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1. INTRODUCTION 

A theory of fuzzy subsets was initiated by Zadeh [ 111 as an alternative to 
the classical theory of subsets of a set. The concept of fuzzy subsets was 
exploited by Chang [3] and others to develop fuzzy topological spaces, by 
Lowen [6] for putting forward the idea of fuzzy uniform spaces, and recently 
by Katsaras [5] to introduce fuzzy proximity spaces. The present authors 
[8] defined fuzzy proximity bases and subbases, and investigated some of the 
properties of fuzzy proximity spaces in terms of fuzzy proximity bases and 
subbases. In a subsequent article [9] we have defined fuzzy symmetric 
generalized proximity spaces and have developed part of its theory as an 
extension of the Lodato proximity theory. 

Thron [ 101 presented a new approach to proximity structures based on the 
recognition that many of the entities important in the theory are grills, a 
concept introduced by Choquet [4] in 1947. Taking a start from Thron’s 
work Azad [ 1 ] defined fuzzy stacks, fuzzy grills, and fuzzy basic proximities 
and obtained a characterization of a fuzzy proximity using fuzzy grills. 

It is well known that every filter 3 on a set X is the intersection of 
ultrafilters containing it [2, Proposition 7, p. 6 11. We observe in Section 2 
that this property need not hold in the fuzzy setting. Thron emphasized that 
one of the important properties of grills is that they are unions of ultrafilters. 
A counterexample has been given to show that a fuzzy grill may not contain 
any fuzzy ultrafilter. 

Thus in. the fuzzy theory the behaviour of ultrafilters in relation to grills 
and filters differs radically from that in the ordinary subset theory. But fuzzy 
ultrafilters continue to be crucial in the development of the theory of fuzzy 
proximity structures. The object of this article is to substantiate this theme 
with results for fuzzy basic proximity spaces in general and for fuzzy LO- 
proximity spaces in particular. Part of the theory presented by Thron has 
been investigated in the context of fuzzy subsets. 

In Section 3 fuzzy closure spaces are defined and following the definition 
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of fuzzy basic proximity as given by Azad [ 1 ] we have shown that every 
fuzzy basic proximity l7 on X induces a fuzzy closure space (X, C,). It has 
been further shown that if u is a fuzzy ultrafilter, then n(u) is a fuzzy grill. 
We have also investigated various properties of n(u). Proceeding with the 
definitions of a fuzzy n-clan and a fuzzy U-cluster we have developed 
various equivalences for fuzzy ZZ-clusters. We have also established that 
every fuzzy H-cluster is a maximal fuzzy n-clan. 

In Section 4 we have made a further study of fuzzy LO-proximity as 
defined by us in [9]. In a fuzzy LO-proximity space a condition has been 
investigated under which a fuzzy grill is the union of fuzzy ultrafilters. If 
(X, n) is a fuzzy symmetric generalized proximity space, i.e.. a fuzzy LO- 
proximity space, then it has been proved that n(A) is the union of fuzzy 
ultrafilters contained in it. We have been able to derive various other 
properties of n(1) and n(u) in a fuzzy LO-space (X. ZZ). A definition of a 
fuzzy H-bunch is given and it has been shown that every fuzzy H-cluster is a 
fuzzy n-bunch but not the converse. A few equivalent conditions for a fuzzy 
II-bunch have been given. We have also obtained a characterization of fuzzy 
LO-proximity in terms of fuzzy basic proximity. Lastly, if (X, L7) is a fuzzy 
LO-proximity space and 1 E U(U). then we have shown that there exists a 
fuzzy n-bunch containing both A and ,u. 

2. FUZZY ULTRAFILTERS AND FUZZY GRILLS 

Let X be a nonempty set and I be the closed unit interval of the real line. 
A fuzzy set in X is an element of the set p’ of all functions from the set X 
into I. If /I E I”, then we define supp k = (x E X: k(x) # 0 1. A fuzzy point 
,D~ E Ix is defined as 

P,@) = P, where 0 <p< 1. 

ru,(P) = 0, 1’ # x. 

Suppose ,u E Ix and ,u(J) # 0. Then the fuzzy point ,uf is defined as 

P;(Y) = NY), 

P.w = 0, z # J’. 

2.1[ 11. A fuzzy stack S on X is a subfamily of I” satisfying the 
following condition: 

,U>lES implies ,u E s. 
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2.2[5]. A fuzzy filter ST on X is a nonempty fuzzy stack on X satisfying 
the conditions 

(i) 1, fl E 3 implies 1 A p E 3, 

(ii) 0 65.97 

2.3[5]. A maximal, with respect to set inclusion, fuzzy filter on X is 
called a fuzzy ultrafilter on X. Let rp be a fuzzy filter on X. Then: 

(i) cp is a fuzzy ultrafilter on X iff every p E Z.Y, with ,u A p # 0 for all 
p E cp. belongs to rp. 

(ii) If cp is a fuzzy ultrafilter on X and p, V pz E rp, then either p, E cp 
or pu, E (0. 

(iii) If cp is a fuzzy ultrafilter on X, then for each p E Ix either p E cp 
or 1 -PEE. 

2.4111. A fuzzy grill .%’ on X is a fuzzy stack on X satisfying 

(i) 0 6Z ,Z, 

(ii) 1 V,u E .% implies 1 E F or p E 3~. 

2.5. Nofation. For a fixed nonempty set X, we shall denote by C(X), 
Q(X), f(X), and Q(X), respectively, the family of all fuzzy stacks on X, all 
fuzzy filters on X. all fuzzy grills on X, and all fuzzy ultrafilters on X. Then 
u and 11 will generally stand for fuzzy ultrafilters. 

2.6111. For all S E Z(X), c(S) and d(S) are defined as 

(i) c(S)= (LEI”: 1 -I&S), 

(ii) d(S)=(AEZY:lA,~#O VpEESJ, 

Here. c: C(X) + C(X) and d: L’(X) -+ C(X). 

2.7. THEOREM. The operators c and d satisfy the following: 

0) c(S) c d(S) VS E C(X), 

(i) c(c(S)) = s vs E C(X), 

(iii) c is a bijection from C(X) to L(X), 

(iv) c is a bijection from T(X) to Q(X), 

(v) c is a bijection from @p(X) to T(X), 

(vi) c(Ui Si) = ni C(Si), Si E Z(X) Vi, 
(vii) c( n i Si) = U i C(Si), Si E C(X) Vi, 

(viii) c(u) c u, 2.4 E n(x), 

(ix) c is order reversing, 



300 SRIVASTAVA AND GUPTA 

(x) d is order reversing, 

(xi) d(d(S)) 3 S VS E C(X), 

(xii) f’u E Q(X), then d(u) = u. 

ProoJ Conditions (it(;) are known [ 1. Theorem 2.61. Conditions (vi). 
(vii), (ix), and (x) are easily verified and (xii) is obtained with the help of 
2.3(i). Then A E c(u) implies 1 -1 6? u and hence it follows that A E u by 
2.3(iii). This proves (viii). If 1 @ d(d(S)), then A A ,U = 0 for some ,U E d(S) 
and therefore A 4 S. Hence S c d(d(S)), as required in (xi). 

2.8. Examples 1 and 2 illustrate that the inclusions in (i) and (viii) may 
be proper. That there is no inclusion relation between S and c(S) is 
demonstrated by Examples 3 and 4. Likewise, Examples 5 and 6 show that 
no definite inclusion can hold between S and d(S). Example 5 further 
illustrates that the inclusion in (xi) may be proper. 

EXAMPLE 1. Let a E X. Consider the fuzzy point 1, given by 

&?(a) = f, 

and the fuzzy stack S generated by A,. i.e.. 

Define p E I” as follows: 

/i(x) = 1. x f a. p(a) = a. 

Then P E d(S) but ,U 6? c(S). 

EXAMPLE 2. Consider a fuzzy point A, given by A,(x) = f . Let 
u = {p E I”: A, A p # O}. We have u E Q(X) and c(u) = (V E I.‘: 
V(X) = 1) c U. Take yE Ix such that y(x)= d and y(v) = 1 for J fx. 
Obviously, 1’E u but y 6? c(u). It can be verified that c(u) is a fuzzy filter 
and, for every A E c(u), 1’ A A f: 0. Thus, by 2.3(i), we infer that c(u) 6! Q(x). 

EXAMPLE 3. Consider the fuzzy point A, of Example 2. Let 
S, = {,I E Ix: A > A,}. Then c(S,) = {A E Ix: A(x) > ; } + S,. 

EXAMPLE 4. Let px be a fuzzy point such that pu,(x) = f . Let S, = 
(1 E Ix: A a,~~}. Then c(S,) = (A E Ix: A(x) > {} f S,. 

EXAMPLE 5. Let S, = { 1 E Ix: l(x) = 1 Vx E Xi = ( 11 E C(X). Then 
d(S,)=1”-(0)~S,,d(d(S,))=(AEZX:supp~=X)~S,. 
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EXAMPLE 6. Let S,=P- {O)EC(X). Here d(SJ = (/I E z,y: 
supp I. =X) f S, and d(d(S,)) = Ix - (0) = S,. 

2.9. THEOREM. For fuzzy grills, fuzzy filters, and fuzzy ultrafilters the 
following hold: 

(i) If Gi E f(X) for all i E A, then Uic., Gi E T(X). 

(ii) Every fuzz41 ultrafilter is a fuzzy grill and arbitrary unions of 
fuzzy ultrafilters are fuzzy grills. 

(iii) Q(X) $ Z(X) n Q(X). 

(iv) Zf ucG,UGz, then ucG, or ucG,, where uER(X), 
G, , G, E W?. 

(v) A fuzzy filter may be properly contained in the intersection of all 
fuzzy ultraJilters containing it. 

(vi) A fuzzy grill may not contain any fuzzy ultrafilter. 

Proof: (i) Gi E Z(X) ViE A implies uie,, Gi E r;(s). By virtue of 
Theorem 2.7 (ii) and (vi), we obtain 

i, Gi=c [C (iJGi)]=C [i?\C(Gi)]. 
Since c(Gi) are fuzzy filters, by Theorem 2.7(iv), n,,,, c(G,) is a fuzzy filter. 
Since uie,, Gi is the image of a fuzzy filter under c. it is a fuzzy grill by 
Theorem 2.7(v). 

(ii) If u E R(X) and 1 V ,u E u, then I E u or ,u E u by virtue of 
2.3(ii). Thus, u E Z(X). The second part follows from (i). 

(iii) If u E Q(X), then u E f(X) by (ii). Since every fuzzy ultratYter is 
also a fuzzy filter, 

Q(x) c f(x) n Q(x). 

Example 2 of 2.8 shows that c(u) E Z(X) n Q(X) but c(u) 6?A a(X). Conse- 
quently R(X) is properly contained in Z(X) n Q(X). 

(iv) Suppose u Ft G, and u ck G,. There exist A, p E u such that 165 G, 
and p@GG,. Then A V P E u, I. A ,u & G,, and A A ,u @ Gz. Therefore, 
lAp&G,uG,. 

(v) and (vi) Suppose 1 E ZX is such that supp A =X. By virtue of 
2.3(i), A E u for each u E n(X). Thus, 9 = (1 EZ’.: supp1 =X) c 
u Vu E 0(X) and therefore 3 c n U I17 u. Consider 17, E IX defined by 

v&Y) = 3. 
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Set 

Then 9- is a fuzzy filter. Let p E ./ be such that 

Here p @ 5. Then .F is also a fuzzy grill and u ck.P for any U. 

3. FUZZY BASIC PROXIMITY 

3. II I]. A fuzzy basic proximity on X is a binary relation II7 on I’ which 
satisfies the following conditions: 

(FPI) n=n-1, 
(FP2) A V ,U E n(v) iff A E n(r) or ,B E n(r). 

(FP3) if 1 A ,B # 0, then 1 E IZ@). 

(FP4) 0 fZ n(1) for every 2 E I”. 

Here fZ(1 j = {,u E I.‘: @, ,I) E n). 

Remark (1 j. fZ(A V ,u) = n(1) u nb). 

Remark (2). 12,~ implies n(1) 3 n(p). 

3.2111. A binary relation IZ on I’ is a fuzzy basic proximity on X iff it 
satisfies the following conditions: 

(FGl) n=nW 
(FG2) II(,I) E f(X) for every 1 E I”, 

iFG3) L’(A) 3 U.icu u. 

3.3 [ 1 I. Let f7 be a fuzzy basic proximity on X. An element ,U E I’ is 
called a fuzzy proximal neighborhood of /I E I”’ wrt f7 iff 1 -,u 65 n(1). The 
set of all fuzzy proximal neighborhoods of J wrt I2 is denoted by . I ‘(n, 2). 

3.4. THEOREM. Let n be a fuzzy basic proximity on X, then 

(i) I 1 ‘(n, A) = c(n(A)) and hence is a fuzzy filter. 
(ii) ~I‘(n.~v~)==.I”(n,~)n.I-(n,~)). 

(iii) A>,u implies.r-(n,~)c.r‘(n,~)), 
(iv) n(1) c d(. I ‘(n, A)). 
(v) if,~E.I’(n,~).,uulE.I’(n,~‘).then,uV~’E,r(n,~L’~‘). 
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ProoJ Conditions (i)-(iii) and (v) are known [I]. We shall be proving 
(iv) and giving alternative proofs of (ii), (iii), and (v). 

(ii) By Remark 3.1(l), we have n(n V p) = ZZ(n) U n@). Using 
Theorem 2.7(vi) and Theorem 3.4(i), we obtain c(Z7@ V p)) = c(IZ(A)) n 
c(ZZ(u)). i.e., . I-(n, A V p) =, I-(II, A) nL4-(ZZ.p). 

(iii) It follows from Remark 3.1(2) and the fact that c is order 
reversing. 

(iv) By Theorem 2.7(i) and (ii) and Theorem 3.4(i), we have n(1) = 
c(Qw))) = 4 f ‘(G A)). 

(v) Let p E L I (n, A). p’ E ,J ^(ZZ, A’). Then p V p’ E c(ZZ(1)) and 
p Vp’ E c(n(n’)), by virtue of Theorem 3.4(i). By using Theorem 2.7(vi) 
and Remark 3.1(l), we have p v p’ E @7(i)) n c(n@‘)j = 
c(zz(l) u zz(/l’)) = c(zz(A v A’)) =, f ‘(IL A v A’). 

3.5. DEFINITION. Let (X, n) be a fuzzy basic proximity space. For 
,u E I”, we define 

c,cu)= v 1-v. 
.\,En(iu) 

3.6. THEOREM. Let (X, Z7) be a fuzzy basic proximity space. Then the 
function c,: Ix + I” satisfies 

(FC 1) c,(O) = 0. 

(FC2) c& V 17) = c&i) V c,(v), 

W3) ,u < c,cU). 

It follows that (X, c,) is a fuzz~l closure space (analogous to tech’s closure 
space). 

ProoJ (FC 1) By definition, c,(O) = V.,.rEn,,,, 1, = 0. 

(FC2) CJP v “) = V.~,Err~U VP) 1.v = Y~,E”,lwJ”W 2.1-V bY Remark 
3.1.( 1). It follows that C&J V v) = c,(p) V c,(v). 

(FC3) If p # 0. then there exists J E X such that P(J) # 0. Consider 
the fuzzy point p,? E I”. Since pf A,u # 0, pf E n@) follows from 
Definition 3.1.(FP3). Also p = Vu,,,,+op~. Hence, c&) = V.,,En,u, A, > 
V U(?)tO~)’ * =,K This completes the proof of Theorem 3.6. 

3.7. DEFINITION. For every u E n(X) we define 

n(u)=(~UEIX:~uE(~)vnEu)= f-) n(A). 
.I Eli 

3.8. THEOREM. For etlery fuzzy basic proximity 17 on X and ecery fuzz)’ 
ultrafilter u E C!(X) we haoe 
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(1) Wu)E wf). 
(2) n(u) = u, 
(3) 1’ c n(u) iff l4 c n(o). 

Proof: (1) Each n(A) is a fuzzy stack. Therefore, n.,EU n(A) = U(u) is 
also a fuzzy stack. Suppose p V v E n(u). Then, for every /1 E U, 
,U V I’ E n(1). Equivalently, 1 E IZ@ V v) = II@) U n(v). Hence. u c n@) U 
n(r). From Theorem 2.9(iv), it follows that either u c n@) or u c n(r). 
Hence, either ,U E n(u) or 19 E n(u). Accordingly, n(u) E T(X). 

(2) For ,D E u and any 1 E U. ,D A A# 0 and therefore .D E n(1). Hence 
u c n(u). 

(3) Here t’ c n(u) is equivalent to ,U E n(A) for every ,D E ~1 and every 
1 E u. But ,U E n(A) iff 13 E Z7@) and hence the required inclusion. 

3.9. DEFINITION. Let n be a fuzzy basic proximity on X. A fuzzy grill G 
on X is called a fuzzy U-clan on X if A. ,U E G implies 1 E n&). 

3.10. DEFINITION. A fuzzy n-clan CJ on X, which satisfies the additional 
condition; u c n(A) implies 1 E u, is called a fuzzy n-cluster on X. 

3.11. Remarks. (i) If 1 E CJ and A <,u, then p E CJ. 

(ii) If u, and u1 are two fuzzy U-clusters in a fuzzy basic proximity 
space (X, Z7) such that u, c u?, then u, = u?. 

ProoJ (i) It is straightforward. 

(ii) It is parallel to that of 17, Lemma 5.61. 

3.12. DEFINITION. Let n be a fuzzy basic proximity on X. For G c I”. 
define 

b(ZZ, G) = (A E I”: c,(A) E G 1. 

A fuzzy n-clan G which satisfies the additional condition b(n, G) = G is 
called a fuzzy n-bunch. 

3.13 Remarks. (i) If G is a fuzzy grill, then b(Z7, G) is a fuzzy grill 
and b(f7, G) 1 G. 

(ii) If G, and G, are fuzzy grills such that G, 1 G,, then b(0, G,) 3 
b(K G,). 

3.14. THEOREM. For a fuzzy U-clan G, we have 

G c fl Z7@). 
.I EC 
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Proof. Suppose p& nleG II@). Then ,D @ n(1) for some A E G. Then G 
being a fuzzy n-clan, iu @ G. Hence, G c n.IEG ZZ(J). 

3.15. THEOREM. For a fuzzy II-clan a the following are equivalent: 

(a) 0 is a fuzzy Ikluster, 

(b) 0 = C-l,,, WA). 

ProoJ: Suppose (a) holds. If ,D E n.,EO II(k), then, for every ,I E u, 
,u E n(1). Equivalently, o c ZI@). Since u is a fuzzy n-cluster, ,u E u. Accor- 
diwb3 Cl.,,, n(J) cu. Thus, (b) follows by combining it with Theorem 
3.14. 

Conversely, suppose (b) holds. Let u c ZZ@). Then, for every A E u. 
,U E n(n). Equivalently, P E n,,, Z7@) = u. Hence, u is a fuzzy D-cluster. 

3.16. THEOREM. For a fuzzy II-cluster u, we have 

u = (-) II(l). 
rlc.1, 383 

Proof Let u be a fuzzy II-cluster. Set 

Clearly, u = nle9 ZZ(1). As u is a fuzzy I&cluster, for every A E u, 
u c n(A), and therefore u c 9. Hence, by Theorem 3.15(b), 

n f7w n n(~)=~, 
.\ E Y .1 ELJ 

and the result follows. 

3.17. THEOREM. If G is a fuzzy II-clan, then there exists a maximal 
fuzzJ1 Il-clan containing G. Every fuzzy II-cluster is a maximal jiizzql H-clan. 

Proof: Existence of a maximal fuzzy n-clan containing a given fuzzy l7- 
clan follows from Zorn’s lemma. Let u be a fuzzy IZ-cluster and C be a 
maximal fuzzy &clan containing u. We have, for every A E JY, u c C c Z7(1). 
But u being a fuzzy II-cluster, it follows that 1 E o. Accordingly, C c u and 
therefore u = C. 

3.18. THEOREM. The relation u A,v 12 u c II(v) is a reflexive and 
symmetric relation on a(X). 

Proof. An application of Theorem 3.8(2) and (3) yields the result. 
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3.19. THEOREM. Let A be an arbitrarjl reflexire and symmetric relatiorl 
on B(X). Set 

A(u) = u 1’. 
1.4 u 

Then a relation lId on I“ defined 6) 

is a J%ZZJ basic proximity on X. 

ProoJ Condition 3.2 (FG2) follows from Theorem 2.9(ii). Since A is 
reflexive on Q(X), for every u E n(X), u c A(u). Hence U.lcU u c 
U,IEu A(u) = Ii’,(A). Therefore, 3.2 (FG3) is also satisfied. Finally, suppose 
that (u, 1) E i7,. Then ,u E n,(l). Accordingly, p E L’ for some c E R(X) 
such that t’ A u and A E u E O(X). By the symmetry of A. it is obtained that 
,I E u. where u A L’ and p E L’. Hence, i E IIAgl). This proves 3.2 (FGI). 

It follows from 3.2 that fl, is a fuzzy basic proximity on X. 

4. FUZZY LO-PROXIMITY 

4.119 I. A fuzzy LO-proximity on a nonempty set X is a binary relation 
ZZ on I.’ satisfying the following axioms: 

(FLPl) I7=fl-‘, 

(FLPZ) ,u V p E n(r) iff p E I7(1~) or p E I7(1l), 

(FLP3) ,U A p # 0 implies p E 17(p). 

(FLP4) 0 6Z I7@) for every p E I’, 

(FLPS) p E I7@) and /1, E n(r) for every ,I, <p together imply 
p E n(r). 

The pair (X, I7) is called a fuzzy LO-proximity space. 

4.2191. Let (X. Z7) be a fuzzy LO-proximity space. Then the map p ++ 

CT@) =P = “.L.,E”(r, lx is a fuzzy closure operator on I-‘. 

4.319 I. If (X, II) is a fuzzy LO-proximity space, then: 

(i) PE IZb) iff p E IZ@), 

(ii) p(x) # 0 implies p(x) = 1, 

(iii) if there exists a p, E I,’ such that @. ,u,) E 17 and @,, 1’) E ll. then 
@.1’)EZZ. 
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4.4. LEMMA. Let (X, II) be a fuzzy LO-proximity space and u c I.’ be 
such that 

(a) 0 6! 0, 

(b) ,uuEu iffflEu, 
(c) ,hVpEa iff,uEu orpEu. 

If ,u,, E u, then there exists a fuzzy ultrafilter @ on X with ,a,, E @ c u. 

Proof Let R = {w c I-‘: (i) ,D,, E w; (ii) if p,,pz ,..., p,, E o. then 
,u, A,& A ... A ,u,, E u). By Zorn’s lemma, Q possesses a maximal element 
say w0 (wrt set inclusion). We shall show that w0 is a fuzzy filter on X. 
Clearly, puo E w0 c u. 

Let p,.p2 E ~0~. Then p,ApluzEu. Since ~~U(p,Ap~)Ef2, by the 
maximality of oO, we obtain ,u , A ,uz E w,, . Next, suppose ,U , > ,U E oO. Then 
,u, E u. For ,ui E cog, i = 2,3 ,.... k: r\:=, pi > p A (r\fY2 pi) E u and hence, 
w0 U (,u, } E Q. Therefore, ,u, E q,. Let @ be a fuzzy ultrafilter which 
contains wO. We proceed to show that @ cu. On the contrary suppose that 
there exists a ,U E @ such that ,U 6? u. By (b) j G u. Since ,ji A (1 -,ii) = 0. 
l-p&@ and therefore l-pUm,,. As l=fiV(l-P)Eu, it followsfrom 
(c) that 1 -P E u. If p,, pz ,..., pn E q,. then A;=, p-i E q,. Suppose 
(1 -,G)ApEu for each PEW,. It follows that (I -,i)A((.\~:,pi)Eu for 
Pi E o02 i = 1, 2,. , ., n. Accordingly, 8, U ( 1 - ,C) E R and therefore 
(I -,I?) E 0,. Hence, there exists a p E o. such that p A (1 -P) 4 u. As 
fibs 0. PAp@ua. Therefore. p=lAp=[/iV(l-fi)]Ap=@Ap)V 
[ (1 - ,C) A p] 6’5 u. by (c). This contradicts w. c u. and completes the proof. 

4.5. THEOREM. Let (X, II) be a fuzzy LO-pr0ximit.v space. Then, for 
each ,u E n(A). there exists a fuzzy ultrafilter u ot1 X such that ,u E u c n(n). 
Thus. 

IT(A) = u u. 
UC nc.1, 

Proof. Then ZZ(n) satisfies all the conditions of Lemma 4.4 and Theorem 
4.5 follows. 

4.6. THEOREM. For a fuzzy LO-proximity II on X and A E I.‘, 

II@) = u u. 
.\EU 

Proof Set 

F= (uER(X):~Eu). 
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Let u E 5Y. For A in u, n(u) CD(~). Hence, &,,I7(u) c n(n). Suppose 
au E WI but P 4 U,tcu n(u). Then, for each u in V, p 65 n(u). This implies 
that P 4 n(v) for some VE U. Equivalently, v 65 IZ@) for some I’ E u. Accor- 
dingly, u d Z7Q). Hence, for each u in P. u u? Z~(U). It follows that 14 IZ(,u). 
For if 1 E II@), then, by Theorem 4.5, there exists a u E .(2(x) with 
i E u cZ7(,~). This contradicts the assumption that iu E n(1)). Thus, 
W) c U.&U n(u) and the proof is complete. 

4.7. THEOREM. If ~1 c ZZ(A), rhen there exists a u sati&ing A E u c IT(c). 

ProoJ: Let c c n(n). For every ,U E ~1, we have p E ZZ(A). Equivalently, 
we have, for every p E ~1. 1 E II@). Accordingly, i E n,,,. Z~(,U) = II(c). 
n(v) satisfies the requirements of Lemma 4.4. Hence Theorem 4.7 follows. 

4.8. THEOREM. Let (X, f7) be a fuzzy LO-proximity space. Then eL?er}’ 
fuzzy lI-cluster is a fuzzy n-bunch. 

Proof Let G be a fuzzy II-cluster. By Remark 3.13(i), b(lZ, G) is a fuzzy 
grill and G c b(17, G). 

Let A E b(ZZ, G) and let p be an arbitrary element of G. Then. G being a 
fuzzy U-clan, 

by virtue of 4.3(i). Since 17 = II- ‘. we have ,U E fZ@) and G c IT(A). Since G 
is a fuzzy I7-cluster, it follows that 1 E G. Hence, b(l7, G) c G. Thus, 
b(l2, G) = G. 

The following shows that the converse of Theorem 4.8 is not true: 

4.9. EXAMPLE. Let X be an infinite set. Define a relation 17 on 1,” as 
(II, ,u) E I7 iff either 

(i) supp A or supp p is infinite, A # 0, p # 0; or 

(ii) both supp k and supp ,U are finite (#a) and II A fi # 0. 

It can be verified that IZ is a fuzzy LO-proximity on X. Define CJ c 1’ as 

0 = (2 E IY: supp ,I is infinite}. 

Then u as defined is a fuzzy n-bunch but not a fuzzy IZ-cluster. 

4.10. THEOREM. In a fuzzy LO-proximily space (X, I7). if u is a fuzr~l 
ulfrafilter. then b(IZ, u) is a fuzzy H-bunch. 
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Proof: According to Theorem 2.9(ii), u is a fuzzy grill. An application of 
Remark 3.13(i) yields that b(ZZ, u) is a fuzzy grill and b(ZZ, u) 2 u. Suppose 
A, p E b(Z7, u). Then both c,(J) and c,&) belong to u. Hence, c,(A) A 
C,(B) # 0. Accordingly, c,(A) E n(c,@)). Using 4.3(i) and 4.1 (FLPl), we 
obtain J. E ZZ@). It follows that 6(17, u) is a fuzzy n-clan. It can be easily 
seen that b(ZZ, b(17, u)) = b(ZZ, u). Hence, b(fl, u) is a fuzzy n-bunch. 

4.11. Remark (i) Suppose 17 is a fuzzy LO-proximity on X. For each 
fuzzy point A,, (J,~~= (p E Ix:p E n(A,)} is a fuzzy ZZ-cluster. This follows 
from 4.3(iii). 

(ii) If u is any fuzzy n-cluster in a fuzzy LO-proximity space (X, n), 
then 1 E CJ iff 1 E u. This follows from Definition 3.10, Remark 3.11 (i), and 
4.3(i). 

(iii) In a fuzzy LO-proximity space (X, Z7), if ,5? is a fuzzy II-bunch 
and Ax E 2, then 9 = o.~, 

4.12. THEOREM. Let (X, ZZ) be a fuzzy LO-proximity space. If G is a 
fuzzy grill satisfying the additional condition c,(u) E G iff ,u E G, then the 
following statements are equivalent: 

(a) G is a fuzzy n-bunch; 

(b) u c G implies G c II(u); 

Cc) G c fLCG mu) = f-LEG n(n); 
(d) u, v c G implies u c n(v). 

ProoJ Suppose (a) holds and u c G. Then, for every I E u, G c n(1). 
Equivalently, G c n(u). Thus, (a) implies (b). Now suppose (b) holds and 
let i, p E G. Then, by Lemma 4.4, there exists a u E Q(X) such that 
p E u c G. Hence, 1 E G c ZZ(u) c n@), which shows that G is fuzzy n-clan 
and therefore a fuzzy n-bunch. Accordingly, (a) is equivalent to (b). Clearly, 
(b) is equivalent to (c) and (b) implies (d). Using Lemma 4.4, we have 
G = Uucc u. It follows from (d) that ~1 cZ7(u) for all v c G. Hence, 
G c n(u). Consequently, (b) follows from (d). This completes the proof of 
Theorem 4.12. 

4.13. THEOREM. A fuzzy basic proximity Il on X is a fuzzy LO- 
proximity if and only if 

WC HP.)) = n(A) 

for every 1 in I”. 

Proof. The only if part of Theorem 4.13 is straightforward. 
For the if part, suppose ZZ is a fuzzy basic proximity on X and 
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b(II, n(A)) = n(A) for every A in I”. Suppose p E IZ&) and 1, E n(r) for 
every 1,6/f. Assume C,(U) E II(n). It follows from Definition 3.12 that 
,U E b(I7, II(A)) = n(A) for every 1 in I.‘. By virtue of Definition 3.5, we have 
C,(1’) = v “,Erl(C)PX > Y1.,6u 4 = P. But pE II(U) implies fi E fZ@) and 
therefore C,(V) E IZ@) by 3.1 (FP2). Hence, v E IZ@) or p E II(r), by 3.1 
(FP 1). Accordingly, 4.1 (FLPS) is satisfied. It follows that IZ is a fuzzy LO- 
proximity on X. 

4.14. THEOREM. Let 17 be a fuzzy LO-proximit~~ on X and let A E ll(,u). 
Then there exists a fuzzy Il bunch containing 1 and ,u. 

Proof: Applying Theorem 4.5 to I7@), for each A E II(U) there is a fuzzy 
ultrafilter u.~ on X such that 13 E ~4, c IT@). It follows that ,U E ZZ(u-,). An 
application of Lemma 4.4 to 17(u,,) yields a fuzzy ultrafilter u, with 
,u E U, c fI(u,,). Equivalently, u., c IZ(u,). Hence, G = u.\ U u, is a fuzzy 17. 
clan containing 1 and ,u. There exists a maximal fuzzy U-clan G* containing 
G. by Theorem 3.17. 

Then G* contains ,I and p and it is sufficient to show that G* is a fuzzy 
II-bunch. By Theorem 4.13, for each p E LY, b(ZZ, n(p)) = II(p). Let p E G. If 
‘1 E G. then 11 E IZ@) and therefore G c 17(p). It follows from Remark 
3.13(ii) tha: b(ZZ, G) c b(IZ, ZZ@)) = I7@). 

Take 5 E b(IZ, G). Then c,(T) E G and therefore c,(r) E II@) or 5 E ZI@). 
by 4.3(i). Equivalently, p E n(c). Consequently, GcZ7(r) for every 
< E b(ZZ, G). For each 5 E b(Z7, G). b(17, G) c b(f7, n(t)) = n(t). Hence. 
b(17, G) is a fuzzy n-clan. 

Also G c G* c b(17, G*). Thus, b(IZ, G*) is a fuzzy U-clan containing G, 
and G* is the maximal fuzzy n-clan containing G. Accordingly 
b(I7. G*) = G* and G* is a fuzzy n-bunch, by Definition 3.12. 
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