by deterioration, is usually modeled by distrib-
uted interface springs.

When high frequency dynamic loading is applied, the inertial
effect of the anisotropic layer needs to be considered. Solutions
for the response of anisotropic materials to general dynamic loads
or elastic waves are usually complicated and difficult to obtain,
although the corresponding problems for isotropic elastic media
can be easily dealt with by determining the displacement poten-
tials based on Helmholtz decomposition (Achenbach et al., 1972).
In general cases, the dynamic displacement field in an anisotropic
elastic medium can no longer be decomposed into independent
displacement potentials. Therefore, well known solution tech-
niques applicable to isotropic media, based on displacement
potentials, cannot be applied directly to anisotropic media. The
interaction between elastic waves and anisotropic layers in planar
layered media has been studied analytically and numerically
(Rokhlin and Huang, 1992; Rokhlin and Huang, 1993). The analyt-
ical solution is quite complicated, involving the solution of eigen-
value problems. The corresponding problems for cylindrical
layers have also been studied under simplified geometric or load-
ing conditions, such as assuming isotropy in the cylinder cross sec-
tion (Sodagar and Honarvar, 2010; Nayfeh et al., 2000; Nayfeh and
Nagy, 1996; Nayfeh et al., 1995; Honarvar and Sinclair, 1996).
Numerical solutions for more general anisotropic cylindrically lay-
ered media under elastic waves have also been reported in recent
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Fig. 1. The layered composite medium with (a) bounded outer layer and (b)
unbounded outer medium.
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literatures (Norris and Shuvalov, 2012; Norris and Shuvalov, 2010;
Gsell and Dual, 2004). But simplified analytical models for trans-
versely anisotropic cylindrical layers under general dynamic load-
ing are limited to interface-spring models.

For the case of radially poled piezoelectric fibers, the piezoelec-
tric layer poses problems in modeling the mechanical behavior be-
cause of both its anisotropy and curvature. A possible method in
modeling the layer is to simplify it as distributed interface springs
to simulate the traction-displacement relation across the layer. The
spring model (Bian et al., 2008; Librescu and Schmidt, 2001; Zhong
and Meguid, 1997; Aboudi, 1987) ignores, however, the hoop stress
and the inertial effect, and assumes that the stresses are uniform
across the thickness of the layer. As a result, the equations of mo-
tion of the layer are not satisfied. It should be mentioned that in a
typical radially poled piezoelectric fiber (Egusa et al., 2010), the
layer thickness could be as large as 20% of the radius of the fiber
and the hoop stress in the curved layer may play a significant role
in the deformation. It is therefore desirable to develop an inter-
phase model which can represent the effect of the stress variation
across the layer thickness, the hoop stress in the layer and the
anisotropy of the layer.

The objective of this paper is to develop a new interphase model
for anisotropic layers in multilayered cylindrical piezoelectric fi-
bers. Comparison with traditional interface-spring model and fi-
nite element analysis indicates that the current model is more
accurate than the spring model. Typical simulation results based
on the developed model are provided to illustrate the mechanical
property of the anisotropic cylindrical layers under dynamic loads.

2. Problem formulation

Consider the cross section of a cylindrical multilayered piezo-
electric medium consisting of an inner core 0 < r < r0, a piezoelec-
tric layer r0 < r < r1 and an outer layer r1 < r < r2, as shown in
Fig. 1(a). The inner core and the outer layer are linearly elastic,
homogenous and isotropic insulators. These three layers are as-
sumed to be bonded perfectly at the interfaces. Plane strain defor-
mation is considered, which corresponds to the case where the
out-of-plane dimension of the medium is significantly greater than
its typical radius. The piezoelectric layer is poled along the radial
direction and is, therefore, anisotropic in the cross section. The
medium is subjected to general mechanical loading along the outer
surface. In the limiting case that r2 approaches infinity, as shown in
Fig. 1(b), the load could be an incident wave.

The dynamic load is assumed to be time harmonic and only the
steady state response of the medium is considered. The time
dependence of the response can be expressed by an exponential
function e�ixt where t and x are time and frequency, respectively.
For convenience, the term e�ixt will be omitted in the following
discussion and only the amplitude of the field variables will be
considered.

2.1. Governing equations

The dynamic electromechanical property of piezoelectric mate-
rials, such as the media shown in Fig. 1, is governed by the equa-
tions of motion and Gauss’s law (Achenbach et al., 1972; Kessler
and Kosloff, 1991). In the polar coordinate system ðr; hÞ the gov-
erning equations are

Equations of Motion

rr;r þ
1
r
rhr;h þ

1
r
ðrr � rhÞ ¼ �qx2ur ð1Þ

rrh;r þ
1
r
rh;h þ

2
r
ðrrhÞ ¼ �qx2uh ð2Þ
Gauss’s Law

Dr;r þ
1
r
ðDh;h þ DrÞ ¼ 0 ð3Þ

where r is the stress, u is the displacement, D is the electric dis-
placement and q is the density. The subscripts indicate the corre-
sponding components in the polar coordinate system while the
comma indicates differentiation, as commonly used. The constitu-
tive relations of the piezoelectric layer, with the poling direction
being along r, are given by,

rr

rh

rhr

2
64

3
75 ¼

c33 c23 0
c23 c22 0
0 0 c44

2
64

3
75

er

eh

erh

2
64

3
75�
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e32 0
0 e24

2
64

3
75 Er

Eh

� �
ð4Þ

Dr

Dh

� �
¼

e33 e32 0
0 0 e24

� � er

eh

erh

2
64

3
75þ �33 0

0 �22

� �
Er

Eh

� �
ð5Þ

where c’s are the elastic coefficients, �’s are the dielectric constants,
and e’s are the piezoelectric constants, e represents the strain and E
represents the electric field intensity, which can be expressed in
terms of the displacements ur and uh, and the electric potential / as
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er ¼ ur;r ð6Þ

eh ¼
1
r

uh;h þ urð Þ ð7Þ

erh ¼
1
2

1
r

ur;h þ uh;r �
uh

r

� �
ð8Þ

Er ¼ �/;r ð9Þ

Eh ¼ �
1
r

/;h: ð10Þ

Since the main concern of the current study is how to model the
mechanical property of the anisotropic layer under dynamic loads,
the outer and inner surfaces of the piezoelectric layer are short cir-
cuited so only the mechanical response is included. In this case, Er=
Eh = 0 and charges at outer and inner surfaces of the piezoelectric
layer will be generated but will not affect the stresses.

2.2. Elastic fields in the inner core and the outer medium

The inner core and the outer medium are linearly elastic,
homogenous and isotropic. In this case, the displacement field
can be decomposed into (Achenbach et al., 1972)

ur ¼ u;r þ
1
r

w;h ð11Þ

uh ¼
1
r
u;h � w;r ð12Þ

where u and w are two displacement potentials satisfying Helm-
holtz equation, i.e.

1
r
ðru;rÞ;r þ

1
r2 u;hh þ k2

Lu ¼ 0 ð13Þ

1
r
ðrw;rÞ;r þ

1
r2 w;hh þ k2

Tw ¼ 0 ð14Þ

kL and kT are two wave numbers given by

kL ¼
x
cL
; kT ¼

x
cT

ð15Þ

where cL and cT are the longitudinal and transverse wave speeds of
the elastic medium, and

cL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ 2l

q

s
; cT ¼

ffiffiffiffi
l
q

r
ð16Þ

with k and l being the Lame constants of the elastic medium.
The general solutions of the displacement potentials in these

layers can be determined by solving Eqs. (13) and (14) using Fou-
rier expansion with respect to h. The resulting displacement poten-
tials are

uðr; hÞ ¼
X1
n¼0

Jn kLrð Þ
Að1Þn

Að2Þn

 !T

þ Hð1Þn kLrð Þ
Að3Þn

Að4Þn

 !T
8<
:

9=
; cos nhð Þ

sin nhð Þ

� �

ð17Þ

wðr; hÞ ¼
X1
n¼0

Jn kT rð Þ
Að5Þn

Að6Þn

 !T

þ Hð1Þn kT rð Þ
Að7Þn

Að8Þn

 !T
8<
:

9=
; cos nhð Þ

sin nhð Þ

� �

ð18Þ

where Jnð�Þ and Hð1Þn ð�Þ are Bessel functions and Hankel functions of
the first kind, respectively, and An are unknown constants to be
determined from the boundary and interface conditions. For the in-
ner core Að3Þn ; Að4Þn , Að7Þn ; Að8Þn are zero to ensure that the field has a
limited amplitude at r ¼ 0. If the outer layer is infinite, then
Að1Þn ; Að2Þn ; Að5Þn ; Að6Þn will be zero to satisfy the radiation condition
at infinity for the scattered wave.

2.3. The interphase model for the anisotropic piezoelectric layer

The piezoelectric layer is transversely anisotropic in the cross
section since it is poled in the radial direction. For such an aniso-
tropic medium under dynamic loading, the general analytical solu-
tion could not be easily found. In the current subsection, a new
interphase model will be presented, which could be used to simu-
late the dynamic mechanical property of the layer.

The governing equations for the piezoelectric layer, (1) and (2),
can be re-written as
1
r

rrrð Þ;r þ rhr;h � rh

� �
¼ �qx2ur ð19Þ

1
r2 r2rrh

	 

;r þ rrh;h

� �
¼ �qx2uh: ð20Þ

To overcome the difficulties associated with the anisotropy of the
layer, for a relatively thin layer, the derivative with respect to r in
these equations is simplified such that rrrð Þ;r �

D rrrð Þ
h and

r2rrh
	 


;r �
D r2rrhð Þ

r2 with h ¼ r1 � r0 being the thickness of the layer

and D representing the change from r0 to r1. Eqs. (19) and (20)
can then be approximately expressed as

1
r

D rrrð Þ
h
þ rhr;h � rh

� �
¼ �qx2ur ð21Þ

1
r2

D r2rrh
	 


h
þ rrh;h

� �
¼ �qx2uh: ð22Þ

The layer can now be modeled as a one dimensional element
governed by Eqs. (21) and (22). A stress component is decomposed
into two parts, (i) a uniform stress across the thickness of the layer
element, representing the average stress and (ii) a linear stress
across the thickness with a zero average, resulting in the ‘D’ terms
in Eqs. (21) and (22), which represent the general ‘body forces’ act-
ing on the interphase. The other terms in Eqs. (21) and (22), except
for the terms with r derivative, are the average values over the
thickness of the layer.

The constitutive Eq. (4) can be rewritten in terms of the dis-
placements in the layer as

rr ¼ c33ur;r þ
c23

r
uh;h þ urð Þ ð23Þ

rh ¼ c23ur;r þ
c22

r
uh;h þ urð Þ ð24Þ

rrh ¼ c44
1
r

ur;h þ uh;r �
uh

r

� �
: ð25Þ

For the layer element the derivatives with respect to r in these
equations can be approximated, such that

ur;r ¼
Mur

Mr
; uh;r ¼

Muh

Mr
ð26Þ

and the stress should be considered to be the average value across
the thickness.

Substituting Eq. (26) into Eqs. (23)–(25) the constitutive equa-
tions for the interphase can be written as

rr ¼ c33
uþr � u�r

h

� �
þ c23

r
uþh;h þ u�h;h

2
þ uþr þ u�r

2

� �
ð27Þ

rh ¼ c23
uþr � u�r

h

� �
þ c22

r
uþh;h þ u�h;h

2
þ uþr þ u�r

2

� �
ð28Þ
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rrh ¼ c44
1
r

uþr;h þ u�r;h
2

þ uþh � u�h
h

� 1
r

uþh þ u�h
2

� �
ð29Þ

where the superscripts (+) and (�) refer to the outer and inner sur-
faces of the layer, and the averaged values in these equations are gi-
ven by

rr ¼
rþr þ r�r

2
ð30Þ

rrh ¼
rþrh þ r�rh

2
ð31Þ

r ¼ r1 þ r0

2
: ð32Þ

Finally, substituting Eqs. (27)–(29) into the equations of motion
(21) and (22) results in the following equations for the layer,

1
r2

r2
1rþrh � r2

0r�rh
h

þ r c23
uþr;h � u�r;h

h
þ c22

r
uþh;hh þ u�h;hh

2
þ

uþr;h þ u�r;h
2

� �� �� �

¼ �qx2 uþh þ u�h
2

� �
ð33Þ

1
r

r1rþr � r0r�r
h

þ
rþrh;hþr�rh;h

2
� c23

uþr �u�r
h

þ c22

r
uþh;hþu�h;h

2
þuþr þu�r

2

� �� �� �

¼�qx2 uþr þu�r
2

� �
ð34Þ

and the constitutive relations of the layer become

rþr þ r�r
2

¼ c33
uþr � u�r

h
þ c23

r
uþh;h þ u�h;h

2
þ uþr þ u�r

2

� �
ð35Þ

rþrh þ r�rh
2

¼ c44
1
r

uþr;h þ u�r;h
2

þ uþh � u�h
h

� 1
r

uþh þ u�h
2

� �
: ð36Þ

Eqs. (33)–(36) established a new interphase model, which re-
lates the outer (+) and inner (�) surfaces of the layer based on
the property of the layer itself. The model satisfies the equations
of motion and the constitutive relations of the layer.

The commonly used interface-spring model can be represented
as (Rajabi and Hasheminejad, 2009; Bian et al., 2008),

rþr ¼ r�r ¼
c33

h
uþr � u�r
	 


ð37Þ

rþrh ¼ r�rh ¼
c44

h
uþh � u�h
	 


ð38Þ

which assumes a simple linear relation between displacements and
stresses across the thickness of the layer. In comparison, in the tra-
ditional interface-spring model rr and rrh are assumed to be con-
stants across the thickness of the layer. rh and the inertial force
of the layer are ignored. Only when the thickness of the interphase
approaches zero, h! 0, the two models become identical. The
spring model is therefore a special case of the currently proposed
model.

To determine the solution for a specific boundary condi-
tion, the governing Eqs. (33)–(36) for the layer should be
combined with the general solutions for the inner core and
the outer medium, as given by Eqs. (17) and (18). The con-
tinuity condition for stresses and displacements between dif-
ferent layers should be satisfied. Therefore, the components
with superscript (+) equal to the values of the corresponding
components for the outer medium at r ¼ r1, and the compo-
nents with superscript (�) equal to that for the inner core at
r ¼ r0. The general expressions of the stress and displacement
fields can be obtained directly from the displacement poten-
tials given by Eqs. (17) and (18). The results are provided in
Appendix A.

By substituting these stress and displacement components into
Eqs. (33)–(36), a set of linear equations can be obtained, from
which the unknown coefficients Að1Þn to Að8Þn in Eqs. (17) and (18)
can be determined for specific boundary conditions.

It should be noted that the developed interphase model given
by Eqs. (33)–(36) are general in nature, and will replace the four
governing equations for the traditional spring model given by
(37) and (38). The new layer model can be used to deal with gen-
eral boundary and loading conditions when the layer is bonded to
different inner and outer media.

3. Results and discussion

In this section, the mechanical behavior of cylindrically layered
media, shown in Fig. 1, is considered. The attention will be fo-
cussed on (i) the validation of the developed interphase model
and (ii) the usage of this interphase model for evaluating the stress
distribution in the layered media under different loading and geo-
metric conditions.

3.1. Static axisymmetric problems

To evaluate the accuracy of the developed interphase model,
consider first the stress field of an unbounded three-layer medium
subjected to static axisymmetric loading rr ¼ p; rrh ¼ 0 at infinity.
The middle layer is assumed to be isotropic so the closed form
solution can be obtained. In this case, the general solution of the
displacement field is,

Inner core

ur ¼ a0r ð39Þ

Middle layer

ur ¼ a1r þ b1

r
ð40Þ

Outer medium

ur ¼ a2r þ b2

r
ð41Þ

By applying the boundary conditions, rr ¼ p; rrh ¼ 0 at infinity,
and the continuity conditions at the interfaces, the unknown con-
stants in the general solution, a0; a1; a2 and b0; b1; b2, can be
determined and the closed form solution of the problem can be
obtained.

For this simple problem the solution based on the current inter-
phase model can be obtained analytically. For the special case
where the inner core is rigid and the Poisson’s ratio is zero, the
interphase model can be rewritten as,

r1rþr � r0r�r
r1 � r0

� �
� E1

uþr
r1 þ r0

� �
¼ 0 ð42Þ

1
2

rþr þ r�r
	 


� E1
uþr

r1 � r0

� �
¼ 0 ð43Þ

where ‘+’ and ‘�’ represent the corresponding values of the outer
medium and the inner core at the two interfaces of the layer, with
u�r ¼ 0. E1 ¼ ch1i33 is the Young’s modulus of the layer. Using the solu-
tion given by (39) and (41) and the boundary conditions at infinity,
the stress field based on the current interphase model can be deter-
mined. The solution based on the interface-spring model, (37) and
(38), can be similarly obtained.

The radial stress rr at the interface between the inner core and
the layer (r ¼ r0) is
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The exact solution:

r�r
p
¼ 4

2þ k21 � 1ð Þ 1� a2ð Þ ð44Þ

The current model:

r�r
p
¼

4� 2 1� að Þ2= aþ 1ð Þ
� �

2þ 2 a� 1ð Þ þ 1� a2ð Þk21 þ 1� að Þ2=ðaþ 1Þ
� � ð45Þ

The spring model:

r�r
p
¼ 4

2þ 2k21 1� að Þ ð46Þ

where a ¼ r0=r1; k21 ¼
ch2i33

ch1i33

¼ E2
E1

with E1 and E2 being the Young’s

moduli of the layer and the outer medium, respectively.
Fig. 2 shows the comparison between the results of r�r , given by

(44)–(46), from the closed form solution, the current model, and
the interface spring model for different E2=E1 ratios and layer
thicknesses. For all three E2=E1 values considered, 0.5, 1.0 and
2.0, the current model shows an excellent agreement with the
closed form solution even when the thickness of the layer is quite
significant (r1=r0 ¼ 1:5). The results are, however, very different
from that by the interface spring model.

The extreme case where the core is a void is also considered for
the validation of the model. In this case, rr ¼ 0 at r ¼ r0 and the
governing equations of the interphase model for the layer, (33)–
(36), are reduced to

1
2

rþr
	 


� E1
uþr � u�r
r1 � r0

� �
¼ 0 ð47Þ
Fig. 2. Axisymmetric radial
r1rþr
r1 � r0

� �
� E1

uþr þ u�r
r1 þ r0

� �
¼ 0 ð48Þ

with the hoop stress in the layer being given by

rh ¼ E1
ur

r

� �
¼ E1

uþr þ u�r
r0 þ r1

� �
ð49Þ

By solving this problem, the hoop stress at r ¼ rþ0 in the layer is
determined to be

The exact solution:

r�h
p
¼ 4

k21ð1þ a2Þ þ 1� a2ð Þ ð50Þ

The current model:

r�h
p
¼ 4

k21 3þ a2ð Þ=2þ 2 1� að Þ ð51Þ

The spring model:

r�h
p
¼ 0: ð52Þ

The hoop stress at r ¼ rþ1 in the outer medium is
The exact solution:

rþh
p
¼ 2

1þ ð1� a2Þ=k21=ð1þ a2Þ ð53Þ

The current model:

rþh
p
¼ 2

1þ 4ð1� aÞ=k21=ð3þ a2Þ ð54Þ
stress with a rigid core.
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The spring model:

rþh
p
¼ 2: ð55Þ

Figs. 3 and 4 show the results of r�h and rþh , respectively, ob-
tained from the closed form solution, the current model and the
spring model, for different material combinations and geometries.
For r�h shown in Fig. 3, the difference between the exact solution
and the current model is within 10% even when the thickness of
the layer reaches 30% of the radius of the inner core. The interface
spring model, which predicts zero stress, is incapable of reasonably
predicting the stress distribution. As shown in Fig. 4, rþh from the
current model coincides with that from the closed form solution,
while the spring model predicts a constant stress rþh ¼ 2p, which
is quite different from the result of the closed form solution.
3.2. Bounded layered media subjected to surface loads

The current interphase model is used to simulate the dynamic
behavior of a three-layer medium, shown in Fig. 1, under different
loading conditions. Both the case shown in Fig. 1(a), which has an
outer layer with a limited radius, and the case shown in Fig. 1(b), in
which the radius of the outer layer is infinite, are considered to val-
idate the interphase model and to study the dynamic response of
the layered medium.

The difficulties in the analysis of such transversely anisotropic
multilayered media are two folds. Firstly, the piezoelectric layer
needs to be properly modeled to provide simple yet accurate
description of the stress distribution in the layer. This is considered
Fig. 3. Axisymmetric hoop stress w
through the proposed interphase model. Secondly, in the numeri-
cal simulation the Bessel functions used need to be properly nor-
malized (Ricks and Schmidt, 1994) to avoid overflow, which
results in ill-conditioned (Zhang et al., 2010) equations. In the cur-
rent simulation a numerical normalization algorithm is used to
overcome this problem.

Material properties used in the study are shown in Table 1 (Qian
et al., 2008; Nakatani et al., 2007). Different selections of material
properties are considered in the simulation to study the effect of
material combinations.

To evaluate the developed interphase model, consider the re-
sponse of a finite three-layer medium shown in Fig. 5, subjected
to a distributed surface load along the outer boundary r ¼ r2,

rr ¼
p p� bj j 6 h 6 bj j
0 elsewhere

�
ð56Þ

rrh ¼ 0 ð57Þ

The applied surface stress can be expressed in terms of Fourier
expansion as

rr ¼ p d0 þ
X1
n¼1

dncosnh

 !
ð58Þ

where

d0 ¼
2b
p
; dn ¼

2sin nbð Þ
pn

1þ ð�1Þn
 �

ð59Þ

with p being the amplitude of the applied load and b being the
range of the load.
ith a void core: inner interface.



Fig. 4. Axisymmetric hoop stress with a void core: outer interface.

Table 1
Material constants used.

Material isotropic Elastic constants � 1010 (N/m2) Density � 103 (kg/m2) Piezoelectric � 100 (C/m2)

c22 c33 c12 c23 c44 q e31 e33

c22=c33=kþ 2l k k l

Aluminum 11.27 11.27 6.07 6.07 2.6 2.7 – –
Polythene .554 .554 .298 .298 .128 1.2 – –
PZT-4 13.9 12.4 6.78 7.43 2.5 7.5 �5.2 15.1
Steel 26.3 26.3 10.2 10.2 8.05 7.8 – –
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Fig. 6 shows the normalized radial stress distribution along the
radial direction at h ¼ 0 for the case where b ¼ p=6 at a very low
loading frequency kR ¼ 0:025 with k being the shear wave number
of the outer medium kT ¼ x=cT ; R being the outer radius of the
interphase, R ¼ r1, and r2 ¼ 1:5r1. To evaluate the accuracy of the
current interphase model, the core, the interphase and the outer
layer are assumed to be of the same material and different inter-
phase thicknesses are considered. The results from the interface-
spring model, the current model and the finite element analysis
(ANSYS) are compared. For layer thicknesses h=R ¼ 0:1;0:2; 0:3
the current model shows a very good agreement with the finite
element results, while the interface-spring model shows much
more significant errors for all thicknesses considered. The corre-
sponding distribution of rh along h ¼ 0 is given in Fig. 7. Again
the current model provides excellent prediction of the stress distri-
bution but the result from the interface-spring model is quite dif-
ferent from the finite element prediction around the middle layer.
The corresponding dynamic stress rr is shown in Figs. 8 and 9 for
kR ¼ 0:5 and kR ¼ 1:1 for different layer thicknesses. The simula-
tion results indicate that for very small thickness h=R ¼ 0:01 the
interface-spring model, the current model and the finite element
analysis provide almost identical results. But for larger thicknesses
of the layer ðh=R ¼ 0:1;0:2;0:3Þ, the current model shows much
better results in comparison with the interface-spring model.

Figs. 10 and 11 show the corresponding radial stress distribu-
tion for dissimilar media at kR ¼ 0:4 and 0.8, respectively, with
the outer layer being aluminum, the core being steel and the mid-
dle layer being PZT-4. For very thin layer, h=R ¼ 0:01, the results
from the FEM, the current model and the interface spring model
are almost identical. But for h=R ¼ 0:1;0:2;0:3, the spring model
shows significant different results from the current model and
the FEM.



Fig. 5. Bounded layered medium subjected to surface loads.

Fig. 6. Radial stress distribution for a homogenous medium at kR = 0.025.
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Fig. 7. Hoop stress distribution for a homogenous medium at kR = 0.025.

Fig. 8. Radial stress distribution for a homogenous medium at kR = 0.5.
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Fig. 9. Radial stress distribution for a homogenous medium at kR = 1.1.

Fig. 10. Radial stress distribution for a dissimilar medium at kR = 0.4.
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3.3. Infinite layered media subjected to incident waves

Consider now the dynamic response of a layered medium with
an infinite outer medium (r2 ¼ 1) subjected to an incident P-wave,
as shown in Fig. 1(b). The incident P-wave with a general incident
angle h0 can be expressed in terms of the displacement potential as
uin ¼ u0e�ikLrcosðh�h0Þ ð60Þ
where u0 is the magnitude of the incident wave, and kL is the lon-
gitudinal wave number of the outer medium. In the following dis-
cussion, h0 ¼ 0 is considered. The incident displacement and
stress fields can be determined from uin directly.



Fig. 11. Radial stress distribution for a dissimilar medium at kR = 0.8.

Fig. 12. Radial stress distribution for a dissimilar medium with a void core at kR = 0.01.
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The total field in the outer medium consists of an incident field
and a scattered field. By separating the incident field from the total
field, the governing equations of the current interphase model
become
1
r2

r2
1rsc

rh� r2
0r�rh

h
þ r c23

usc
r;h�u�r;h

h
þc22

r
�n2 usc

h þu�h
2

þ
usc

r;hþu�r;h
2

� �� �� �
¼r�rh�qx2uh

ð61Þ
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1
r

r1rsc
r � r0r�r

h
þ

rsc
rh;hþr�rh;h

2
� c23

usc
r �u�r

h
þ c22

r
usc

h;hþu�h;h
2

þusc
r þu�r

2

� �� �� �
¼r�r �qx2ur

ð62Þ

rsc
r þ r�r

2
� c33

usc
r � u�r

h
þ c23

r
usc

h;h þ u�h;h
2

þ usc
r þ u�r

2

� �� �
¼ u�r ð63Þ

rsc
rh þ r�rh

2
� c44

1
r

usc
r;h þ u�r;h

2
þ usc

h � u�h
h

� 1
r

usc
h þ u�h

2

� �
¼ u�h ð64Þ

where the superscript ‘sc’ represents the scattered field in the outer
medium to be determined from the solution, and the terms with
superscript ‘⁄’ represent the incident wave, which are given by

u�r ¼ �
rin

r

2
þ c33

uin
r

h
þ c23

r
@

@h
uin

h

2

� �
þ uin

r

2

� �
ð65Þ

r�r ¼ �
1
r

r1rin
r

h
þ

rin
rh;h

2
� c23

uin
r

h
þ c22

r
uin

h;h

2
þ uin

r

2

 !" #( )
ð66Þ

u�h ¼ �
rin

rh

2
þ c44

uin
r;h

2r
þ uin

h

h
� uin

h

2r

" #
ð67Þ

r�rh ¼ �
1
r2

r2
1rin

rh

h
þ r c23

uin
r;h

h
þ c22

r
�n2 uin

h

2
þ

uin
r;h

2

 !" #( )
: ð68Þ

Fig. 12 shows the normalized radial stress distribution along
h ¼ 0 caused by an incident wave with a very low loading fre-
quency kR ¼ 0:01 with p being the magnitude of the maximum
stress of the incident wave. In this case the inner core is void, the
middle layer is PZT-4 and the outer medium is aluminum. For dif-
ferent PZT layer thicknesses, the radial stress shows a monotonic
increase from the inner surface of the PZT layer. The result from
the spring model, however, could not capture the variation of the
Fig. 13. Radial stress distribution for a dissim
stress in the layer. Similar results are observed for the correspond-
ing problem with a higher loading frequency, kR ¼ 0:6, as shown in
Fig. 13.

Fig. 14 shows the corresponding radial stress distribution for
the case where the inner core is steel, the middle layer is PZT-4
and the outer medium is polythene, subjected to an incident wave
of low frequency kR ¼ 0:01. Both the current model and the spring
model could predict the well-known result that the stress in the
core is a constant for such a static load. But the spring model is
not sensitive to the change of the thickness of the middle layer,
which has been reasonably predicted by the current interphase
model. Figs. 15 and 16 show the corresponding normalized radial
stress distribution along h ¼ 0 with kR ¼ 0:02 and kR ¼ 0:9, for
the case where the inner core is steel, the middle layer is PZT-4
and the outer medium is aluminum. For different PZT layer thick-
nesses considered, which are rather large, the result from the
spring model shows significant difference from that by the current
model.
4. Conclusions

The proposed interphase model for cylindrical anisotropic lay-
ers, which contains the effect of the hoop stress and satisfies the
equations of motion, shows an excellent accuracy in simulating
the stress distribution, and agrees well with the FEM prediction.
The proposed model is significantly superior to the traditional
interface spring model and, as a result, provides an efficient way
to model complicated dynamic deformation caused by anisotropic
layers. The current model has been verified at frequencies lower or
higher than typical resonance frequencies. It has also been used in
situations where the thickness of the layer is significant large, 30%
of the typical radius for example. The model can be used to accu-
rately simulate dynamic behavior of cylindrical anisotropic layers,
which are otherwise difficult to dealt with.
ilar medium with a void core at kR = 0.6.



Fig. 14. Radial stress distribution for a dissimilar medium with a stiff core at kR = 0.01.

Fig. 15. Radial stress distribution for a dissimilar medium at kR = 0.02.
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Fig. 16. Radial stress distribution for a dissimilar medium at kR = 0.9.

S. Abdel-Gawad, X. Wang / International Journal of Solids and Structures 50 (2013) 4118–4132 4131
Acknowledgment

This research was supported by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC).

Appendix A

The general elastic solution of an isotropic layer can be obtained
using displacement potentials. The results are presented in this
section. The displacements can be expressed in terms of the dis-
placement potentials as:

ur ¼ u;r þ
1
r

w;h;uh ¼
1
r
u;h � w;r :

The stress components are

rr ¼ kr2uþ 2l u;r2 þ
1
r
w;h

� �
;r

" #

rh ¼ kr2uþ 2l 1
r

u;r þ
1
r
u;h2

� �
þ 1

r
1
r

w;h � w;rh

� �� �

rrh ¼ l 2
1
r
u;rh �

1
r2 u;h

� �
þ 1

r2 w;h2 � r
1
r

w;r

� �
r

� �� �
:

Using the general solution of the displacement potentials given by
Eqs. (17) and (18). The displacement and stress fields can be ob-
tained as

ur ¼
X1
n¼0

kL J0n kLrð Þ
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