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SUMMARY
MYC proteins are major drivers of cancer yet are considered undruggable because their DNA binding do-
mains are composed of two extended alpha helices with no apparent surfaces for small-molecule binding.
Proteolytic degradation of MYCN protein is regulated in part by a kinase-independent function of Aurora
A. We describe a class of inhibitors that disrupts the native conformation of Aurora A and drives the degra-
dation of MYCN protein across MYCN-driven cancers. Comparison of cocrystal structures with structure-ac-
tivity relationships across multiple inhibitors and chemotypes, coupled with mechanistic studies and
biochemical assays, delineates an Aurora A conformation-specific effect on proteolytic degradation of
MYCN, rather than simple nanomolar-level inhibition of Aurora A kinase activity.
INTRODUCTION

MYC proteins are considered undruggable because their DNA-

binding domains are composed of two extended alpha helices

with no apparent surfaces for small-molecule binding. MYC

also regulates as much as a third of the genome, with overex-

pression proposed to amplify cell-type-specific gene expression

rather than modulate a MYC-specific group of genes (Lin et al.,

2012; Nie et al., 2012). The transcription of both MYC and

MYCN targets may be blocked through bromodomain inhibitors

(Delmore et al., 2011; Filippakopoulos et al., 2010; Mertz et al.,

2011). Other methods, such as synthetic lethal screens for

potential targets, have revealed druggable targets that may act

downstream of MYC (Gustafson and Weiss, 2010; Toyoshima
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phosphorylation and dephosphorylation of conserved residues

in MYC proteins, which target them for ubiquitination and degra-

dation by the proteasome (reviewed in Gustafson and Weiss,

2010).

The MYC family member MYCN, named based on its associ-

ation with MYCN amplification in the childhood tumor neu-

roblastoma, is stabilized by Aurora A in a kinase-independent

fashion involving protein-protein interaction (Otto et al., 2009).

Independent of its effects on MYCN, Aurora A is an attractive

cancer target because it regulates entry into mitosis, maturation

of centrosomes, cytokinesis, and formation of the bipolar spin-

dle, in part through the phosphorylation of key regulators of

proliferation and survival such as p53, BRCA1, and histone H3

(Crosio et al., 2002; Liu et al., 2004; Ouchi et al., 2004; Scrittori

et al., 2001; Zhao et al., 2008). Increased Aurora A expression

is a negative prognostic factor in neuroblastoma (Shang et al.,

2009), and preclinical testing with MLN8237, a specific Aurora

A inhibitor, showed significant promise in cell-line xenograft ex-

periments (Maris et al., 2010). Furthermore, the cocrystal struc-

ture of MLN8054 (the predecessor of MLN8237) with Aurora A

shows a partial shift away from the active state of the kinase,

and treatment of MYCN-expressing neuroblastoma with

MLN8237 or MLN8054 modestly decreases MYCN (Brockmann

et al., 2013; Dodson et al., 2010). This partial effect on MYCN of

these compounds may therefore result from the prolonged inhi-

bition of Aurora A kinase activity or a partial shift in the tertiary

structure of Aurora A, which subtly weakens the MYCN-

Aurora-A complex. Consistent with this modest effect on

MYCN, early-phase clinical testing of MLN8237 in patients with

MYCN-amplified neuroblastoma has shown little efficacy,

underscoring the need for inhibitors of Aurora A that more

potently block MYCN (Mossé et al., 2012).

RESULTS

Initial Screen for Conformation-Disrupting Aurora
A Inhibitors
We hypothesized that the kinase-independent stabilization of

MYCN requires a distinct conformation of Aurora A and that

we could rationally design specific and potent conformation-dis-

rupting (CD) inhibitors that perturb this protein-protein interac-

tion, effecting the degradation of MYCN. To identify such CD

inhibitors we synthesized a set of compounds with either diami-

nopyrimidine (VX-680-like) or pyrazolopyrimidine (PP-1-like)

scaffolds (Figure 1A) predicted to induce a large structural shift

in Aurora A. Derivatives of each of these scaffolds were known

to bind to Aurora A. Structural data were available on both scaf-

folds bound to related kinases, and the routes to their synthesis

were tractable. To these ATP-competitive cores, we fused

biphenyl urea and amide moieties predicted to stabilize distinct

conformations of Aurora A (Dietrich et al., 2010; Filomia et al.,

2010).

To test whether this panel of 32 putative CD inhibitors would

destabilize MYCN, we initially treated Kelly MYCN-amplified

neuroblastoma cells with these compounds and measured

MYCN protein using western blot. We also assessed for the

phosphorylation of histone H3 (p-H3), a known substrate for

Aurora A and Aurora B and a marker for mitosis. Treatment

with several members of the screening panel decreased levels
Ca
of both MYCN and p-H3 (Figure 1B; Figure S1A available online).

In contrast, and as predicted, known inhibitors of Aurora A, VX-

680 and MLN8237, blocked histone H3 phosphorylation at 1 mM

yet demonstrated very modest effects on the MYCN protein

level. Candidate CD inhibitors were subsequently screened

against a second MYCN-amplified neuroblastoma cell line,

SKN-BE(2) (Figure 1C), substantiating CD532 as our most active

lead compound.

CD532 Potently Inhibits Aurora A, Causes Loss of
MYCN, and Is Cytotoxic in MYCN-Amplified
Neuroblastoma Cells
To determine the potency of CD532, we first measured its activ-

ity using purified Aurora A protein and revealed it as a potent

Aurora A kinase inhibitor with an half maximal inhibitory concen-

tration (IC50) of 45 nM (Figures S1B and S1C). CD532 inhibited

Aurora A kinase activity in cells as measured by both phosphor-

ylated Aurora A (T288) and p-H3 at short time points to rule

out off-target effects (Figure S1D). The treatment of multiple

cell lines with CD532, MLN8237, and VX-680 showed dose-

dependent loss of MYCN protein with CD532 and little or no

response to high concentrations of MLN8237 (Figure 1D; Figures

S1E and S1F).

MLN8237 is a relatively selective inhibitor of Aurora A with a

IC50 of 1.2 nM and 396.5 nM for Aurora A and Aurora B, respec-

tively, whereas VX-680 is potent against both Aurora A and

Aurora B, with a IC50 of 0.6 nM and 18 nM, respectively (Harring-

ton et al., 2004; Lin et al., 2012; Manfredi et al., 2011; Nie et al.,

2012; Otto et al., 2009). Notably, the in vitro (cell-line) activity of

CD532 against MYCN paralleled its cell-free in vitro IC50 for

Aurora A by approximately 10-fold (Figures 1D; Figures S1E

and S1F). By contrast, MLN8237 and VX-680 treatment effected

little loss of MYCN protein, even at doses 100 to 1,000 times

greater than their IC50 for Aurora A. MLN8237 and VX-680

upregulated or had little effect on Aurora A protein. CD532,

in contrast, downregulated Aurora A protein across cell lines

at higher concentrations, consistent with distinct mecha-

nisms of binding underlying these differential effects. At low con-

centrations of CD532 and short time points, however, the loss of

MYCN was apparent, whereas the levels of Aurora A protein

were unaffected. These observations are consistent with the

degradation of MYCN resulting from CD532 binding rather

than from loss of Aurora A protein.

Histone H3 is a known substrate for both Aurora A and Aurora

B. Accordingly, the dual inhibition of Aurora A and Aurora B with

VX-680 abrogates the phosphorylation of histone H3 at S10. In

contrast, MLN8237 caused an initial increase in S10 phosphory-

lation at lower concentrations, followed by a sharp drop at higher

concentrations (Figures 1D; Figures S1E and S1F). This increase

in phosphorylation of histone H3 in response to MLN8237 has

been described previously and results from Aurora A inhibition

with feedback increase in Aurora B activity (Görgün et al.,

2010; Wen et al., 2012). CD532 behaves similarly to MLN8237

with regard to histone H3 phosphorylation, consistent with an

Aurora-A-selective effect.

We determined the cellular half maximal effective concen-

tration (EC50) at 72 hr against two differentMYCN-amplified neu-

roblastoma cell lines, SK-N-BE(2) and Kelly, as 223.2 and

146.7 nM, respectively, for CD532 and as 40.89 and 33.92 nM,
ncer Cell 26, 414–427, September 8, 2014 ª2014 Elsevier Inc. 415
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Figure 2. Degradation of MYCN Requires

Its Phosphorylation and Is Proteasome

Dependent

(A) Immunoblot analysis of the indicated proteins in

SK-N-BE(2) cells treated with MLN8237 or CD532

at 1 mM for the indicated durations.

(B) Immunoblot analysis of the indicated proteins in

IMR-32 cells treated with the indicated concen-

trations of CD532 for 2 hr in the absence or pres-

ence of MG-132 (4 hr).

(C) Immunoblot analysis of the indicated proteins in

the control SHEP cells and SHEP cells ectopically

expressing the indicated MYCN treated with the

indicated compounds at indicated concentrations

for 24 hr.

Cancer Cell

Drugging MYCN through Aurora A Inhibition
respectively, for MLN8237 (Figures 1E and 1F). These values are

directly proportionate to the cell-free IC50 for Aurora A inhibition

by CD532 (45 nM) and MLN8237 (4 nM) by �10 fold. In addition,

the IC50 of CD532 for on-targetMYCN knockdown in SK-N-BE(2)

cells (�250 nM; Figure 1D) is consistent with the cellular EC50

(223.2 nM; Figure 1E). Notably the maximal cytotoxicity (Emax)

for each compound is proportionate to the degree of MYCN

knockdown rather than the degree of Aurora A inhibition in

MYCN-amplified neuroblastoma lines. These data argue for an

Aurora-A-dependent effect on the inhibition of cell growth and

a MYCN-dependent effect on the loss of viability.

Degradation of MYCN Requires Phosphorylation and
Proteasomal Degradation of MYCN
Upon the loss of the Aurora A scaffolding function by small inter-

fering RNA (siRNA) knockdown, MYCN is degraded through

canonical ubiquitination and proteasomal degradation (Otto

et al., 2009). As such, we would expect the rapid degradation

of MYCN protein to occur within hours of dissociation of the

MYCN-Aurora-A complex. We observed a clear and time-

dependent loss of MYCN protein at time points as short as

4 hr of treatment with CD532. In contrast, treatment with

MLN8237, although resulting in a similarly rapid decrease in
Figure 1. Screening and Characterization of Conformation-Disrupting Aurora A Inhibitor Com

(A) The diaminopyrimidine (VX-680-like, red text) and the pyrazolopyrimidine (PP1-like, blue text) scaffolds u

compounds. Cell lines were treated for 24 hr with 1 mM of 32 different compounds.

(B and C) Cell extracts of Kelly cells (B) or SK-N-BE(2) cells (C) treated with the indicated compounds at 1

indicated (left); the quantification results (right) are expressed as percentages of the untreated control.

(D) Dose response of SK-N-BE(2) cells to increasing concentrations of CD532, MLN8237, and VX-680.

(E and F) Dose responses of MLN8237 and CD532 at 72 hr using a CyQUANT assay in SK-N-BE(2) (E) and K

bars represent mean ± SD.

See also Figure S1.
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the MYCN level, causes a decrease that

is more modest and that does not

change over time (Figure 2A). Treatment

of MYCN-amplified IMR32 cells with

increasing concentrations of CD532 in

the presence of the proteasome inhibitor

MG-132 shows that MG-132 protects

the MYCN from degradation but has no

effect on the inhibition of H3 phosphory-

lation (Figure 2B).
MYCN is sequentially phosphorylated at S62 and T58

before it is ubiquitinated and targeted for degradation. How-

ever, when bound in a complex with Aurora A, ubiquitinated

MYCN is protected from degradation (Gustafson and

Weiss, 2010; Otto et al., 2009). To test whether the activity

of CD532 is dependent on these phospho-residues, we

treated SHEP MYCN-nonamplified neuroblastoma cells engi-

neered to express either wild-type MYCN (MYCNWT) or

a nonphosphorylatable mutant of MYCN (MYCNT58A/S62A)

with CD532. CD532 dose-dependently decreased the wild-

type MYCN protein but was less effective in degrading

MYCNT58A/S62A, suggesting that CD532 potentiates the loss

of MYCN through the canonical phosphorylation and ubiquiti-

nation pathway. Notably, even high concentrations of VX-680,

which stabilizes Aurora A in the active conformation (Zhao

et al., 2008), had little effect on MYCN protein levels in this sys-

tem (Figure 2C).

CD532 Stabilizes a DFG-in, Inactive Conformation
of Aurora A
CD532 consists of an aminopyrazole-pyrimidine ATP-mimetic

backbone, similar to VX-680, but includes a 3-trifluoromethyl-

biphenyl urea as its conformation-disrupting pharmacophore
pounds

sed for generating the initial screening panel of the

mM for 24 hr were examined using immunoblot as

elly (F) MYCN-amplified neuroblastoma cells. Error

eptember 8, 2014 ª2014 Elsevier Inc. 417



Figure 3. CD532 Stabilizes an Inactive DFG-in Conformation of Aurora A
(A) The structure of CD532 with key components highlighted.

(B) Surface representations of Aurora A apo (green, activation loop in yellow) and of Aurora A bound to CD532 (orange, activation loop in red).

(C) CD532 (red sticks) in ATP binding pocket, overlaid with electron density before ligand fitting (blue mesh).

(D) Interactions among CD532 (red), the DFG motif (D274), and b1/b2 (K141-V147).

(E) Displacement of the glycine-rich loop in the drug-bound structure (orange) compared to apo (green) due to drug binding.

(F and G) Displacement of a-C helix of the N-terminal domain (F) allows for a network of polar contacts among E181, R255, and the DFG motif (G).

(H) Stabilization of the inactive orientation of the activation loop (activation loop in balls). Structural comparisons are all C-terminal alignments.

See also Movie S1 and Table S1.

Cancer Cell

Drugging MYCN through Aurora A Inhibition
(Figure 3A). To determine how CD532 binding affects the confor-

mation of Aurora A, we determined the crystal structure of the

catalytic domain of Aurora A (residues 123–390) both alone

(apo) and bound to CD532, to resolutions of 3.14 and 1.85 Å,

respectively (Figure 3B and Table S1). Although the B factor of

the relatively disordered activation loop in both structures is
418 Cancer Cell 26, 414–427, September 8, 2014 ª2014 Elsevier Inc
high, the tracing of the polypeptide backbone was unambigu-

ous. The electron density for CD532 within the active site was

well defined (Figure 3C).

The ATP-binding hinge region of the Aurora A active site

makes polar contacts with the aminopyrazole portion of

CD532, consistent with our choice of ATP-mimetic scaffold.
.
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Figure 4. Structure-Activity Relationships in

Inhibiting Aurora A and Reducing MYCN

(A) Chemical structures of CD compound dia-

minopyrimidine scaffold, VX-680, MLN8054, and

MLN8237.

(B) Immunoblot analysis of the indicated proteins in

SK-N-BE(2) cells treated with 1 mMof the indicated

compound for 24 hr (top) and the structures of CD

compounds and their IC50 in inhibiting Aurora A

kinase activity (bottom).

(C) Hydrophobic packing of cyclopentyl of CD532

among V147, L194, and gatekeeper L210 of

Aurora A.

(D) Immunoblot analysis of the indicated proteins in

SK-N-BE(2) cells treated with 1 mMof the indicated

compound for 24 hr (top) and the structures of CD

compounds and their IC50 in inhibiting Aurora A

kinase activity (bottom).

See also Figure S2.
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The catalytic D274 achieves polar contacts with the urea moi-

ety of CD532 to stabilize the biphenyl urea in its orientation

toward the N-terminal b1 and b2 strands forming part of the

ATP binding pocket (Figures 3C and 3D). The polar contacts

between the urea moiety and CD532 allow for an �7 Å

displacement of the b1 and b2 strands in the N-terminal domain

via steric clash with the trifluoromethylphenyl moiety of CD532

(Figure 3E). These b1 and b2 strands form part of a b sheet that

is the core of the relatively rigid N-terminal domain. Thus

displacement of these strands by CD532 disrupts the confor-

mation of Aurora A (apo), rotating and shifting the N-terminal

domain by 6.2 Å relative to the C-terminal domain (Figure 3F;

Movie S1).

The highly conserved HRD kinase regulatory sequence is

located at the lip of the active site. Coordination between

this HRD arginine and a phospho-threonine in the activation

loop (R255 and T288, respectively, in the case of Aurora A) ori-

ents the HRD catalytic aspartic acid to be primed for catalysis.

Using this mechanism, the catalytic activity of HRD-containing

kinases can be regulated through the phosphorylation of their

activation loop. In the presence of CD532, R255 and T288 are

displaced by a considerable distance (Figure 3G). In fact,

CD532-bound Aurora sequesters R255 in a manner that dis-

places the catalytic HRD aspartic acid from its catalytically
Cancer Cell 26, 414–427, S
functional orientation, disengaging HRD

regulation and stabilizing the kinase in a

catalytically inactive conformation.

Indeed, the displaced a-C helix and

R255 together trap the most N-terminal

portion of the activation loop in a network

of hydrogen bonds (Figure 3G). This inter-

action positions the activation-loop back-

bone in a manner that stabilizes the entire

activation loop in its inactive orientation,

flipped 180� relative to its active state (Fig-

ure 3H). Thus, CD532 stabilizes Aurora A

in a distinct conformation, associated

with a 6.2 Å shift in the position of the

N-terminal domain relative to the C-termi-
nal domain, a disengaged state of the regulatory HRD motif, and

a 180� flip in the activation loop.

Degradation of MYCN Requires Conformation-Specific
Inhibition of Aurora A
Although both VX-680 and CD532 bind to the ATP-binding hinge

of Aurora A in an identical manner through their aminopyrazole-

pyrimidine core, each contains distinct chemical components

that produce highly divergent effects on MYCN in cells (Figures

3A and 4A). Our crystallographic data suggest that several

chemical moieties of CD532 were critical for its ability to desta-

bilize MYCN. As expected, altering the urea moiety of CD532

decreased the biochemical potency against Aurora A as well

as the efficacy against MYCN in neuroblastoma cell lines (Fig-

ure 4B). Our structural data also show that the 6 position of the

pyrimidine backbone is oriented toward the solvent and the

addition of a methyl group to this position (CD15) maintained

both cell-free potency and efficacy against MYCN (Figure 4B;

Figure S2). These data are consistent with the degradation of

MYCN occurring as a consequence of the on-target Aurora A

kinase conformation-disrupting activity of CD532.

The cyclopentyl moiety of CD532 packs neatly into a hydro-

phobic pocket made by V147, L194, and the leucine gatekeeper

(L210) (Figure 4C). Thus, our crystallographic data suggest that
eptember 8, 2014 ª2014 Elsevier Inc. 419
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Figure 5. CD532 Inhibits Aurora A Kinase

Activity and Downregulates MYCN

SK-N-BE(2) cells were treated for 6 hr with the

indicated compounds at 1 mM, and EdUwas added

1 hr prior to harvesting to measure the cell cycle

using EdU incorporation and propidium iodide (PI)

staining (A), using p-H3 (B), using pan-Aurora (A, B,

and C isoforms) phosphorylation (C), and using

MYCN protein (D) with flow cytometry.

See also Figure S3.
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an additional methylene and the adoption of the resulting six-

membered ring into a chair conformationwould preclude binding

to Aurora A without abrogating binding to other kinases with a

less bulky gatekeeper. Indeed, compounds CD22 and CD24

lost both potency against Aurora A and efficacy against MYCN

(Figure 4D; Figure S2).

The sterically bulky trifluoromethyl interactswith and displaces

the b1 and b2 strands, which stabilizes a global conformational

change in Aurora A that is unable to protectMYCN fromdegrada-

tion (Figure 3E). We hypothesized that the replacement of this

group with a hydrogen would decrease the magnitude of the

N-terminal displacement of Aurora A without altering the binding

affinity. Indeed, CD25 retained potency against Aurora A activity,

demonstrated both biochemically and by the loss of histone H3

phosphorylation, but was less effective than CD532 in driving

MYCN loss, suggesting that themagnitude of theN-terminal shift

of Aurora A contributes to MYCN destabilization (Figure 4D).

CD532 Blocks S-Phase Entry
Both Aurora A and MYCN are critical to different phases of the

cell cycle, and the functional consequences of Aurora A kinase
420 Cancer Cell 26, 414–427, September 8, 2014 ª2014 Elsevier Inc.
inhibition and MYCN loss are distinct.

The inhibition of Aurora A blocks mitosis,

causing a G2/M arrest (Manfredi et al.,

2011). In contrast, MYC family proteins

drive synthesis-phase (S-phase) entry.

The knockdown of MYCN protein blocks

entry into the S phase, causing a subse-

quent G0/G1 arrest (Gogolin et al., 2013).

To compare the functional differences

between conventional Aurora A kinase

inhibition (MLN8237 or VX-680) and

conformation-disrupting Aurora A kinase

inhibition, we treated MYCN-amplified

neuroblastoma cells and measured cell

cycle using flow cytometry. As expected,

treatment with MLN8237 or VX-680 re-

sulted in G2/M arrest (Figure 5A; Fig-

ure S3), consistent with the inhibition of

Aurora A kinase without a significant inhi-

bition of MYCN. By contrast, CD532 re-

sulted in the potent loss of S-phase entry

even after 4 or 6 hr of treatment, a result

expected in response to the inhibition of

MYCN. This loss of S phase was concom-

itant with the loss of p-H3 (Figures 5A and

5B), the loss of p-pan-Aurora (Figure 5C),
and the loss of MYCN protein (Figure 5D). Aurora kinase inhibi-

tors all caused the loss of p-pan-Aurora, detectable in a small

fraction of cells using flow cytometry (Figure 5D). All Aurora

kinase inhibitors caused the loss of p-pan-Aurora, but only

CD532 also caused a loss of S phase and MYCN (Figure 5).

CD532 Is a MYC-Directed Therapy
CD532 has the dual effect of blocking Aurora A kinase activity

and driving the degradation of MYCN. To further characterize

the effects of CD532 on the cell cycle, we compared it to the bro-

modomain inhibitor JQ1, which has been shown to block the

transcriptional activity of MYCN and the transcription of MYCN

itself in neuroblastoma (Puissant et al., 2013). The treatment of

MYCN-amplified neuroblastoma cells with JQ1 for 24 hr resulted

in the downregulation of MYCN, blockade of S-phase entry, and

accumulation of cells in G0/G1 (Figures 6A; Figures S4A and

S4B). The treatment with CD532 for 4 hr resulted in a rapid

and potent loss of S phase (consistent with the rapid and potent

loss of MYCN protein) and accumulation in both G0/G1 and G2,

consistent with a mixed Aurora A and MYCN effect. Treatment

with MLN8237 for 4 hr resulted in a modest downregulation of
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Figure 6. CD532 Acts as a MYCN Inhibitor in

Cell Lines

(A) Quantification of the cell cycle of SK-N-BE(2)

cells treated with CD532 (1 mM, 4 hr), MLN8237

(0.1 mM, 4 hr), JQ1 (2 mM, 24 hr), and MLN8237

(0.1 mM, 4 hr) in combination with JQ1 (2 mM, 24 hr).

(B) Viability of SHEP cells transduced with MYCN

or GFP after 72 hr of treatment with CD532 (top)

or MLN8237 (bottom). Error bars represent

mean ± SD.

(C) Gene-set-enrichment analysis of 87 cancer cell

lines against CD532 dose response showing a

positive correlation between MYC genes down and

EC50 (left) and a negative correlation between MYC

genes up and EC50 (right).

See also Figure S4 and Table S2.
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MYCN and accumulation of cells in the G2 and M phase, which

has been described previously (Manfredi et al., 2011). When

combining treatments with JQ1 for 24 hr and MLN8237 for

4 hr, an additive loss of S phase and accumulation in G2/M

were observed, similar to CD532.

That the cell-cycle and viability activity of CD532, but not

MLN8237, is related to the degradation of MYCN suggests that

the expression of MYCN might confer sensitivity to CD532. We

herefore determined the cellular EC50 for these compounds

against both GFP-and MYCN-transduced SH-EP neuroblas-

toma cells, which express little to no MYCN. The transduction

of MYCN conferred sensitivity to CD532 but not to MLN8237

(Figure 6B). In addition, CD532-driven loss of S phase in these

cells could be rescued by the stabilizing MYCNT58A/S26A mutant

(Figures S4C and S4D). These data suggest that the efficacy of

CD532 is due primarily to the loss of MYCN, whereas that of

MLN8237 is due primarily to the inhibition of Aurora A.

To determine whether MYCN might serve as a biomarker

of sensitivity to CD532, we screened a panel of 169 distinct

tumor-derived and genetically characterized cell lines, including

93 lines for which the information on the MYCN copy number

was available and 87 lines for which the mRNA expression

data were available (Garnett et al., 2012). CD532 showed activity

in most cell lines, with the EC50 in the nanomolar range, consis-

tent with our results in neuroblastoma (Table S2). Sensitivity to
Cancer Cell 26, 414–427, S
CD532 correlated with the expression of

MYCN/MYC mRNA in neuroblastoma

cells (Figure S4E). MYCN-amplified cell

lines were significantly more susceptible

to CD532 than were nonamplified lines

(p = 0.0010). In validation of this analysis,

MYCN amplified lines were significantly

more susceptible to JQ1 than were non-

amplified lines (p = 0.0069), whereas

MYCN amplified and nonamplified lines

showed similar sensitivities to VX-680

(p = 0.618; Figures S4F–S4H). Gene-set-

enrichment analysis revealed that suscep-

tibility to CD532 correlated with a MYC

signature, i.e., lowest EC50 in cells with

the highest expression of MYC targets

and highest EC50 in cells with the downre-
gulated MYC targets (Figure 6C). These data support a broad

potential for CD inhibitors of Aurora A against tumors in addition

to neuroblastoma and suggest a role for Aurora ACD inhibitors in

both MYC- and MYCN-driven diseases.

CD532 Reduces MYCN and Is Effective In Vivo
Although CD532 is a compound in development and not yet

optimized for in vivo pharmacokinetics, its efficacy in cell culture

was substantial enough towarrant testing in vivo. Studies inmice

revealed a serum half-life of �1.5 hr, providing for an area under

the curve during 24 hr (AUC0-24) of 27 mM/hr when delivered at

20 mg/kg (Figure S5A). This is in contrast to the clinically devel-

oped MLN8237, which has an AUC0-24 of 78.4 mM/hr when

delivered at the same dose (Carol et al., 2011). Nonetheless,

treatment of MYCN-amplified neuroblastoma xenografts with

CD532 led to decreased levels of MYCN protein (Figure 7A; Fig-

ure S5B), demonstrating that CD532 can block MYCN protein

in vivo.

In addition to neuroblastoma, MYCN prominently drives other

cancer types, including medulloblastoma (Swartling et al., 2010).

The sonic hedgehog (SHH) subtype ofmedulloblastoma shows a

high expression ofMYCNbecause SHH signaling promotes both

the expression and posttranscriptional stabilization of MYCN

(Kenney et al., 2003; Thomas et al., 2009). In order to test activity

in medulloblastoma in vivo, we treated a MYCN-expressing
eptember 8, 2014 ª2014 Elsevier Inc. 421
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Figure 7. In Vivo Activities of CD532

(A) MYCN protein levels in MYCN-amplified SMS-KCN xenografts of tumors

from mice treated for 2 days with 60 mg/kg CD532.

(B–D) MYCN protein levels in tumors (B) in, tumor burden (C) of, and survival

of (D) mice with subcutaneous SHH-subtype medulloblastoma treated with

the vehicle (n = 6) or 25 mg/kg CD532 (n = 4) twice weekly for up to

3 weeks *p < 0.05, **p < 0.005; two-tailed student’s t test for (A–C), bars are

mean ± SEM; log-rank test for (D), AU, arbitrary units.

See also Figure S5.
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SHH-subtype medulloblastoma allograft derived from Ptch+/�;
p53�/�mice (Kim et al., 2013; Romer et al., 2004). CD532 at

25 mg/kg twice per week substantially reduced MYCN levels,

reduced tumor burden, and extended survival in thesemice (Fig-

ures 7B–7D; Figure S5C). Notably, mice tolerated this dosing

regimen without obvious short- or long-term toxicity or weight

loss.

Disruption of the MYCN-Aurora-A Complex Depends on
the Magnitude of Conformational Change in Aurora A
Despite its potency against Aurora A kinase activity and modest

effect on the conformation of Aurora A (Dodson et al., 2010),

MLN8237 subtly decreased MYCN protein levels compared to
422 Cancer Cell 26, 414–427, September 8, 2014 ª2014 Elsevier Inc
CD532 (Figures 1D and 2A; Figures S1E and S1F). To test how

the degree of conformational shift in Aurora A affects the binding

of MYCN and Aurora A, we measured the MYCN-Aurora-A inter-

action in MYCN-amplified neuroblastoma cells treated with

increasing concentrations of CD532 or MLN8237. CD532 in-

hibited histone H3 phosphorylation at concentrations 10-fold

higher than MLN8237, consistent with their respective biochem-

ical IC50 and cellular EC50 (Figure 8A). However, CD532 caused

a dose-dependent and complete dissociation of the MYCN-

Aurora-A complex at 2 hr, whereas MLN8237 only modestly dis-

rupted this interaction (Figures 8A and 8B). This dissociation did

not occur with VX-680 treatment (data not shown). The effect of

CD532 on the MYCN-Aurora-A interaction was specific in that it

did not affect the MYCN-MAX binding (Figures S6A and S6B).

Notably, the disruption of the MYCN-Aurora-A complex by

CD532 occurred at doses comparable to those required to

block p-H3, consistent with the conformation change of MYCN

as a consequence of CD532 binding. This is in contrast with

MLN8237, which showed only partial disruption of the complex

upon maximal Aurora A inhibition (Figure 8A). Thus MLN8237,

a more potent Aurora A binder, only modestly decreased the

interaction of Aurora AwithMYCN. By comparison, CD532 binds

Aurora A with lower affinity but has a dramatic effect on Aurora A

binding to MYCN (Figure 8B).

As intended through the use of the diaminopyrimidine scaffold

for screening, CD532 binds to Aurora A at the hinge region via a

pyrazole moiety in a manner similar to VX-680 (Figure 8C) yet in-

teracts with other parts of the Aurora A binding pocket to confer

distinct biological effects (loss of MYCN, decreased viability, and

loss of S phase), biophysical effects (shift in tertiary structure),

and biochemical effects (disruption of the MYCN-Aurora-A com-

plex). The data in Figure 8D demonstrate that VX-680, MLN8237,

and CD532 show increasing activity in driving the destabilization

of MYCN protein in MYCN-amplified cell lines. Comparing the

published structures of Aurora A bound to VX-680 and to

MLN8054 with our structure of Aurora A bound to CD532 dem-

onstrates a progressive disruption of the conformation of Aurora

A (Figure 8E). Thus, the ability of VX-680, MLN8237, and CD532

to progressively displace the a-C helix in Aurora (a structural

measure that tracks directly with MYCN proteolysis) illustrates

how a starting scaffold can be modified to effect divergent

biochemical and biological activities.

DISCUSSION

Earlier studies of Aurora kinases clarified a central role for Aurora

A in mitosis and transformation. Inhibitors of Aurora A have

therefore been developed as therapeutics and are currently be-

ing tested across a range of cancers. Aurora A shares significant

structural and sequence similarity with Aurora B, although these

proteins have distinct mitotic functions and distinct subcellular

localizations. These differences in both function and localization

are attributed in part to the association of each kinase with a

unique group of cofactor proteins (reviewed in Carmena et al.,

2009).

Here we describe a class of compounds that were initially de-

signed to bind Aurora A in a type II fashion, defined by the

DFG-out orientation of D274, as a strategy for disrupting the

conformation of this kinase. Thus, it was surprising to observe
.



Figure 8. MYCN Loss and Dissociation of the MYCN-Aurora-A Complex Track with the Degree of Conformational Change in Aurora A

(A) Representative immunoblot analysis of immunoprecipitation (IP) of MYCN and total cell lysate (Input) from MYCN-amplified IMR32 cells treated for 4 hr with

MG-132 and for 2 hr with increasing concentrations of CD532 or MLN8237.

(B) Quantification of Aurora A and MYCN binding from triplicate experiments (*p < 0.05; two-tailed student’s t test; bars are mean ± SD).

(C) Comparison of binding modes of VX-680 and CD532.

(D) Immunoblot of MYCN protein after 24 hr treatment of SK-N-BE(2) cells with VX-680, MLN8237, and CD532. See also Figure S6.

(E) Angle between a-Cs of T333, E308, and A172 of Aurora A apo (PDB: 4J8N, green), Aurora A with VX-680 (PDB: 3E5A, yellow), Aurora A with MLN8054 (PDB:

2WTV, purple), and Aurora A with CD532 (PDB: 4J8M, orange).
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that CD532 binds Aurora A as DFG-in yet still induces a confor-

mational disruption not achieved by nonselective tool inhibitors

that induce a DFG-out conformation in Aurora A in vitro (Martin

et al., 2012). Comparing CD532-bound Aurora A to the apo

structure shows the activation loop in the inactive orientation,

accompanied by a shift in the entire N-terminal domain. Although

the activation-loop flip is consistent with an inactive conforma-

tion of Aurora A, the urea moiety of CD532 locks the DFG motif

in the active DFG-in orientation. This concurrence of features

from otherwise distinct states of the kinase is achieved through

a steric clash of the trifluoromethylphenyl moiety of CD532

with Aurora’s N-terminal b1 and b2 strands, displacing the N-ter-

minal lobe of Aurora A and allowing a unique network of

hydrogen bonds to stabilize the activation loop in an inactive

orientation.

Our structural data also suggest a mechanism through which

an inhibitor can stabilize the inactive conformation of a kinase.

Previously described inhibitors that stabilize kinases in their

inactive conformation displaced the aspartic acid of the catalytic

DFG motif, with a concomitant crankshaft-like 180� rotation of

the DFG backbone. In contrast, CD532 induces this inactive

conformation through interaction with the b1 and b2 strands of

the N-terminal domain, without reorienting the DFG motif. Our

structure thus reveals an uncoupling of the DFG flip from the

inactive state of a kinase. Whether such uncoupling plays a

role in the physiological state of the kinase, perhaps as part of

its regulation, or occurs only in the presence of specific pharma-

cological entities remains to be determined.

Can these specific associations be exploited to identify inhib-

itors of Aurora kinases that also disrupt interactions with cofactor

proteins? The resulting conformation of CD532-bound Aurora A

blocks both kinase-dependent and kinase-independent func-

tions of Aurora A. CD532 inhibits Aurora A at low nanomolar con-

centrations and, in parallel, effects the proteolytic degradation of

MYCN. Importantly, we were unable to uncouple kinase inhibi-

tion and MYCN proteolysis through the structural modification

of CD532, consistent with the disruption of Aurora A’s scaffold

as a result of bulky pharmacophores that extend from an ATP-

competitive core.

The difference in the kinetics of complex dissociation between

CD532 and MLN8237, coupled with their respective IC50 and

crystallographic information, provides insight into thebiophysical

basis for the disruption of the MYCN-Aurora-A interaction.

Although MLN8237 is a potent inhibitor of Aurora A, it only

modestly disrupts the conformation of Aurora A. In contrast,

CD532 is a weaker inhibitor of Aurora A, but saturating doses

lead to the complete dissociation of the complex. Taken together

with the structural data, theseobservations suggest that theequi-

librium of dissociation of the MYCN-Aurora-A complex is depen-

dent on the degree of conformational disruption of Aurora A.

Several other inhibitors of Aurora kinase are in clinical devel-

opment, all of which act as mitotic poisons much like current

cytotoxic chemotherapy agents. Our functional data show that

CD532 acts more as a potent MYCN inhibitor than as a conven-

tional Aurora A inhibitor in neuroblastoma and has the potential

to act as a MYC inhibitor in other cell types. Although the phar-

macokinetic properties of CD532 have not been optimized,

CD532 could effect the loss of MYCN protein in neuroblastoma

xenografts as well as reduce tumor burden and improve survival
424 Cancer Cell 26, 414–427, September 8, 2014 ª2014 Elsevier Inc
in a mouse model of medulloblastoma, providing motivation for

additional medicinal chemistry and optimization of this family

of compounds for clinical use.

Neuroblastoma is the most common extracranial solid tumor

of childhood, andMYCN amplification is the best-described ge-

netic lesion marking high-risk chemotherapy-resistant disease.

The targeted expression of MYCN drives neuroblastoma in

mice and zebrafish (Weiss et al., 1997; Zhu et al., 2012). We

have previously finessed the destabilization of MYCN through

blockade of PI3K/mTOR (Chanthery et al., 2012; Chesler et al.,

2006) and have shown in vivo efficacy through an alternative

approach to blocking MYCN and its transcriptional targets using

BRD4-based bromodomain inhibitors (Puissant et al., 2013).

Here we propose a third strategy to block MYCN in cancer.

These three interventions, at distinct nodes in the same onco-

genic pathway, present a unique opportunity for combinatorial,

targeted therapeutics to block emergent resistance while maxi-

mizing the blockade of MYCN in neuroblastoma and potentially

in other MYCN- and MYC-driven cancers.

Allostery is most generally defined as a phenomenon whereby

a perturbation by an effector at one site of themolecule leads to a

functional change at another through the alteration of the shape

and/or dynamics (Nussinov and Tsai, 2013). There are several

recent examples of allosteric inhibitors for the treatment of can-

cer, including arsenic trioxide, an antileukemic, that binds to zinc

fingers within the PML-RARAa fusion protein of acute promyelo-

cytic leukemia to induce a conformational change favoring olig-

omerization and eventual degradation (Zhang et al., 2010), and

biculutamide, which binds to the androgen receptor to block

androgen-receptor-mediated transcription in prostate cancer

(Osguthorpe and Hagler, 2011). Enzymes, including but not

exclusive to kinases such as Aurora A, may have important

nonenzymatic activities, including scaffolding, regulation, and

localization of other proteins. As such, many molecular interac-

tions necessary for cellular function and carcinogenesis are not

targetable directly with small molecules either because they

have no amenable binding pocket (as with MYC proteins) or

because their affinity for natural substrate is too high (as with

many guanosine triphosphatases [GTPases] such as RAS). By

contrast, orthosteric targeting of small molecules to enzymes

such as kinases has become relatively trivial. Here we refer to

an ATP-mimetic ligand that binds the active site of Aurora A to

alter its kinase-independent stabilization of MYCN but also,

obligately, its kinase activity. We propose that such an inhibitor

be referred to as ‘‘amphosteric,’’ denoting an inhibitor that is

simultaneously both orthosteric (inhibiting kinase activity) and

allosteric (disrupting protein-protein interactions). Thus, CD532

represents the prototype of a class of amphosteric inhibitors

that induce an allosteric change to disrupt the nonenzymatic

functions of enzymes. Because these amphosteric effects are

neglected in most current inhibitor screening, the development

of small-molecule screens for other amphosteric inhibitors has

the potential to target other undruggable oncoprotein targets.
EXPERIMENTAL PROCEDURES

Cell Culture, Inhibitors, and Western Blotting

Neuroblastoma tumor cell lines were obtained from the University of California

San Francisco Cell Culture Facility (Kelly, SK-N-BE2, and SH-EP). SMS-KCN,
.
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SHEP MYCNwt and MYCNT58A/S62A cells were obtained from Martin Eilers lab.

All cells were grown in RPMI with 10% fetal bovine serum (FBS). Neuroblas-

toma cells were harvested and lysed with cell signaling lysis buffer + 1%

SDS, sonicated and supernatants boiled in lithium dodecyl sulfate (LDS) sam-

ple buffer (Invitrogen). Western blots were performed as described previously

(Chanthery et al., 2012), with primary antibodies to MYCN (ab24193, Abcam),

histone H3, p-histone H3 (S10), Aurora A (Cell signaling), and glyceraldehyde

3-phosphate dehydrogenase (GAPDH; Millipore). Western blot quantitation

was performed using ImageJ software. VX-680 (S1048) and MLN8237

(S1133) were obtained from Selleck chemicals.

Flow Cytometry and Viability

Neuroblastoma cells were treated for the indicated time, trypsinized, washed,

stained with Dylight 800 at 0.3 mg/ml (Pierce, 46421), fixed with 1.5% parafor-

maldehyde (PFA), and permeabilized with 100% methanol. Cells were then

stained with antibodies against p-MPM2 (Millipore, 16-155), p-pan-Aurora

(Cell Signaling, 2914), MYCN (Thermo, PA5-17403), rabbit immunoglobin G

(IgG; Invitrogen, A10542), or mouse IgG (BioLegend, 405307). Cells were

stained with DAPI at 0.3 mg/ml (Invitrogen, D21490) and analyzed on the BD

LSR II flow cytometer. For cell-cycle analysis, cells were stimulated with

EdU for 2 hr prior to harvest and then probed using the Click-iT EdU Flow

Cytometry Assay Kit (Invitrogen, C10424). Cells were stained with propidium

iodide (BD, 556547) and analyzed on the BD FACSCalibur flow cytometer. The

data were gated using Cytobank. For viability studies, neuroblastoma cells

were plated in 96-well plates at a density of 1,000 cells/well for SHEP or

4,000 cells/well for Kelly or SK-N-BE2 cells, and then incubated with the indi-

cated concentrations of drug for 72 hr at 37�C. The plates were frozen at

�80�C to induce cell lysis. CyQUANT reagent mixture (Invitrogen, C7026)

was added to the thawed plates; then the fluorescence was measured. Alter-

natively, resazurin (Sigma-Aldrich, R7017) was added directly to the wells

following the drug treatment; the cells were then incubated for 4 hr at 37�C
prior to measuring the fluorescence. The data were analyzed using GraphPad

Prism software.

Pulldowns

The cells were pretreated with MG-132 (Calbiochem, 474790) at 5 mg/ml for

4 hr and with a drug (CD532, MLN8237, or VX-680) for 2 hr before lysis with

TNN lysis buffer in the presence of a protease inhibitor (Sigma-Aldrich,

P8849). Pulldowns were performed with anti-MYCN antibody (Santa Cruz,

SC-53993) and Protein G sepharose beads (Sigma-Aldrich, P3296). Immuno-

blots were performed as previously described.

Chemical Synthesis

Starting materials were purchased from Sigma-Aldrich or Alfa Aesar. Unless

otherwise noted, reactions were performed in dry, argon-charged, glass

round-bottom flasks and monitored using thin-layer chromatography (TLC)

or liquid-chromatography-mass-spectrometry (LC-MS). Compounds were

characterized using LC-MS and nuclear magnetic resonance (NMR) spectros-

copy. LC-MS retention times (RTs) are reported inminutes based on a gradient

of 5%–95% acetonitrile (ACN)/H2O from t = 0.1 min to t = 1.9 min. NMR shifts

(d) are reported in parts per million as singlets (s), doublets (d), quartets (q),

quintets (quin), or multiplets (m). High-performance liquid chromatography

(HPLC) was conducted using a Waters 2545 binary-gradient module, Waters

2767 sample manager, and Waters 2998 photodiode array detector running

MassLynx v4.1. Flash/silica gel chromatography was performed on an Ana-

Logix Intelliflash using SuperFlash Si50 columns (Agilent). Synthetic proce-

dures can be found in the Supplemental Information.

Expression and Purification of Aurora A Kinase

Purification and expression of Aurora A were performed as described previ-

ously (Martin et al., 2012), with the following modifications. Aurora A (residues

123–390, T287D) was cloned into a pET28a plasmid providing fusion with a

PreScission-Protease-cleavable hexahistidine tag. The protein was overex-

pressed in BL-21(DE3) cells at 18�C. Digestion with PreScission Protease

was performed overnight at 4�C in a 10 kDa molecular-weight-cut-off

(MWCO) dialysis cartridge (Thermo Scientific) with a dialysis buffer containing

50mM2-(N-morpholino)ethanesulfonic acid (MES; pH 6.5), 300mMNaCl, and

1 mM dithiothreitol (DTT), followed by 4 hr of dialysis with a buffer containing
Ca
50mMMES (pH 6.5) and 1mMDTT before being loaded onto an ion-exchange

column. Pooled fractions were concentrated to 5 mg/ml (Amicon Ultra, 10 kDa

MWCO, Millipore) and loaded onto a HiLoad Prep Grade Superdex 200

column (GE Healthcare) equilibrated with 50 mM HEPES (pH 7.4) and 1 mM

DTT to yield monomeric enzyme for use in both the kinase assays and

crystallization.

In Vivo Studies

For the pharmacokinetic studies, CD532 was formulated at 20 mg/ml in 7.5%

DMSO and 92.5% polyethylene glycol 300 (PEG 300). LC-MS/MS detection

of CD532 was performed using a Waters 2545 binary-gradient module,

Waters 2767 sample manager, and Waters 2998 photodiode array detector

running MassLynx v4.1. For the neuroblastoma studies, NOD scid gamma

mice (Jackson Laboratory) were implanted with 106 SMS-KCN cells in growth

media with 50% Geltrex (Invitrogen) into renal capsule. At 21 days post im-

plantation, tumors were palpable and treated for 2 days with 60 mg/kg

CD532 before harvesting and flash freezing for analysis. For the medulloblas-

toma studies, homozygous nu/nu mice (Simonsen) with flank subcutaneous

allografts (106 cells implanted per mouse) of SHH-subtype MYCN-expressing

medulloblastoma were started on treatment once the tumors reached

25 mm3 in volume (�14 days). Mice were treated with the vehicle (5%

DMSO in PEG 300) or CD532 (25 mg/kg, formulated at 7.5 mg/ml) twice

per week, delivered by intraperitoneal injection. Mice were euthanized once

the maximum tumor length reached 2.0 cm. Difference in tumor burden

was evaluated using a two-tailed student’s t test, and the difference in sur-

vival was evaluated using a log-rank test. All experiments on live vertebrates

or higher invertebrates were performed in accordance with relevant institu-

tional and national guidelines and approved by the UCSF Animal Care and

Use Committee (IACUC).

Crystallization and Data Collection

After gel separation, the purified fractions of Aurora A were pooled and

concentrated in the presence of the drug to a final concentration of 20 mg/

ml Aurora A and 1 mM drug. All crystallization reagents were obtained from

Hampton Research (Aliso Viejo). Crystals were generated using hanging-

drop vapor diffusion at room temperature using a 1:1 mixture of protein solu-

tion and well solution. For Aurora A Apo, the well solution consisted of 10%

Tacsimate (pH 7.0) and 20% PEG 3,350. For Aurora A with CD532, the well

solution consisted of 0.2Mmagnesium acetate tetrahydrate, 0.1M sodium ca-

codylate trihydrate, and 20%w/v PEG 8,000 (pH 6.0). Crystals did not grow in

the apo conditions in the presence of drug or in the drug conditions in the

absence of compound. CD532-bound and apo crystals were cryoprotected

with well solution supplemented with 10% and 25% ethylene glycol, respec-

tively, and stored in liquid nitrogen. The diffraction data were recorded on

Beamline 8.2.2 at the Lawrence-Berkeley Advanced Light Source at a temper-

ature of 100 K and wavelength of 1.0088 nm. The data were indexed using

HKL2000 (HKL Research). The drug-bound crystals belong to the C2221

space group with one monomer in the asymmetric unit, and Apo crystals

belong to the P31 space group with four monomers in the asymmetric unit.

Molecular replacement and refinement were performed using Phaser-MR

and phenix.refine in PHENIX (Adams et al., 2010), model building was

performed using Coot (Emsley et al., 2010), and figures were drawn using

MacPYMOL 1.5.0 (Schrodinger). RCSB validation reports are shown in the

Supplemental Information. Procedures for chemical synthesis, gene-set-

enrichment analysis, and in vitro kinase assays are described in the Supple-

mental Information.

ACCESSION NUMBER

Atomic coordinates and structure factors for CD532-bound and apo Aurora A

have been deposited in the Protein Data Bank as 4J8Mand 4J8N, respectively.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

six figures, two tables, and one movie and can be found with this article online

at http://dx.doi.org/10.1016/j.ccr.2014.07.015.
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