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Abstract 

Broadcasting is the process of transmitting information from an originating node (processor) 
in a network to all other nodes in the network. A local broadcast scheme only allows a node 
to send information along single communication links to adjacent nodes, while a line broadcast 
scheme allows nodes to use paths of several communication links to call distant nodes. The 

minimum time possible for broadcasting in a network of n nodes when no node is involved in 

more than one communication at any given time is [lognl phases. Local broadcasting is not 
sufficient, in general, for broadcasting to be completed in minimum time; line broadcasting is 
always sufficient. An optimal line broadcast is a minimum-time broadcast that uses the smallest 
possible total number of communication links. In this paper, we give a complete characterization 
of optimal line broadcasting in cycles, and we develop efficient methods for constructing optimal 
line broadcast schemes. 0 1998 Elsevier Science B.V. all rights reserved. 

1. Introduction 

In broadcasting, information known by one informed processor, the originator, is 

transmitted to all other nodes (processors) in a communication network. In locul broad- 

casting, an informed node may use one of its communication links to call an adjacent 

node during any given time unit, or phase. In line broadcasting, an informed node may 

call any other node using the communication links of any simple path between the 

two nodes with the restriction that no link is used in more than one call in a given 

phase. 

When no node is involved in more than one communication in any given phase, 

and each communication can be completed during one phase, the number of informed 
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nodes can at most double during each phase, so at least [lognl phases3 are needed 

to broadcast in a network of n nodes. It is not possible, in general, to inform all 

nodes in a network in minimum time (i.e., [lognl phases) using local broadcasting, 

but Farley [3] has shown that there is a minimum-time line broadcast scheme for any 

originator in any connected network. The question that we address in this paper is 

how much line broadcasting is needed to complete a minimum-time broadcast from an 

arbitrary originator in a given graph? 

A broadcast scheme for a network is a specification of which calls are made during 

each phase and which communication paths are used to make the calls. A broadcast 

scheme for a network of n nodes requires n - 1 calls. Furthermore, n - 1 calls are 

sufficient because each node only needs to receive the information once. If minimum- 

time broadcasting using n - 1 local calls is possible from any originator in a network, 

then the network is a broadcast graph. During the last 15 years, considerable effort 

has been devoted to the discovery of minimum broadcast graphs (broadcast networks 

with the fewest possible links) and to the construction of sparse broadcast graphs. 

(See [2] for a comprehensive study of this subject.) Unfortunately, situations in which 

a network can be designed to be optimal for a particular communication pattern such 

as broadcasting are rare. Usually, the topology of the network is determined by other 

factors and the task is to use the network as ‘efficiently’ as possible. 

One approach to designing broadcast schemes in fixed networks is to use only local 

calls and then try to minimize time (e.g., the number of phases) or some other measure 

of cost. If the network uses store-and-forward routing, then this is the only possible 

approach since all communications are local. (See [5] for a recent survey of research 

in this area.) If the network supports some form of circuit-switched routing, then a 

second possible approach is to insist that one of the parameters, such as the number 

of phases, is optimized, and then try to minimize some other measure of cost. Usually, 

this other measure is total time to complete the broadcast taking into account other 

factors such as switching time at intermediate nodes and transmission rates of links. 

(A recent example of this approach is [lo].) 

In this paper, we will take the somewhat different approach of minimizing the total 

amount of ‘equipment’ used to complete broadcasting in the minimum number of 

phases using circuit-switched routing. In particular, we will minimize the total number 

of communication links used (i.e., the sum over all phases of the number of links 

used in each phase). A simple example for which this approach could be useful is 

the distribution of electronic news on the Internet. At one time, most of the network 

used telephone lines and most sites were only willing to devote one modem to the 

net-news. The cost of distributing news depended on the amount of data and on the 

distance that it was sent. The elapsed time of a phone call to send a particular piece of 

news is essentially independent of distance travelled, so it makes sense to talk about 

phases of a broadcast. Assuming that network news readers want their news as quickly 

as possible, the cost of providing news over a telephone network depends on the total 

3 All logarithms in this paper are base 
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amount of equipment used. In other words, it depends on the long distance telephone 

charges and these are proportional to the total distance travelled. While the current 

technology of the Internet involving high-speed trunks and dedicated lines is much 

more sophisticated, the model still has validity. 

There have not been many papers on the subject of line broadcasting. Farley [3] 

introduced the topic and gave a constructive proof that minimum-time line broadcasting 

is possible in any tree (and hence any connected network). Farley’s construction gives 

an upper bound of (n - l)[lognl on the minimum tofu1 length (total number of links) 

needed to line broadcast in minimum time in any network on n nodes. In this paper, 

we determine the exact value of the minimum total length for minimum-time line 

broadcasting in any cycle on n nodes. For cycles of n = 2’ nodes, we give the exact 

value explicitly; for other values of n, the exact values are given indirectly. For all 

values of II, we show that the exact value is only about i of Farley’s upper bound. 

Farley [3] also introduced a more restricted form of line broadcasting called pth 

hroudcasting in which calls in any given phase must use node-disjoint paths. In this 

paper, we show that optimal line broadcasting in cycles satisfies the stronger restriction 

of path broadcasting. Almstrom [l] studied a restricted type of line broadcasting on 

networks that consist of a single path of processors (i.e., a one-dimensional grid). 

Almstrom determined the number of nodes reachable in k phases when there is a 

constant upper bound on the length of line calls. Fujitd and Farley [6] have extended 

our results from cycles to paths. In particular, they have derived bounds on the total 

length needed to line broadcast from any originator in a path of length n in terms of 

the total length required to line broadcast in a cycle of length n, and they have derived 

the exact total length for originators close to the ends of paths of length 17 = 2!‘. A line 

broadcasting model in which all intermediate nodes involved in a line call also receive 

the message is studied in [4]. 

A problem closely related to ours, emhrddimg, has received considerable attention. 

(See [9] for a survey.) Our problem is to find a conLstvainrd embedding of a hwudurst 

tree (which describes the logical structure of a broadcast) into a graph representing 

the interconnections of a network. The vertices of the broadcast tree are mapped one- 

to-one to network nodes and edges of the broadcast tree are mapped to paths in the 

network. The reason our problem is a ‘constrained’ embedding is because the calls in 

any phase must use link-disjoint paths. An embedding of a broadcast tree into a cycle 

can also be specified by numbering the vertices of the tree with the integers in [ 1. II]. 

Consecutive integers correspond to consecutive nodes of the cycle. The total length of 

the embedding is the sum of the differences of the labels assigned to the endpoints 

of the edges of the tree. A minimum-sum numbering gives an optimal embedding. 

lordanskii [7] has investigated minimum-sum numberings of trees with fixed degree 

bounds using some concepts similar to the concepts of I~jv~.s and nrstrdmas that we 

use in this paper. 

In this paper, we investigate line broadcasting in cycles using a model in which 

broadcasting must be completed in [lognl phases and the optimization measure (or 

cost) is the total number of links used during the broadcast. We determine the cost 
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of minimum-time line broadcasting in cycles, give a complete characterization of op- 

timal line broadcast schemes in cycles, and develop efficient methods for constructing 

optimal line broadcast schemes. The basis of our results is three independent prop- 

erties of broadcast schemes - nestedness, jatness, and fullness. We prove that these 

three properties are both necessary and sufficient for optimality. We determine the ex- 

act cost of flat, nested, full broadcast schemes for cycles with 2k nodes, k 3 1 and 

then adapt our results to cycles of other lengths. This leads to an upper bound of 

approximately n [log nl/3 for all n > 2. The proofs of necessity and sufficiency ap- 

pear in Section 3 of this paper. The cost analysis and methods for constructing opti- 

mal schemes are in Section 4. In Section 2, we discuss several examples of optimal 

schemes to introduce terminology and to give informal and intuitive definitions of the 

main concepts used in Sections 3 and 4. Section 5 contains a brief discussion of open 

problems. 

2. Properties and examples 

In this paper we will model communication networks as graphs in which nodes rep- 

resent processors and edges represent communication links. The networks studied in 

this paper are n-cycles - n processors connected into a simple cycle by n communica- 

tion links. We will assume a unit-cost single-port model of communication (see [S]) in 

which no node is involved in more than one communication at any given time and each 

communication can be completed in one time unit or phase. With these assumptions, 

the minimum number of phases to complete broadcasting is [log n1 . 

A broadcast tree describes the logical structure of a broadcast. A broadcast tree 

which describes a minimum-time broadcast is a minimum broadcast tree or MBT. In 

the unit-cost single-port model, an MBT with 2k nodes is a binomial tree, and any 

MBT with n nodes, 2k-’ <n <2k, is a subgraph of the binomial tree on 2k nodes. 

The root of an MBT (and the binomial tree that contains it) is called the originator. 

Associated with each node of a broadcast tree is the phase during which it receives 

the message. The phase of the originator is 0 and the ‘deepest’ phase is [lognj if the 

tree is an MBT. If an MBT is a complete binomial tree, then the assignment of phases 

to nodes is unique. If the number of nodes is not a power of 2, then the MBT is not 

necessarily unique, and there also may be some flexibility in the assignment of phases 

to some of the nodes. 

A broadcast scheme S is a pair (T,E), where T is a broadcast tree with n nodes, 

and E is an embedding of T into a network G with n processors. To simplify notation 

and avoid awkward phrasing, we will often use the term scheme and the notation S 

when one of the terms broadcast tree or embedding oy symbols T or E would be 

more precise. For example, we will usually talk about properties of a scheme S even 

when they are actually properties of the embedding E or of the broadcast tree T. We 

will always use the more precise terminology when defining new concepts or when the 

context does not eliminate ambiguity. Since the embedding E is a one-to-one mapping 
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of the nodes of T to the processors of G, we will often use the term node when 

referring to a processor. Each edge of T is mapped by E to a simple path in G. 

Since the correspondence between edges of T and communication links of G is not 

necessarily one-to-one, we will use link when referring to physical links in a network 

and edge when referring to broadcast trees. 

Each path P of T is mapped by E to a connected path in G which we denote 

S(P) (even though E(P) would be more precise). Similarly, we use S(T) to denote 

the embedding of T into G. S(P) is not necessarily simple; it may fold on itself, and 

it may ‘wrap around’ the cycle and overlap itself. Associated with S(P), there is a 

connected, undirected, path in the cycle G which contains all of the nodes on S(P) 

and exactly all of the links on S(P). We call this path the segment of S(P) and denote 

it a(S(P)). If S(P) wraps around the cycle, then a(S(P)) is exactly the cycle. We will 

see that a(S(P)) is always a simple path in an optimal scheme. If 7;, is a subtree of T 

rooted at node U, then the subschrme S(7;,) is the scheme S(T) restricted to 7;,. Since 

S preserves the connectedness of T, we can extend the definition of segment to any 

subscheme S(T,) in the obvious way. 

A line broadcast scheme S for n nodes always uses a total of at least n - 1 links. If 

S maps an edge of a broadcast tree to a single link of the network, then the embedded 

edge is a locul call. If the edge is mapped to a path P of i. > 1 links, then S(P) 

is a line cull which contributes extra length 3, - 1 to the totul length of a broadcast 

scheme. Thus, the total length of a scheme is always total rstru length plus n ~ 1. 

A minimum-time broadcast scheme is a scheme that has [lognl phases. An optimul 

line broadcast scheme for a particular originator is a minimum-time scheme rooted at 

the originator with minimum total extra length. Since cycles are vertex-transitive, we 

are free to specify any processor as the originator of the broadcast. 

Fig. 1 shows several schemes on cycles. Parts (a), (b), (c), (d), and (f) of the figure 

show schemes for 4-, 8-, 16-, 32- and 64-cycles, respectively. Parts (e) and (g) show 

schemes for 22- and 55-cycles. Nodes are shown as black dots, and calls as arrows 

or short lines. Links of the cycle are not shown. In particular, for each cycle, the link 

connecting the leftmost and rightmost nodes is not shown. That link is not used by 

any call in any of our examples (although nothing in the definition of line broadcast 

schemes prohibits the use of that link). The number under a node is the phase during 

which the node is informed; the originator is informed at phase 0. An arrowhead on a 

call, if present, shows the direction of the call. The 4-cycle scheme in part (a) appears 

repeatedly in the other schemes as a subscheme, and when it does, the arrowheads are 

omitted to reduce clutter. 

Each scheme is shown in two ways; the first shows all of the nodes on one line, 

and the second shows one path of the scheme laid out flat and the rest of the scheme 

hanging below that path. The phases and positions of nodes on the cycle are the same 

in the two representations. The total extra length of any call is exactly the number of 

nodes which are under the call. (This is easier to see in the first representation.) 

The schemes in Fig. 1 are all minimum-time schemes. This can be verified by ex- 

amining the phases at which nodes are informed. They are also all optimal, as we will 
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prove in later sections of this paper. The proof of optimality is based on a demonstra- 

tion that three independent properties of broadcast schemes, which we call nestedness, 

jlatness, and fullness are necessary and sufficient for optimality. Fullness is a prop- 

Fig. I. Cycle schemes. 

erty of a broadcast tree; nestedness and flatness are properties of an embedding of a 

broadcast tree. 

From the schemes in Fig. 1, we note that calls are nested; later calls are shorter 

and stay under earlier calls, and calls never cross. Thus, for any pair of calls, either 

one of the calls is completely under the other, or the calls do not share any links. We 
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will see that a scheme that is not nested can always be modified to reduce its total 

length. 

In the second representation, a top put/z of calls is laid out jut. It can be seen that 

all but one link of the cycle is on the top path, and that the rest of the scheme is 

completely under the top path. We say that the top path is Iq~r 0 of a scheme S. 

Further examination reveals that removal of the top path leaves a set of .ruhschcmrs 

and that each of these subschemes has a flat top path. The collection of the top paths 

of these subschemes is luyer 1 of S. Removal of layer 1 gives sub-subschemes, and 

so on. (Examine the subscheme structure of the originator in parts (f) and (g) for 

example.) We will prove that any optimal scheme can be decomposed into layers by 

repeatedly removing the flat top paths of subschemes. We give the name ,fl~tnes.s to 

the property of a scheme that all of its layers are embedded flat. 

In all of the examples in Fig. 1, the shallower layers of a scheme are as ,fidl as 

possible (i.e., there are as many calls as possible at layer 0, then layer I is filled, and 

so on). We will prove that, if the shallow layers of a scheme are not full, then there is 

another scheme with smaller total length in which shallow layers ure full. We use the 

term ji&zrss to refer to the property that all but the deepest layer contains as many 

calls as possible. 

Further examination of the first representation in parts (a)-(f) of Fig. 1 reveals that 

an optimal scheme for a 2k-cycle can be produced from a 2”-‘-cycle scheme by placing 

two mirror image 2”-’ -cycle schemes beside each other and joining their originators 

with a line call. A second recursive method for creating a 2’-cycle scheme is to start 

with a scheme for a 2k-’ cycle, add two new nodes to the center of the top path, and 

let each of the two new nodes be the root of a subscheme which looks exactly like an 

optimal 2k-2-cycle scheme. This construction is best seen in the second representation; 

the nodes with phases labelled 0 and 1 are the two added nodes. 

The 22-cycle scheme shown in Fig. l(e) is an adaptation of the 32-cycle scheme, 

with the deepest layer entirely removed and some of the calls in the next layer removed. 

The nodes which the removed calls informed in the 32-cycle are also removed from 

the cycle, thus shortening some of the remaining calls. The 32- and 22-cycle schemes 

are deliberately drawn to emphasize the correspondence between a node, call, or phase 

in the 22-cycle scheme with the node, call, or phase directly above it in the 32-cycle 

scheme. Similarly, the 55-cycle scheme shown in part (g) is an adaptation of the 

64-cycle scheme with some calls removed from the deepest layer. We will prove that 

this eliminution method produces optimal schemes when the number of nodes is not a 

power of 2. 

3. Nestedness, flatness, and fullness 

In the first three subsections of this section, we prove that nestedness, flatness, and 

fullness are necessary properties of optimal line broadcast schemes on cycles. In the 

fourth subsection, we show that these three properties are sufficient for optimality. 
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Fig. 2. Nestedness 
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Fig. 3. Crossed calls. 

3.1. Nestedness 

Definition 1. A broadcast scheme S is nested if no call of S passes through an informed 

node. 

Lemma 2. Every optimal cycle scheme is nested. 

Proof. Assume S is an optimal scheme that is not nested. Then some call c in S goes 

through an informed node w, as shown in Fig. 2(a). (In the figures in this section, 

dashed lines indicate paths of one or more links.) Since every link between u and v 

is used by c, w cannot originate a call while c is being made. A cheaper scheme is 

possible by letting w, instead of u, inform v, as shown in Fig. 2(b). Thus, a non-nested 

scheme cannot be an optimal scheme. 0 

We note that nestedness is a property of the embedding. 

Definition 3. A call d in a cycle scheme is under a call c if every link which is used 

by d is also used by c. A node v is under call c if v is not the sender or receiver of 

c but c goes through v. A link 6 is under call c if c uses L. 

It follows immediately from Definition 3 that there can be a node under a call only 

if the call has total length greater than 1 and, in a nested scheme, only if the node is 

informed after the sender and receiver of the call have been informed. 

Using Lemma 2, it is easy to show that the situation shown in Fig. 3 cannot occur 

in an optimal scheme. Since c and d share an edge, they cannot occur in the same 

phase. Furthermore, the endpoint x of d is under c, and the endpoint v of c is under d. 

If d occurs first, then x is informed before c occurs and nestedness prohibits c. Simi- 

larly, if c occurs first, then nestedness prohibits d. We have established the following 

property. 
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Property 4. In a nested scheme, two calls c and d can never cross; either c und d 

use disjoint sets of links (but may share one node if it is the sender of both culls) or 

one call is under the other. 

One consequence of Property 4 is that optimal line broadcasting in the cycle is 

actually path broadcasting; calls in the same phase cannot share any links and cannot 

share either sender or receiver. Thus, they must be link- and node-disjoint. 

Nestedness implies some other useful properties. In the following discussion, let 

P,, be a directed path from node u to node v in a broadcast tree T and let S be a 

nested cycle scheme for T. Since u is the first informed node of S(P,,), nestedness 

implies that no call of S(P,,) either informs u or goes through U. It follows that u 

is one of the endpoints of o(S(P,,)), the segment of S(P,,), and one of the links 

incident on u is not on o(S(&)). The following property is true by extension of this 

reasoning. 

Property 5. Let S be a nested cycle scheme for a broadcust tree T and let P,,, be a 

directed path from node u to a node v in T. Then the segment a(S(P,,.)) is a simple 

path in the cycle and either u or v is the jirst informed node on the segment. 

We can also conclude that each node on a(S(P,,)) is either u or a descendant of 

u in S. To establish this, suppose to the contrary that some node x is on o(S(&,)) 

but is neither u nor a descendant of u in S. In particular, x is not on S(P,,), so it 

can only be on o(S(P,,)) because a call of S(P,,) goes through x. Any call through 

x must use both links incident on x (because a call is always mapped to a simple 

path in the network), so x cannot be an endpoint of o(S(P,,)). By nestedness, x is 

informed during a later phase than u so x cannot be an ancestor of u. Thus, u and x 

have a common ancestor w in S that is not on o(S(P,,,)). Since x is not an endpoint of 

a(S(P,,)), some call on the path S(P,,) must go through an endpoint of o(S(P,,.)) to 

reach x, and must therefore cross a call of S(P,,.) that goes through x. This contradicts 

Property 4 and proves the following property. 

Property 6. Let S be a nested cycle scheme jar a broadcast tree T and let P,,, be u 

directed path from node u to a node c in T. Then either u or v is the ancestor in S 

of all other nodes on o(S(P4:,,)). 

We can use Property 6 to generalize Property 4 from calls to paths and then to 

subschemes. First consider two paths S(P,,,) and S(P,,) in a nested cycle scheme. If 

w is not a descendant of u in S, then no node on S(P,,) can be a descendant of 

u and Property 6 implies that no node on S(P,,) can be on o(S(P,,)). Furthermore, 

a(S(P,,)) and a(S(P,,)) have no common links. If w = u, then a(S(P,,)) and o(S(&)) 

are disjoint except for their common endpoint. It is now straightforward to generalize 

this property from paths to subschemes. 
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Property 7. Let S be a nested cycle scheme for a broadcast tree T and let G and 
T, be subtrees of T. If u is not in T,, and w is not in T,, except that u can be w, 
then the segments of a(S(c)) and o(S(T,)) share no links in the cycle. 

Now, consider a nested cycle scheme S with originator s. By Property 6, the seg- 

ment o(S(P,)) of every path S(P,) has s as an endpoint. If we arbitrarily assign the 

directions ‘left’ and ‘right’ in the cycle, then we can unambiguously say that o(S(&)) 

is to the left or to the right of s. Let a(S(P,t)) be the longest segment to the left of s 

and let o(S(&)) be the longest segment to the right of s. Then every link used by S is 

in either B(S(&)) or a(S(&)). By Property 7, s is the only node shared by o(S(&)) 

and o(S(&)), and the two segments share no links. It follows that there is at least 

one link on the cycle which is in neither segment, so there is a link which S does not 

use. However, there is at most one such link since there would be an uninformed node 

otherwise. 

Property 8. There is exactly one unused link in any nested cycle scheme. 

3.2. Flatness 

Let T be a broadcast tree with n nodes. We will say that a node is a top node of 

T if it is the originator, one of the first two nodes called by the originator, or the first 

node called by another top node. The top path of T is the simple path consisting of 

the top nodes of T and the edges of T representing calls to top nodes. The top path 

of T is layer 0 of T. The subtrees that remain after the edges of layer 0 are removed 

from T are called the layer 1 trees of T. Since each layer 1 tree is a broadcast tree, 

we can use our definitions recursively. Thus, the top path of a layer 1 tree is a layer 1 

path of T, and the union of all layer 1 paths is layer 1 of T. When the edges of layer 

1 are also removed from T, the layer 2 trees of T remain. Continuing, we see that 

each edge of T belongs to exactly one layer and that the non-empty layers of T are 

numbered consecutively starting at 0. 

A layer structure is a property of a broadcast tree. The layers of a broadcast scheme 

are determined by the layers of its broadcast tree, so we use terms like top call and 

layer p call in the obvious way. We will use the term bottom scheme to refer to a 

subscheme for a layer 1 tree of a broadcast tree and bottom call to refer to any call 

in a bottom scheme (i.e., any call that is not a top call). 

The next property, flatness, is a property of an embedding. 

Definition 9. A simple path P of a broadcast tree is embedded pat by a cycle scheme 

S if every node of P satisfies one of the following conditions. 

l If a node on P makes two calls on P, then S embeds the two calls in opposite 

directions into the cycle. 

l If a node on P makes a call on P and receives a call on P, then S embeds the two 

calls in the same direction into the cycle. 
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Fig. 4. Directions of top calls. 

Definition 10. A cycle scheme S is flat if each layer p path in each non-empty layer 

p of S is embedded fat. 

Flatness and nestedness are independent properties, despite the fact that the proof 

of Lemma 11 below uses the nestedness of an optimal scheme. A top path can fold 

on itself (so it is not embedded flat) and yet still be nested. On the other hand, two 

bottom schemes in a flat scheme can cross and thus violate nesting. 

Lemma 11. The top path of an optimal cycle scheme is embedded Jut. 

Proof. Let S be an optimal cycle scheme and u a node on the top path of S. If u is 

the root of the top path, then u is the originator of S. Suppose that in S, u calls 1’ at 

phase 1 and that the next call by u is at phase t > 1 to W, such that w is under the 

call from u to C. The situation is shown in Fig. 4(a). Then we can obtain a cheaper 

scheme by making w the originator and having w call L’ at phase 1 and then u at 

phase t as illustrated in part (b). (Note that nestedness prohibits the situation shown in 

part (c).) 
Now suppose that u is not the root of S. Then u is called by some other node 1: at 

some phase t. Suppose that U’S first call in S is at phase ~>t to w, and that w is under 

the call from c to u as shown in Fig. 4(d). (Note that since S is an optimal scheme, u 

cannot call through u by nestedness.) As shown in part (e), we can obtain a cheaper 

scheme by having v call w at phase t and then having w call u at phase s. 

In both of the cheaper schemes, the only calls of U, u, and w that are different are 

the ones shown explicitly, and the calls are made during the same phases as they were 

ins. 0 

Property 12. If S is u scheme, u is u top node of’s, und the bottom scheme oj’u in 

S is non-empty, then u has two neighhours on the top path of S. 
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If u is the root of the top path, then Property 12 is true because the first two edges 

used by the originator are on the top path by definition. If u is not the root of the top 

path, then u is informed by a top call and the first call made by u is also a top call by 

definition. In both cases, both top calls involving u are made before any bottom calls. 

Definition 13. A subscheme S(T,) is contiguous if its segment a(S(T,)) contains only 

nodes of S(rU). 

Lemma 14. If S is a nested scheme on a cycle, and S’ is a bottom scheme of S, then 

S’ is contiguous. 

Proof. Let S be a nested scheme for a broadcast tree T. By Property 12, if u is the 

root of a bottom scheme of S, then u has a neighbour v and a neighbour w on the 

top path of S. Either u calls v and w, or v (say) calls u and u calls w. In the first 

case, shown in Fig. 5(a), u is the originator of S, T, and T, are the largest subtrees 

of T rooted at v and w, and S(T,) and S( T,) are the associated subschemes. Since 

u is the originator, it cannot be in either S(T,) or S(T,). Neither v nor w can be 

in the bottom scheme S(T,) because they are informed by top calls. By Property 7, 

S does not map any node in T, or T, closer on the cycle to u than any node in T,. 

Since the three subschemes account for all nodes in S, S(T,) must be contiguous. The 

second case can be argued similarly, but there are two sub-cases since either v is the 

originator of S or v is between the originator and u on the top path of S. Fig. 5(b) 

shows the second sub-case in which v is not the originator. In both sub-cases, S(T,) 

is the bottom scheme of u, T, is the largest subtree of T rooted at w, and we define 

T, to be the subtree containing all nodes not in T,, or T,. In either sub-case, u is not 

in either S(T,) or S( T,) and neither v nor w can be in the bottom scheme S(T,), so 

we can apply Property 7 as before. 0 

Let S be a nested scheme whose top path P is embedded flat. By Lemma 11 and 

Property 5, the embedded path S(P) is simple. Let u be any top node of S and let 

S(T,) be the bottom scheme of u in S. By Property 12, if S(T,) is non-empty, u has 

two neighbours on the top path, and these neighbours and u are all informed before 

any descendant of u in S(T,). By nestedness, no call in S(T,) goes through u or its 

neighbours on the top path, so we get the following property. 

0.9 0 

Fig. 5. Contiguous bottom schemes. 
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Property 15. If S is a nested scheme and the top path of S is embedded jut, then no 

top call of S is under any other call of S and each bottom call of S is under exactl~~ 

one top call sf S. 

Lemma 16. Every optimal cycle scheme is flat. 

Proof. Let S be an optimal cycle scheme. By Lemmas 2 and 11, and Property 15, the 

top path of S is embedded flat and each bottom call of S is under exactly one top 

call of S. Since S uses every link of the cycle except one (Property S), its segment is 

n - 1 links long, and the contribution of the top path to the total cost of the scheme is 

independent of any details of the bottom schemes including the positions of their roots. 

By Lemma 14 each bottom scheme is contiguous, so no detail of one bottom scheme 

affects the cost of any other bottom scheme. Thus, each bottom scheme must be an 

optimal scheme for its segment, and the position of its root will be a position that 

minimizes the cost of the bottom scheme. It follows that an optimal bottom scheme 

for a segment will look exactly like an optimal scheme for a cycle with the same 

number of nodes and it will share all of the properties of an optimal cycle scheme. In 

particular, the top path of each bottom scheme must be embedded flat. Repeating the 

argument recursively, we see that S must satisfy Definition 10. 0 

3.3. Fullness 

The nestedness and flatness properties provide sufficient structure to enable us to 

calculate the total extra length of a scheme. Let S be a flat, nested cycle scheme on 

n nodes. By Property 15, each bottom call of S is under exactly one top call of S. 

By Lemma 14, the bottom schemes are contiguous, and no call in a bottom scheme is 

under any call in another bottom scheme. By Lemmas 2 and 16, each bottom scheme 

is also nested and flat, so, each layer 1 call is under exactly one layer 0 call, and is 

under no other calls. We can repeat this argument recursively to show that any layer 

p call is under exactly one layer Y call, 0 <r B p - 1, and no other calls. If q - I is 

the deepest layer of S, there are no calls under the layer q - 1 calls, so all layer q - 1 

calls are local calls. 

Now, we can describe a procedure to determine the total extra length of a flat, nested 

scheme S for a broadcast tree T on n nodes. Start by removing any leaf u from layer 

q - 1 of S to obtain a scheme for n - 1 nodes. More precisely, remove u and the edge 

that informs u from T, and remove u from the cycle by merging the links incident on 

u. Since u was a local call, it contributed 1 to the total length. However, u was under 

q - 1 calls in lower numbered layers, and each of these calls will be shorter by one 

link. Thus, the new cycle scheme for n - 1 nodes has q - 1 less extra length than 

the original scheme S. The removal of u preserves nestedness and flatness: no call 

now goes through any different nodes than it did in the original scheme, so nesting is 

preserved, and the flatness of the layers is not affected by making the paths shorter. 
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We can repeat the procedure until all calls have been removed and each unit of extra 

length has been counted once. Letting N(p) denote the number of calls in layer p 

of S, 0 < p <q - 1, the total extra length of S is 

q--l 

L(n) = c N(P) P. 
p=O 

(1) 

The sum L(n) is minimized by an optimal scheme on n nodes. It is clear from the 

procedure for determining L(n) that L(n) will be minimized if there are as many calls 

as possible in lower layers and the fewest possible number of calls in layer q - 1. 

We will show that this property, which we call fullness, is a property of all optimal 

schemes. 

Definition 17. Let Tk denote the complete binomial tree on 2k nodes, and let n(k) be 

the number of layers in Tk. Define M(k, p) to be the number of calls in layer p of Tk, 

k 3 0, 0 < p < A(k) - 1. A broadcast scheme on a tree T with n nodes, 2k-’ <n 6 2k, 

and q layers is full if T is an MBT, each layer r of T has M(k, r) calls, 0 <r <q - 1, 

and layer q - 1 has at most M(k, q - 1) calls. 

Lemma 18. Every optimal scheme for a cycle with 2k nodes, k 3 0, is full. 

Proof. Any optimal scheme must be nested and flat by Lemmas 2 and 16. Create a 

flat, nested, full scheme S for a binomial tree Tk as follows. First, lay out the top 

path P flat and without overlap into a cycle which has as many nodes as there are 

top nodes. Next, create the bottom schemes of S by replacing each node of S(P) by 

a contiguous embedding of the layer 1 tree rooted by that node. In the process, we 

stretch out the initial path S(P) by inserting nodes in the cycle to accommodate the 

nodes in the bottom schemes of S. The details of the bottom schemes are determined 

recursively. It is clear that this construction gives a scheme S that is flat and nested, 

and S is full by definition. Note that Tk is the unique MBT on 2k nodes and that 

the number of nodes in each of its layers is fixed. Increasing the number of nodes 

in any layer would increase the number of phases and the resulting tree would not 

represent a minimum-time broadcast. Decreasing the number of nodes in any layer 

would require the addition of a new layer and this would also increase the number 

of phases. Since S has the maximum possible number of calls in each layer, the sum 

L(n) is minimized. 0 

We can create a flat, nested, full scheme for any n-cycle by starting with a flat, 

nested, full scheme for the binomial tree T, with 2k nodes, k = [log nj . We then remove 

2k -n calls from S(Tk) using the same procedure that we used to calculate L(n). That 

is, we repeatedly delete a leaf from the deepest non-empty layer of S(Tk) until n nodes 

remain. Let T be the broadcast tree on n nodes that results. The procedure preserves 

nestedness and flatness and the order in which nodes are eliminated ensures that S(T) 

is also full. Also, T is an MBT since it has the correct number of phases, k = rlogn]. 
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Before proving that S(T) is optimal, we need to show that it is not possible by some 

other method to find an MBT T’ with n nodes which has more calls at lower layers 

than Tk. 

Definition 19. The cclpacity C(n, p) is the maximum possible number of edges in layer 

p of any MBT with n nodes. 

Lemma 20. C(n, p)bM(k, p), k = [log n1 

Proof. We prove the result using strong induction on k. The statement of the lemma 

clearly holds for the base cases k = 0 and k = 1 in which n = 1 and n = 2. Now as- 

sume that the result holds for every j < k = [log n1 and consider the complete bi- 

nomial tree Tk with 2k nodes. Tk is an MBT and satisfies the statement of the 

lemma by definition. Tk has a root P which makes k calls cl,cl,. . ,c’,, ,L’L to 

the roots of its subtrees Tk_1, Tk_2,. . . , Tk-[, . , To which are complete binomial trees 

with 2k-’ 2k-2 3 >> 2k-’ , . . ,2O nodes, respectively. Any MBT T’ with n nodes, 2kP’ <n 

<2”, can be constructed from Tk by eliminating some of the calls in Tk, and the sub- 

trees of Tk below those calls, and then perhaps moving some calls and their sub- 

trees to different layers. By the induction assumption, no modifications within the 

subtrees To, TI, . . , Tk-1 can violate the capacity restrictions of binomial trees with 

2O,2’,..., 2k-’ nodes, respectively. So, no modifications of this type can result in more 

than M(k, p), k = [lognl edges in any layer p of T’. The only remaining cases to 

consider are modifications involving the calls ci. A call cj can only be moved to an 

earlier phase (so that Cj and the calls in its subtree could move to lower layers) if some 

call ci, i<j in that earlier phase is eliminated or moved to a later phase. However, by 

the induction assumption, the capacity of each layer of Tk_j is less than the capacity 

of the corresponding layer in Tk_i, so this type of modification cannot result in more 

than M(k, p), k = [lognl edges in any layer p of T’. C 

Lemma 21. Every optimal cycle scheme is full. 

Proof. The broadcast tree of an optimal cycle scheme must be an MBT, so the first 

part of Definition 17 is satisfied. Our procedure for finding a flat, nested, full scheme 

for any n-cycle by eliminating calls from a flat, nested, full scheme for a binomial tree 

proves that there is a flat, nested MBT satisfying the second part of Definition 17 for 

any n. The result now follows by Lemma 20 and the fact that Eq. (1) is minimized 

when the numbers of calls in all lower layers of a scheme are maximized. 0 

3.4. Sujficiency qf nestedness, flatness and fullness 

Suppose that S is a minimum-time scheme for the n-cycle which has q layers num- 

bered 0, 1,. ,q - 1, and o(n) calls in layer q - 1. If S is flat, nested, and full, then 
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by Eq. (1) and Lemma 21 the total extra length of S is exactly 

P-2 

L(n)= CM((lognl,p).p+~(n).(q- 1). 
p=o 

We can now state our main result. 

(2) 

Theorem 22. A cycle scheme is optimal ij” and only if it is jat, nested, and full. 

Proof. Lemmas 2, 16, and 21 establish that nestedness, flatness, and fullness are 

necessary conditions for optimality. To establish sufficiency, suppose that there is a 

minimum-time scheme S with n nodes that has a cost different than L(n) given in 

Eq. (2). Since every flat, nested, and full scheme with n nodes has cost L(n), S must 

lack at least one of these properties, and S cannot be optimal by one of Lemmas 2, 

16, and 21. Therefore, L(n) is the only possible cost for an optimal scheme on n nodes 

and all flat, nested, and full schemes are optimal. This establishes the sufficiency of 

nestedness, flatness, and fullness. 0 

4. Construction and analysis of optimal cycle schemes 

In this section, we will determine the exact cost of optimal line broadcast schemes 

for cycles with n = 2k nodes, k 2 1. In the process, we will obtain enough information 

to describe the cost of optimal cycle schemes for all other values of n. In the first 

subsection, we describe a method for constructing optimal schemes for 2k-cycles and 

analyze the construction to determine the exact cost. In the second subsection, we 

briefly describe an alternative construction method. In the third subsection, we explain 

how to derive an optimal scheme for an n-cycle, 2k - 1 <n <2k, from an optimal 

scheme for a 2k-cycle. 

4.1. Analysis of optimal 2k-cycle schemes 

If a cycle has n = 2k nodes, then a complete binomial tree with 2k nodes is the 

only possible MBT. So, we can find the total extra length of an optimal cycle scheme 

with 2k nodes by determining the number of layers A(k) in the broadcast tree and the 

size M(k, p) of each layer p, p = 0, 1,. . . , A(k) - 1. We showed in Section 3.3 that 

the total extra length is L(2k) = C$i-’ M(k, p) . p. We will determine A(k) and the 

sizes M(k, p) shortly, but it is easier to first derive Q2k) directly. 

Our direct determination of L(2k) is based on a recursive construction of optimal 

broadcast schemes with 2k nodes. First note that a complete binomial tree with 2k 

nodes can be constructed by adding two new nodes to the center of layer 0 of a 

complete binomial tree with 2k-1 nodes and then attaching a complete binomial tree 

with 2k-2 nodes to each of the new nodes in layer 0. The case k =5 is shown in 

Fig. 6 and in parts (c) and (d) of Fig. 1. We know that in an optimal scheme, each 
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r------ _________, r--_______-_____ 

~pj 1p-y k=4 
I _____ __________, ,_______________, 

k=5 

Fig. 6. A recursive construction of optimal cycle schemes 

bottom scheme is flat, nested, and full. It follows that an optimal scheme for 2” nodes 

can be derived from an optimal scheme with 2k-’ nodes by adding two new nodes 

to the center of the top path, and then making each of the two new nodes the root 

of a bottom scheme with 2k-2 nodes, such that each of the two new 2k-2-schemes is 

contiguous. This procedure is illustrated in Fig. 6 for k = 5. (Also see Fig. 1 for more 

examples.) 

It is easy to see that the calls in dashed boxes labelled 1 and 2 in Fig. 6 together 

contribute extra length L(2k-‘). The calls in boxes 3 and 4 each contribute extra length 

L(2k-2) + 2k-2 - 1. The term 2k-2 - 1 is due to the number of new calls under the 

top path. This gives the following recurrence relation: 

L(2’ ) = 0, 

L(22) = 0, 

L(2k)=L(2k-‘)+2.L(2k-2)+2k-’ -2, k>2. 

The solution to the recurrence relation is 

L(2k)= ;[2k(3k - 8) - (-l)k] + 1, (3) 

which is easily verified by direct substitution. The total length of an optimal scheme 

on 2k nodes is then L(2k) + (2k - 1 ), which is 

F(2k)= ;[2k(3k + 1) -(-l)“]. (4) 

It is not difficult to show that n(k) = [k/21, for k > 0. The case k = 1 is trivial, since 

an optimal scheme for 2 nodes has 1 call and 1 layer. To determine A(k) in general, 

note that the originator makes its first two calls on layer 0, its next two calls on layer 

1, and so on. Since the originator makes one call in each of the k phases, there are 

at least fk/21 layers. Each layer, except possibly the deepest layer, contains two calls 

made by the originator in two phases. Thus, all calls of the originator are contained 

in exactly [k/21 layers. Every other node makes fewer calls in fewer phases than the 

originator, so [k/21 layers contain all calls of the broadcast scheme. 
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We can determine M(k, p) by using the construction in Fig. 6, and arguing in much 

the same way as we did for L(2k), to derive the following recurrence relation: 

k 
M(k,p)=O, k3Lp3 5 , 

11 

A4(k,O)=2k- 1, kbl, 

M(k,p)=M(k-l,p)+2.M(k-2,p-l), p>l,k33. 

The solution to this recurrence relation is 

M(k,p)=2P. [2. (“,I; ‘) + (“-;- ‘)] 

=2q2.(5$1].(k-;-l), (5) 

which can be confirmed by substitution. Substituting Eq. (5) and /i(k)= [k/2] into the 

equation L(2k) = C”,$-’ M(k, p) . p gives Eq. (3). 

4.2. Alternate procedure for creating cycle schemes 

In Section 2 we mentioned another recursive procedure for creating optimal schemes 

for the 2k-cycle that joins the originators of two mirror-image schemes for 2k-‘-cycles 

by a line call. Fig. 7 shows a few steps of the recursive construction procedure. The 

schemes in parts (a), (c), and (d) for cycles with 4, 8, and 16 nodes are similar to the 

schemes shown earlier in Fig. 1. The only difference is that the nodes of the schemes in 

Fig. 7 are labelled with bit strings. When nodes are visited in order around the cycles, 

these sequences of bit strings are binary rejected Gray codes as described in [l I]. 

A scheme for 2k nodes is created recursively from a scheme for 2k-’ nodes by first 

placing two mirror-image copies of the scheme for 2k-’ nodes side by side with the 

originators as close to each other as possible. Then, a 0 is prepended to each label in 

the left copy and a 1 to each label in the right copy, and a line call is added from the 

originator 00.. 0 of the left copy to the originator 100.. . 0 of the right copy. During 

a broadcast, this new line call is the call made during the first phase. Parts (a), (b), 

and (c) of Fig. 7 show the construction of a scheme for 8 nodes from a scheme for 4 

nodes. Part (d) shows the scheme for 16 nodes. 

The construction procedure produces a scheme with k phases for the 2k-cycle, since 

the first phase of the scheme uses one call to begin two subschemes with k - 1 phases. 

Thus, the schemes are minimum-time schemes. Several properties of the schemes are 

immediate consequences of the construction procedure. In each phase i, 1 d i <k, exactly 

2’-’ calls are made and all of the calls in phase i have the same length. Furthermore, 

the labels of the sender and receiver of a call in phase i are Hamming distance 1 apart, 

and the bit position in which they differ is the ith position from the left. Thus, a node 

that is informed by a call in phase i will have a 1 in the ith position from the left, 

O’s in all positions to the right of this 1, and the label of the node that it calls in each 
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o- = - (a) 01 00 10 11 

(cl A Lb-e--o 
011 010 000 001 101 100 110 111 

(d) fl a 
0111 0110 0100 0101 0001 0000 0010 0011 1011 1010 loocl 1001 1101 1100 1110 1111 

Fig. 7. Recursive construction with Gray code labelling. 

phase j > i is obtained by complementing the bit in the jth position from the left. We 

omit the proof that this procedure produces optimal schemes. The proof can be found 

in the first author’s M.Sc. thesis [8]. 

4.3. The elimination method for cycles 

In Section 3.3, we described a method for creating a broadcast scheme for any 

n-cycle. First, we construct a flat, nested, full scheme on 2k nodes, where k = [log ~1 

using, for example, one of the recursive procedures described earlier in this section, and 

then eliminate the most expensive calls in the scheme until IZ- 1 calls are left. We have 

shown that this method, which we call the eliminution method, preserves nestedness 

and flatness, and by Lemma 20 the resulting scheme is full, so the scheme is optimal 

by Theorem 22. The total cost, F(n), of the scheme can be obtained by using Eqs. (2) 

and (5) and noting that there are [k/21 layers in the flat, nested, full scheme with 2!’ 

nodes. We have only found a closed form solution for F(n) when n is a power of 

2 (i.e., Eq. (4)), but there are some interesting observations that we can make about 

the behavior of F(n). First, we note that each application of the elimination method 

reduces total cost, so F(n) is monotonically increasing between 2k + 1 and 2k”. In fact. 

for any n 3 6, all calls removed by the elimination method to get an optimal scheme for 

n nodes have extra cost at least one. In contrast, the function F(n) decreases between 

n=2” and n=2”+ 1 for k>5. For example, F(64)=135 and F(65)=116. 

Property 23. F(n) < F(n + 1) Jar n < 8 und ,fbv n # 2k lthen n > 8. 

Property 24. F(2k) >F(2” + 1) for k 3 5 and F(2’ ) = F(2k + 1) J~)Y k = 3 und k = 4. 

Proof. The cases k = 3 and k = 4 can be verified directly. For k > 5, note from Eq. (5) 

that the capacity of each non-empty layer of an optimal scheme for 2h + 1 nodes 

is greater than the capacity of the corresponding layer in the scheme for 2” nodes. 

In particular, layer 0 in a scheme for 2’ + 1 nodes can contain two more nodes than 
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a scheme for 2k nodes. For k 2 5, we can construct a scheme for 2k + 1 nodes from a 

scheme for 2k nodes by adding two nodes to the ends of the top path (layer 0), and 

removing one node from the deepest layer. For k 25, the deepest layer is layer 2 or 

greater, so the construction shows that F(2k) >F(2k + 1 )+ 1. Note that the schemes for 

2k + 1 nodes constructed in this way are not optimal since they do not take advantage 

of the extra unused capacity in layer 2 (and possibly deeper layers). 0 

We state our final observation as a theorem. 

Theorem 25. The total length of an optimal scheme for a cycle with n 2 2 nodes is 

F(n)<#3[logn] + 1) - (-l)““an’l. 

Proof. For n d 8, the bound can be verified directly by using the elimination method 

on the schemes in Fig. 1, and the result is true for powers of 2 from Eq. (4). From 

Property 24, we know that F(2k)>F(2k + 1) for k33, so, using Eq. (4), we get 

F(2k+‘) - F(2k + 1)>F(2k+‘) - F(2k) 

= ;,2k+‘(3(k + 1) + 1) - (-l)k+‘] - ;[2’(3k + 1) - (-l)k] 

= ;[(2k+l -2k)(3k+ l)+3.2k+’ +2(-l)k] 

= + $(-1)k 

Therefore, the average decrease in cost due to one application of the elimination method 

is greater than (3k + 7)/9. The elimination method always removes a call with largest 

extra cost, so when the elimination method is applied / < 2k times to obtain a scheme 

with IZ = 2k+1 - 8 nodes, the largest decreases in cost occur first. It follows that 

F(n) < F(2k+‘) - E 

= ;[2”+‘(3(k + 1) + 1) _ (-l)k+l] _ ‘c3ck +91)+ ‘) _ ; 

= ;[@+I -L)(3(k+l)+l)-(-l)k+‘]-; 

+(3rlog~] + 1) - (-l)““snl] 

for n # 2k. 0 



J. 0. Kane, J G. Peters/ Discrete Applied Mathematics 83 (1998) 207-228 227 

Farley’s upper bound [3] for total length in any network on n nodes is F(n)< 

(n - l)[log II] ; asymptotically in n, our result is i of this bound. 

5. Further work 

We have generalized the cycle schemes described in this paper to produce schemes 

for multi-dimensional cycles (or toroidal meshes). We believe that these schemes are 

optimal, but the proofs appear to be much more difficult than the proof of optimality 

for the cycle. For two-dimensional cycles, we have found generalizations of nestedness, 

flatness, and fullness that are necessary for optimality, but they are not sufficient. For 

arbitrary higher-degree networks, we know that nestedness is not a property of all 

optimal schemes because we have found networks for which some originator must 

make a call through an informed node in any optimal scheme. However, it appears 

that nestedness is a necessary condition for optimality in any vertex-transitive network. 

We refer the reader to [8] for more details. 

In the cycle, we proved that optimal line broadcasting is also path broadcasting, and 

we relied on this simplifying property in our proofs of optimality. This property is 

not true for higher-degree networks since nodes can switch through multiple calls. The 

loss of this simplification appears to be the source of the difficulties in the proofs for 

higher-degree networks. An interesting line of further work might be line broadcasting 

in degree-3-regular or degree-3-bounded graphs. A degree 3 node can switch through 

at most one call, but can be the sender or receiver of another call at the same time. 

We mentioned in the Introduction that Iordanskii [7] has used concepts similar to 

layers and nestedness to study minimum-cost unconstrained embeddings of undirected 

(unrooted) trees into linear networks (cycles and paths). The embeddings that we 

have studied are constrained because calls that are made in the same phase must be 

mapped to link-disjoint paths. We believe that our optimal schemes are also optimal 

unconstrained embeddings. 

Conjecture 26. An optimal cycle scheme with n nodes hus the same total length us 

an optimal unconstrained embedding of the undirected version of a broudcast tree 

with n nodes into the cycle with n nodes. 

Acknowledgements 

We would like to thank the referees for comments that improved the presentation 

and for observations that led to improvements in the proofs in Section 3.3. 

References 

[I] C. Almstrom, Limited line broadcasting in the infinite l-dimensional grid graph, manuscript, 1988. 

[2] J.-C. Bermond, P. Fraigniaud, J.G. Peters, Antepenultimate broadcasting, Networks 26 (1995) 125-l 37. 

[3] A.M. Farley, Minimum-time line broadcast networks, Networks 10 (1980) 59-70. 



228 J. 0. Kane, J. G. Peters/ Discrete Applied Mathematics 83 (1998) 207-228 

[4] R. Feldmann, J. HromkoviE, S. Madhavapeddy, B. Monien, P. Mysliwietz, Optimal algorithms for 

dissemination of information in generalized communication modes, Discrete Appl. Math. 53 (1994) 

55-78. 

[5] P. Fraigniaud, E. Lazard, Methods and problems of communication in usual networks, Discrete Appl. 

Math. 53 (1994) 79-133. 

[6] S. Fujita, A.M. Farley, Minimum-cost line broadcasting in paths, manuscript, 1994. 

[7] M.A. Iordanskii, Minimal numberings of the vertices of trees, Sov. Math. Dokl. 15 (1974) 131 l-1315. 

[8] J.O. Kane, Line broadcasting, M.Sc. Thesis, School of Computing Science, Simon Fraser University, 

1993. 

[9] B. Monien, H. Sudborough, Embedding one interconnection network into another, Comput. Suppl. 7 

(1990) 257-282. 
[JO] J.G. Peters, M. Syska, Circuit-switched broadcasting in torus networks, IEEE Trans. Parallel Distributed 

Systems 7 (1996) 246255. 

[ll] E.M. Reingold, J. Nievergelt, N. Deo, Combinatorial Algorithms: Theory and Practice, Prentice-Hall, 

Englewood Cliffs, NJ, 1977. pp. 1733176. 


