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Abstract

For any graph G = (V , E) without loops, let C2(G) denote the regular CW-complex obtained from G by
attaching to each circuit C of G a disc. We show that if G is the suspension of a flat graph, then C2(G) has
an embedding into 4-space. Furthermore, we show that for any graph G in the collection of graphs that can
be obtained from K7 and K3,3,1,1 by a series of �Y - and Y�-transformations, C2(G) cannot be embedded
into 4-space.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

For any graph G = (V , E) without loops, let C2(G) denote the regular CW-complex obtained
from G by attaching to each circuit C of G a disc. So we view the graph here as a regular CW-
complex; for the definition of regular CW-complex, see most books on algebraic topology. (A
circuit in a graph can be seen as a subgraph homeomorphic to the 1-sphere.) We call a graph G
4-flat if C2(G) can be embedded piecewise linearly in 4-space. This property can be viewed as the
4-dimensional analog of planarity and flatness of graphs. (A graph is planar if it can be embedded
in the plane, see, for example, [4], and a graph is flat if is has an embedding in 3-space such that
every circuit of G bounds a open disc in 3-space disjoint from the graph [10].) A 4-dimensional
analog of planar graphs was also studied by Gillman [6]. In Theorem 1, we will show that any
minor of a 4-flat graph is again 4-flat. So the class of all 4-flat graphs is closed under taking
minors.

E-mail address: Hein.van.der.Holst@cwi.nl.
1Part of this work was done while H. van der Holst was member of the European graduate program ‘Combinatorics,

Geometry, and Computation’. The European graduate program ‘Combinatorics, Geometry, and Computation’ is supported
by the Deutsche Forschungsgemeinschaft, Grant GRK 588/1.

0095-8956/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jctb.2005.09.004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82523665?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/jctb
mailto:Hein.van.der.Holst@cwi.nl


H. van der Holst / Journal of Combinatorial Theory, Series B 96 (2006) 388–404 389

In this paper we give a collection of graphs which are not 4-flat. Before introducing this
collection, we need some definitions. A graph G′ is obtained from graph G by a �Y -transformation
if G′ is obtained by deleting the edges of a triangle in G and by adding a new vertex and edges
connecting this vertex to all vertices of the triangle. A graph G′ is obtained from G by a Y�-
transformation if G′ is obtained by deleting a vertex v of degree 3 (and its incident edges) in G
and by adding an edge between each pair of vertices of the set of neighbors of v. By K7 we denote
the graph with 7 vertices in which each pair of vertices is connected by an edge and by K3,3,1,1
we denote the graph with 8 vertices in which we can partition the vertex set into four classes, two
of size 3 and two of size 1, such that an edge connects two distinct vertices if and only if they
belong to different class. See [4] for more about graph theory. We call the collection of all graphs
that can be obtained from K7 and K3,3,1,1 by applying a series of �Y - and Y�-transformations
the Heawood family. This family contains 78 graphs, 2 20 of which are obtained from K7 by
applying �Y - and Y�-transformations, and 58 of which are obtained from K3,3,1,1 by applying
�Y - and Y�-transformations. We shall show that each graph in the Heawood family is not 4-flat;
hence a graph containing any of these graph as a minor cannot be 4-flat.

The reason to introduce the concept of 4-flat comes from the graph invariant �(G). This invariant
is introduced in Colin de Verdière [2] and it characterizes the class of planar, and flat graphs as
those class of graphs G with �(G)�3, and 4, respectively. The question arises what class of
graphs are characterized by �(G)�5. Looking for analogy of the classes of planar, and flat graph
leads us to conjecture that 4-flat graphs are characterized by �(G)�5. In Section 4, we shall see
that the graphs of the Heawood family are forbidden minors for �(G)�5, providing support for
the conjecture that 4-flat graphs are characterized by �(G)�5.

We now describe in short how we will prove that the graphs of the Heawood family are not
4-flat. Let C be a regular CW-complex and let �, � be cells of C. We say that �, � are adjacent if
the smallest subcomplex of C containing � and the smallest subcomplex of C containing � have
nonempty intersection. We say that � is incident to � if � belongs to the smallest subcomplex of C
containing �. Let �1, �2 be cells of C. We say that �1, �2 have � in common if both �1 and �2 are
incident to �. Define I4 to be the class of all graphs G for which there exists a mapping f of C2(G)

into 4-space such that I2(f (�), f (�)) = 0 for every pair �, � of nonadjacent 2-cells of C2(G).
Here I2(f (�), f (�)) denotes the equivalence class of the intersection number of f (�) with f (�)
under congruence modulo 2. Clearly, 4-flat graphs belong to I4. Now, we shall show that if G′
is obtained from a graph in I4 by a �Y - or a Y�-transformation, then G′ belongs to I4 as well.
Furthermore, we shall show that the graphs K7 and K3,3,1,1 do not belong to I4, and so we obtain
that the graphs of the Heawood family cannot be 4-flat.

Similar to the way I4 is defined, we define the classes I2 and I3. We shall see in Section 6 that
the class I2 is equal to the class of planar graphs and that I3 is equal to the class of flat graphs.
This leads us to conjecture that the class of 4-flat graphs coincides with I4.

2. Preliminaries

In this paper all mappings are assumed to be piecewise linear. We denote the real line by E and
the Euclidean k-space by Ek; mostly, we shall write k-space instead of Euclidean k-space. By E0+
and E+ we denote the spaces of all x ∈ E with x�0 and of all x ∈ E with x > 0, respectively;

2 I thank Rudi Pendavingh for giving me the list of all these 78 graphs.
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by E0− and E− we denote the spaces of all x ∈ E with x�0 and of all x ∈ E with x < 0,
respectively.

Let S ⊆ En be a topological subspace of En, and let v be a point in En. The cone on S with
vertex v in En is the topological subspace of En formed by all line segments with one end in S
and the other equal to v.

In this paper all graphs are allowed to parallel edges, but not any loop. A minor of a graph
G is a graph obtained from a subgraph of G by contracting a sequence of edges of the sub-
graph and removing any loop. A proper minor of H is a minor unequal to H. A minor-closed
class of graphs is a class G of graphs such that each minor and each graph isomorphic to a
graph in G belongs to G. A graph H is an excluded minor of a minor-closed class G if H does
not belong to G, but every proper minor of H belongs to G. The well-quasi-ordering theorem
of Robertson and Seymour [11] tells us that for every minor-closed class of graphs, the col-
lection of all its excluded minors is finite. Hence, by Theorem 1 there is a finite collection of
graphs such that any graph which is not 4-flat contains a minor isomorphic to a graph in this
collection.

The next lemma will be used to show that for certain classes of graphs, such as the class of
graphs with �(G)�5 (see Section 4) and I4 (see Section 6), the graphs of the Heawood family
are some excluded minors for these classes.

A graph is obtained from graph G by subdividing an edge e if it is obtained from G by deleting
edge e = w1w2 and by adding a new vertex v and edges connecting this vertex to w1 and w2.

Lemma 1. Let G be a minor-closed class of graphs closed under taking �Y - and Y�-
transformation, adding parallel edges, and subdividing edges. Let {H1, . . . , Hk} be a collec-
tion of connected graphs, each of which does not belong to G, but such that each proper minor
of these graphs belongs to G. Let H be the collection of all graphs that can be obtained from
H1, . . . , Hk by applying �Y - and Y�-transformations. Then each proper minor of a graph G in
H belongs to G.

Proof. It suffices to show that each minor obtained from G by deleting or contracting an edge
belongs to G. We proceed by induction to the minimum number of �Y - and Y�-transformations
that have to be applied to any of the graphs in {H1, . . . , Hk} to get G. The case where this numbers
is equal to zero is given by the statement of the theorem. If this number is greater than zero, then by
induction G is obtained from G′ by either a �Y - or Y�-transformation, and G′ is a graph obtained
from a graph in {H1, . . . , HK} by applying �Y - and Y�-transformations and each proper minor
of G′ belongs to G. We now look to two cases.

Suppose first that G is obtained from G′ by a �Y -transformation. Let H be a graph obtained
from G by contracting or deleting one edge e. If e does not belong to the Y, then H can be obtained
from a graph in G by applying a �Y -transformation, and hence itself belongs to G. So suppose
that e is one of the edges of the Y. Now, if H is obtained from G by contracting e, then H is a
proper subgraph of G′. If H is obtained from G by deleting e, then H is obtained from a proper
subgraph by subdividing one edge. So in both cases it follows that H belongs to G.

Suppose next that G is obtained from G′ by a Y�-transformation. Let H be a graph obtained
from G by contracting or deleting one edge e. Just as above, the case where e does not belong
to the � is clear, so we suppose that e is one of the edges of the �. If H is obtained from G by
deleting e, then H is obtained from G′ contracting one of the edges of the Y. If H is obtained from
G by contracting e, H is obtained from G′ by contracting two edges of the Y and adding an edge
parallel to the remaining edge. So in both cases it follows that H belongs to G. �
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3. A 4-dimensional version of flatness

Theorem 1. Each minor of a 4-flat graph is 4-flat.

Proof. Let G be a 4-flat graph. It suffices to show the theorem for the cases where the minor G′
arises from G by either the deletion of a vertex or an edge, or the contraction of an edge.

As C2(G
′) is a subcomplex of C2(G) when G′ arises from G by deletion of a vertex or an edge,

it is clear that C2(G
′) can be embedded into 4-space. So we are left with the case that G′ arises

from G by contraction of an edge e. Let D be the complex obtained from C2(G) by deleting all
2-cells that are incident to the ends of e but not the edge e itself. Then D can be embedded in
4-space by �. Take a small neighborhood B around �(e) homeomorphic to the 4-ball such that the
intersection of each 2-cell of D with �B is a curve in �B (and whose two ends are the intersection
of the two edges adjacent to e with �B). We may assume that B is the unit ball in 4-space. Map the
vertex ve obtained from contracting e to the origin O, and take inside B the cone on �B ∩ �(D)

with vertex O in 4-space. Leave every outside B the same. Then we have an embedding of C2(G
′)

in 4-space. �

An embedding of a graph G in 3-space is flat if every circuit of G bounds a open disc in 3-
space disjoint from the graph. A graph is flat if it has a flat embedding. The Petersen family is
the collection of all graphs that can be obtained from the Petersen graph by a series of �Y - and
Y�-transformations. This is a family of graphs containing 7 graphs, one of which is the Petersen
graph. Robertson et al. [10] show that a graph is flat if and only if it has no minor isomorphic to
a graph in the Petersen family.

The suspension of a graph G is the graph obtained from G by adding a new vertex and connecting
this vertex to all vertices of G. The next theorem gives an analog of the following: the suspension
of a planar graph is flat.

Theorem 2. Let G be a flat graph and let S(G) be a graph obtained from G by adding a new
vertex v and edges (possibly multiple) from this vertex to all vertices of G. Then S(G) is 4-flat.

Proof. Since G is a flat graph, there is a mapping � of C2(G) into E3, such that the restriction
of � to G is an embedding, each 2-disc is embedded by �, and for each 2-disc �, �(�) and �(G)

have common points only on the boundary of �.
The embedding � of C2(S(G)) into E4 we construct will consist of two parts. In short, the

2-discs of C2(G) are embedded into E3 × E0−, and the 2-discs of C2(S(G)) containing v are
embedded into E3 × E0+. We shall first embed C2(G) into E3 × E0−.

Choose for each 2-disc � of C2(G) a positive number a�, such that these numbers are mutually
different. Define the restriction of � to C2(G) by �(x) = (�(x), 0) if x ∈ G and �(x) =
(�(x), −a�d(x)) if x belongs to �, where d(x) denotes the distance in E3 of �(x) to �(G). This
is an embedding because if �(x) = �(y), then �(x) = �(y) and a�d(x) = a�d(y), and since
�(x) = �(y) implies d(x) = d(y), we see that � = �, which implies that x = y.

Let D be the subcomplex of C2(S(G)) consisting of all 2-cells whose boundaries contain v. We
shall now embed D into E3 × E0+ such that �−1(E3 × {0}) = G. For this, we first construct a
cell-complex K as follows. For each edge e incident with v, let w = we be the other end of e, and
attach a copy of the unit interval, I, to w in G by identifying 0 of I with w. Denote this simplicial
complex by K′. (So identifying all 1’s for all copies of the unit interval gives S(G).) For each
path P in G, let u1 and u2 be the ends of P, and attach to each copy of the unit interval at u1 and
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Fig. 1. K3,4 with a circuit of size 4 on its color class of size 4.

each copy of the unit interval at u2 a copy of P × I to K′ by identifying P × {0} with the path P
in G and identifying u1 × I and u2 × I with their corresponding copies in K′. The resulting cell
complex is denoted by K.

Since each 2-cell of K is of the form P × I with P a path in G, each point in K is of the
form (p, s) with p a point on a path in G and s ∈ I . So we can put a height function h on K by
defining h(q) = s if q = (p, s). We denote by K0 and K1 the subcomplexes h−1(0) and h−1(1),
respectively. Triangulate K such that each vertex of this triangulation belongs to K0 or K1.

We now show that K has an embedding � into E3 × I with E3 × {0} ∩ �−1(K) = K0,
E3 × {1} ∩ �−1(K) = K1. To this end, let �1 be the mapping of K into E3 × I defined by
�1(p, s) = (�(p), x) for every point (p, s) in K. Perturb �1 a little, leaving G fixed, by putting
the vertices in K1 in generic position, and let the resulting map of K in E3 × I be �2. Then �2(K)

has only a finite number of self-intersections, and so we can find a 0 < t �1 such that �2(K) has
no self-intersections between E3 × {0} and E3 × {t}. The restriction of �2(K) in E3 × [0, t] is
homeomorphic to K, hence K can be embedded into E3 × [0, t], such that G is embedded into
E3 × {0} and each point (p, s) of K is mapped into E3 × {s}. Since [0, t] is homeomorphic to I,
there exists an embedding � of K in E3 × I with the required property.

Now take the cone of �(K1) with vertex (0, 0, 0, 2)T in 4-space. Altogether, we have an embed-
ding � of D into E3 × E0+ with �−1(0) = G. Hence C2(S(G)) can be embedded into E4. �

From Theorem 2 it follows

Lemma 2. Any proper minor of K7 or K3,3,1,1 is 4-flat.

Proof. Case K7: If G arises from K7 by deleting an edge, then it is the suspension of a flat graph,
and hence it is 4-flat. If G arises from K7 by contracting an edge, then by deleting a vertex we
obtain a flat graph and hence G is 4-flat.

Case K3,3,1,1: If G arises from K3,3,1,1 by contracting an edge, then it is a suspension of a
flat graph and hence is 4-flat. For the case where G arises from K3,3,1,1 by deleting an edge, we
distinguish two cases. Let v and w be the vertices of degree 7 in K3,3,1,1. If G arises from K3,3,1,1
by deleting an edge e �= vw, then it is a subgraph of a suspension of a flat graph and hence is
4-flat. If G arises from K3,3,1,1 by deleting edge vw, then it is a subgraph of a suspension of the
graph obtained from K3,4 by adding a circuit of size 4 to the color class of size 4 (see Fig. 1),
which is flat, and hence G is 4-flat. �

In Section 7, we shall see that K7 and K3,3,1,1 are not 4-flat. Hence, by Lemma 2, these graphs
are excluded minors for this class. However, we do not know if each graph in the Heawood family
is an excluded minors for the class of 4-flat graphs. We make the following two conjectures.

Conjecture 1. Any graph obtained from a 4-flat graph G by adding an edge in parallel to one of
the edges of G is again 4-flat.
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Conjecture 2. Any graph obtained from a 4-flat graph by a �Y - or Y�-transformation is again
4-flat.

By Lemma 1, the truth of the Conjectures 1 and 2 implies that all graphs in the Heawood family
are excluded minors for the class of 4-flat graphs.

4. The Colin de Verdière parameter

The Colin de Verdière parameter �(G) was introduced in [2] (see [3] for the English translation).
Its definition is in terms of matrices, but it turns out that it describes topological embeddability
properties of the graph, as the following show:

• A graph G is planar if and only if �(G)�3.
• A graph G is flat if and only if �(G)�4.

Before giving the definition of �(G) we need some other definitions. Let G = (V , E) be a graph
with n vertices and let OG denote the collection of all symmetric n×n matrices M = (mi,j ) with
mi,j < 0 if i �= j , and i and j are connected by an edge, and mi,j = 0 if i �= j , and i and j are not
connected by an edge (so the entries on the diagonal may be any real number). A matrix M ∈ OG

fulfills the Strong Arnol’d property if the only symmetric matrix X = (xi,j ) with xi,j = 0 if i = j

or if i and j are adjacent, and satisfying MX = 0, is the all-zero matrix. The parameter �(G) is
defined as the largest corank of any M ∈ OG, with exactly one negative eigenvalue, that fulfills
the Strong Arnol’d Property. (The corank of M is n − rank M .)

The parameter �(G) is minor-monotone; that is, if G′ is a minor of G, then �(G′)��(G).
Hence by the well-quasi-ordering theorem of Robertson and Seymour, the class of all graph G
with �(G)�k can be described in terms of a finite collection of excluded minors. For k = 3,
the excluded minors are K3,3 and K5. For k = 4, the excluded minors are all graphs that can be
obtained from K6 by applying �Y - and Y�-transformations; that is, all graphs in the Petersen
family. The reason that these graphs are excluded minors for �(G)�4 follows from �(K6) = 5
and the following theorems of Bacher and Colin de Verdière [1]. They state their theorems in a
more general form; we do not need that here.

Theorem 3. If G′ is obtained from G by subdividing an edge, then �(G′)��(G). If G is obtained
from G′ by suppressing a vertex of degree 2 and �(G′)�4, then �(G)��(G′).

Theorem 4. If G′ is obtained from G by a �Y -transformation, then �(G′)��(G). If G is obtained
from G′ by a Y�-transformation and �(G′)�5, then �(G)��(G′).

It is shown by Lovász and Schrijver [9] that the graphs in the Petersen family are all excluded
minors of the class �(G)�4.

Another theorem we shall need is:

Theorem 5. Let G′ be the suspension of a graph G. Then �(G′) = �(G) + 1 if G is not the
complement of K2.

For more information and theorems on the Colin de Verdière parameter, we refer to [8]. We
state here:

Theorem 6. Each graph G in the Heawood family has �(G) = 6. Each proper minor H of such
a graph G has �(H) < 6.
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Proof. Since �(K3,3,1,1) = 6 and �(K7) = 6, by the result of Bacher and Colin de Verdière, the
graphs G of the Heawood family have �(G) = 6. To prove the second part of the theorem, it is,
by Lemma 1, sufficient to show that each proper minor H of K3,3,1,1 and K7 has �(H) < 6. We
leave the case of K7 to the reader. The case where H is a obtained from K3,3,1,1 by contracting
one edge follows from the fact that after suppressing parallel edges H is isomorphic to a proper
subgraph of K7. The case where H is obtained from K3,3,1,1 by deleting one edge follows the fact
that H is a subgraph of a suspension of a flat graph. �

We do not know if the graphs in the Heawood family are all excluded minors for the class of
graphs G with �(G)�5. We conjecture that they are all excluded minors.

5. The classes I2, I3, and I4

For any nonnegative integer k, we denote by Bk the k-ball, and we denote by Sk the k-sphere.
Let �1 : Bk1 → En and �2 : Bk2 → En be continuous mappings with (�1(�Bk1) ∩ �2(B

k2)) ∪
(�1(B

k1) ∩ �2(�Bk2)) = ∅ and k1 + k2 = n. We say that �1 and �2 are in general position if
�1(B

k1) and �(Bk2) have a finite number of intersections and at these intersections they intersect
transversely. If �1 and �2 are in general position, the intersection number mod 2 of �1 and �2,
which we denote by I2(�1, �2), is the equivalence class of |�1(B

k1)∩�(Bk2)| under congruence
modulo two. If �1 : Sk1 → En and �2 : Sk2 → En are continuous mappings with �1(S

k1) ∩
�2(S

k2) = ∅ and k1 +k2 = n−1, we denote by link2(�1, �2) the equivalence class of the linking
number of �1 and �2 under congruence modulo two. (For the general definition of intersection
and linking number, we refer to Dold [5, pp. 197–202]. For a definition as used in differential
topology, see Hirsch [7].)

The intersection number and linking number are invariant under sufficiently small perturbations.
That is, if �1 : Bk1 → En and �2 : Bk2 → En are continuous mappings in general position, with
(�1(�Bk1) ∩ �2(B

k2)) ∪ (�1(B
k1) ∩ �2(�Bk2)) = ∅ and k1 + k2 = n, and �′

1 : Bk1 → En and
�′

2 : Bk2 → En are obtained from �1 and �2, respectively, by a small perturbation and �′
1 and

�′
2 are in general position, then I2(�

′
1, �

′
2) = I2(�1, �2). If �1 : Sk1 → En and �2 : Sk2 → En

are continuous mappings with �1(S
k1) ∩ �2(S

k2) = ∅ and k1 + k2 = n − 1, and �′
1 : Sk1 → En

and �′
2 : Sk2 → En are obtained from �1 and �2, respectively, by a small perturbation, then

link2(�
′
1, �

′
2) = link2(�1, �2).

Let C be a regular CW-complex and let � : C → En be a continuous map. We say that � is in
general position if for each pair of open cells �1, �2 of C with �1 �= �2 and dim �1 + dim �2 < n,
�(�1)∩�(�2) = ∅, and for each pair of open cells �1, �2 of C with �1 �= �2 and dim �1+dim �2 =
n, �(�1) and �(�2) have a finite number of intersections and at these intersections they intersect
transversely. Let � : C → En be a continuous map in general position. For nonadjacent cells
�1, �2 of C with dim �1 +dim �2 = n, I2(�(�1), �(�2)) = 1 if and only if the intersection number
of �(�1) and �(�2) is odd. The following equality holds for nonadjacent cells �1, �2 of C with
dim �1 + dim �2 = n + 1:

link2(�(��1), �(��2)) = I2(�(��1), �(�2))

=
∑
�

I2(�(�), �(�2)),

where the sum is over all cells � with dim � = dim �1 − 1 belonging to the boundary of �1.
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We now introduce weakenings of the classes of planar, flat, and 4-flat graphs. The class I2 is
the class of all graphs G such that there exists a mapping � in general position of G into 2-space,
such that I2(�(e1), �(e2)) = 0 for every pair of nonadjacent edges e1, e2 of G. The class I3 is the
class of graphs G, such that there exists a mapping � in general position of C2(G) into 3-space
such that I2(�(�), �(e)) = 0 for every edge e and 2-cell � of C2(G) with � nonadjacent to e. The
class I4 is the class of graphs G, such that there exists a mapping � in general position of C2(G)

into 4-space such that I2(�(�), �(�)) = 0 for every pair of nonadjacent 2-cells �, � of C2(G).
It is clear that planar graphs belong to I2, that flat graphs belong to I3, and that 4-flat graphs

belong to I4.

Lemma 3. Let k ∈ {2, 3, 4}. If a graph belongs to Ik , then each of its subgraphs belongs to Ik .

Lemma 4. Let k ∈ {2, 3, 4}. If G is a subdivision of a graph in Ik , then G belongs to Ik . If G is
a obtained from a graph in Ik by adding parallel edges, then G belongs to Ik .

The proofs of these lemmas are easy.

Proposition 5. If a graph belongs to I2, then each of its minors belongs to I2.

Proof. Let G be a graph belonging to I2. To prove the proposition, it suffices to show that if G′
arises from G by deleting an edge or a vertex, or by contracting an edge e, then it belongs to I2.
From Lemma 3 it follows that G′ belongs to I2 if G′ arises from G by deleting an edge or a vertex.
We shall now consider the case where G′ is obtained from G by contracting an edge e.

Let � be a mapping in general position of G into 2-space, such that I2(�(g), �(h)) = 0 for
every pair of nonadjacent edges h, g of G.

We may assume that �(e) has no self-intersections. For, if this is the case then we do the
following. Let v be one of the ends of e, and take the nearest self-intersection p of �(e) when
going along �(e) from �(v) to �(w), where w is the other end of e. Take a small neighborhood
around p and let P1 and P2 be the restriction �(e) in this neighborhood. If the neighborhood is
sufficiently small, P1 and P2 intersect in p only. We assume that P1 is the nearest part to �(v) when
going along �(e) from �(v) to the other end of �(e). Let C be the restriction of �(e) between
�(v) and p. Take in an small neighborhood of C a 1-sphere disjoint from C. We may assume
that this 1-sphere intersects P2 in just two points. Delete the part of P2 inside these two points
and replace it by the part of the 1-sphere that encloses �(v). Denote the new map by �′. Then
I2(�

′(e), �′(j)) = 0 for every edge j nonadjacent to e, and we have removed the self-intersection
p. Repeating this for every self-intersection, we obtain a new mapping � of G into 2-space, in
which �(e) has no self-intersection.

Furthermore, we may assume that �(j) is disjoint from �(e) for each edge j �= e. For, if this is
not the case, then we do the following. Let v be one of the ends of e, take the nearest intersection
p of �(e) with the image of an edge j, when going along �(e) from �(v) to the other end of
�(e). Let C be the part of �(e) between �(v) and p, and take in a small neighborhood of C a
1-sphere around C; we may assume that this 1-sphere does not intersect the images of any edges
of G not adjacent to v, and that it intersects �(j) in just two points. Delete the part of �(j) inside
these two points and replace it by the part of the 1-sphere that encloses �(v). Repeating this for
all intersection points, yields a new mapping �′ of G into 2-space, with I2(�

′(g), �′(h)) = 0
for every pair of nonadjacent edges g, h of G, but such that �′(e) is disjoint from �′(j) for
any edge j.
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Contracting �(e) in 2-space now gives a mapping �′ in general position of G′ into 2-space,
such that for every pair of nonadjacent edges g, h of G′, I2(�

′(g), �′(h)) = 0. �

Proposition 6. If a graph belongs to I3, then each of its minors belongs to I3.

Proof. Let G be a graph belonging to I3. To prove the proposition, it suffices to show that if G′
arises from G by deleting an edge or a vertex, or by contracting an edge e, then it belongs to I3.
From Lemma 3 the case follows where G′ arises from G by deleting an edge or a vertex. So it
remains to consider the case in which G′ arises from G by contracting an edge e.

Let � be a mapping in general position of C2(G) into 3-space, such that I2(�(�), �(g)) = 0 for
every pair of nonadjacent 2-cell � and edge g of C2(G). We may assume that �(e) has no points
in common with the images of every 2-cell � not incident to e. For, if this is not the case, then
we do the following. Let v be one of the ends of e, take the nearest intersection p of a 2-cell �
not incident to e with �(e) when going along �(e) from �(v) to the other end of �(e). Take in a
small neighborhood of the restriction, l, of �(e) between �(v) and p, a 2-sphere around l; we may
assume that this sphere does not intersect the images of any edges of G not adjacent to v, and that
it intersects �(�) in a circle. Delete the part of �(�) inside the circle and replace it by the part of
the sphere that encloses �(v). Repeating this for all intersection points, yields a new mapping �′
of C2(G) into 3-space, with I2(�

′(�), �′(g)) = 0 for every pair of nonadjacent 2-cell � and edge
g of C2(G), but for which �(e) is disjoint from �(�) for any 2-cell � nonadjacent from e.

Now let D be the subcomplex of C2(G) obtained by deleting all cells incident to both ends
of e but not e itself. Then the restriction of � to D is a mapping in general position, such that
I2(�(�), �(e)) = 0 for every nonadjacent 2-cell � and edge g of D. Since for each 2-cell � not
containing both ends of e, �(�) is disjoint from �(e), contracting �(e) in 3-space gives a mapping
�′ in general position of C2(G

′) into 3-space such that for each nonadjacent 2-cell � and edge g
of C2(G

′), I2(�
′(�), �′(g)) = 0. �

Proposition 7. If a graph belongs to I4, then each of its minors belongs to I4.

The proof goes along the same lines as the proof of Proposition 6.
Hence by the well-quasi-ordering theorem of Robertson and Seymour, the class Ik , for k =

2, 3, 4, can be described by a finite collection of excluded minors. In the next section, we shall
give all excluded minors of the classes I2 and I3; it will turn out that I2 equals the class of planar
graphs and that I3 equals the class of flat graphs. In Section 7, we shall give some excluded minors
of the class I4. However, we do not know whether these are all excluded minors.

Theorem 7. Let k ∈ {3, 4}. Let G = (V , E) be a graph and let G′ = (V ′, E′) be obtained from
G by a Y�-transformation. If G belongs to Ik , then G′ belongs to Ik .

Proof. We consider only the k = 3 here, the case k = 4 can be done similarly.
Let v be the vertex of degree 3 on which we apply the Y�-transformation, let e1, e2, e3 be

the edges incident to v, and let w1, w2, w3 the endpoints of e1, e2, e3 different from v. We shall
denote the edges of the � by f1, f2, f3, where fi (i = 1, 2, 3) connects wi+1 and wi+2 (indices
read modulo three).

Since G belongs to I3, there exists a mapping � in general position of C2(G) into 3-space,
such that I2(�(�), �(e)) = 0 for each pair �, e of nonadjacent 2-cell � and edge e of C2(G).
For i = 1, 2, 3, take a curve di in 3-space, near �(ei+1) and �(ei+2), disjoint from �(ei) and
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disjoint from �(�) for any 2-cell � that is nonadjacent to ei+1 and ei+2. We shall map fi to di

for i = 1, 2, 3. Let �i (i = 1, 2, 3) be a 2-cell bounded by fi, ei+1, ei+2, and map �i into 3-space
so that it is bounded by di, �(ei+1), and �(ei+2), and that it is disjoint from �(e) for any edge e
nonadjacent to ei+1 and ei+2; denote this mapping by �(�i ).

We now define a mapping �′ of C2(G
′) into 3-space. On G \ {e1, e2, e3} define �′ = �.

Define �′(fi) = di (i = 1, 2, 3). For each 2-cell �C of C2(G
′) incident to at most one vertex

of w1, w2, w3, define �′(�C) = �(�C). Define �′(��) = �(�1) ∪ �(�2) ∪ �(�3). For each
2-cell �C of C2(G

′) incident to exactly one edge of f1, f2, f3, say fi , let C′ be the circuit of
G obtained from C by deleting the edge fi from C and adding the edges ei+1 and ei+2; define
�′(�C) = �(�C′)∪�(�i ). For each 2-cell �C of C2(G

′) incident to exactly two edges of f1, f2, f3,
say fi, fi+1, let C′ be the circuit of G obtained from C by deleting the edges fi, fi+1 and adding
the edges ei and ei+1; define �′(�C) = �(�C′) ∪ �(�i ) ∪ �(�i+1). Apply a small perturbation to
put �′ in general position.

We claim that I2(�
′(�), �′(g)) = 0 for each pair of nonadjacent 2-cell � and edge g of C2(G

′).
To see this we consider several cases. Let �, g be a pair of nonadjacent 2-cell and edge of C2(G

′).
If g is one of the edges f1, f2, f3, say g = fi , then, as �′(fi) is near �′(ei+1) and �′(ei+2),
I2(�

′(�), �′(fi)) = I2(�
′(�), �′(ei+1)) + I2(�

′(�), �′(ei+2)) = 0. So we may assume that g is
not equal to one of the edges f1, f2, f3. If � is incident to at most vertex of w1, w2, w3, then
clearly I2(�

′(�), �′(g)) = 0. If � = ��, then I2(�
′(�), g) = ∑3

i=1 I2(�(�i ), g) = 0. If � =
�C is incident to exactly one edge of f1, f2, f3, say fi , then I2(�

′(�C), g) = I2(�(�C′), g) +
I2(�(�i ), g) = 0, where C′ is the circuit of G obtained from C by deleting the edge fi from C
and adding the edges ei+1, ei+2. If � = �C is incident to exactly two edges of f1, f2, f3, say
fi, fi+1, then I2(�

′(�C), g) = I2(�(�C′), g)+ I2(�(�i ), g)+ I2(�(�i+1), g) = 0, where C′ is the
circuit of G obtained from C by deleting the edges fi, fi+1 from C and adding the edges ei and
ei+1. �

Theorem 8. Let k ∈ {3, 4}. Let G be a graph and let G′ be obtained from G by a �Y -
transformation. If G belongs to Ik , then G′ belongs to Ik .

Proof. We consider only the case k = 4 here, the case k = 3 can be done similarly. For conve-
nience we set C := C2(G) and C′ := C2(G

′). By � we denote the circuit bounding the triangle on
which we apply the �Y -transformation. Let the vertices of � be w1, w2, w3 and let the edges of
� be f1, f2, f3, where fi has ends wi+1 and wi+2 (indices read modulo 3). Remember that, for
each circuit C, we denote by �C the 2-cell of C2(G) bounded by C. So �� denotes the 2-cell of
C2(G) bounded by �.

Since G belongs to I4, there is a mapping � in general position of C into 4-space such that
I2(�(�), �(�)) = 0 for each pair �, � of nonadjacent 2-cells of C.

We may assume that I2(�(��), �(�))=0 for every 2-cell � �= �� incident to w1. (1)

We shall map C in 4-space such that (1) holds. Let P be the set of all intersection points of ��
with cells � that have only w1 in common with ��. Let c be a simple curve in �� which starts in
w1 and ends in a point of P and which traverses all points in P. Let d be a simple curve which
starts in w1 and ends in w3, and which goes along c to the last point c, then goes back to a point
near w1, and then goes along f2 to w3; see Fig. 2.

Map �� to the disc in �(��) bounded by �(f1), �(f3), d. Map each 2-cell � �= �� incident to
f2 to the union of �(�) and the disc in �(��) bounded by �(f2) and d. The mapping �′ defined
this way still satisfies I2(�

′(�), �′(�)) = 0 for each pair �, � of nonadjacent 2-cells of C.
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w3w1
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Fig. 2. Making � satisfy (1).

Let d1 be a simple curve in �� connecting w2 and w3, near f2 and f3 but disjoint from them,
so that the �-image of the part of �� bounded by d1, f2, f3 is disjoint from �(�) for any 2-cell
with � �= ��. Choose a point v on d1 different from w2 and w3, let e2 be the part of d1 between
v and w2, and let e3 be the part of d1 between v and w3. Let e1 be a curve connecting v and w1
in the part of �� bounded by d1, f2, f3, openly disjoint from f2, f3, e2, e3. Let �i (i = 1, 2, 3)

be the part of �� bounded by fi, ei+1, ei+2.
The mapping � induces a map �′ of G′ into 4-space. We extend this map to all 2-cells so

that I2(�
′(�), �′(�)) = 0 for each pair �, � of 2-cells of C′ as follows. Each circuit C′ of G′

not containing v is also a circuit of G. We define �′(�C′) = �(�C′) for these circuits C′. For
each circuit C′ of G′ containing v, let C1 be the circuit obtained from C′ by deleting the edges
ei = wiv, ei+1 = wi+1v of C′ incident to v and adding the edge fi+2. Then C1 is a circuit of
G. We define �′(�C′) = �(�C1) ∪ �(�i+2). Apply a small perturbation to put �′ into general
position.

We need to show that, for each two nonadjacent 2-cells �, � of C′, I2(�
′(�), �′(�)) = 0. This

is clear if v does not belong to � and �, so we assume that at least one of �, � contains v; say
� contains v. Let C′ be the circuit bounded by �; then C′ contains v. Let ei and ei+1 be the
edges of C′ incident to v, and let C1 be the circuit obtained by deleting v and adding edge
fi+2. Since �′(�C′) is close to �(�C1) ∪ �(�i+2) and �′(�) = �(�), we have I2(�

′(�), �′(�)) =
I2(�(�C1), �(�)) + I2(�(�i+2), �(�)) = 0. �

Hence, if G is an excluded minor for I4, then any graph obtained from G by a series of �Y -
and Y�-transformations will also be an excluded minor for I4.

6. Obstruction to embeddability

Let C be a finite regular cell complex (for example a simple graph or C2(G) of a simple graph
G). If n is a nonnegative integer, we denote by P(C)n the collection of all unordered nonadjacent
pairs {�1, �2} of cells in C with dim �1 + dim �2 = n. We say that {�1, �2} ∈ P(C)n is incident
to {�1, �2} ∈ P(C)n−1 if one of the following holds:

1. �1 = �1 and �2 is incident to �2,
2. �1 = �2 and �2 is incident to �1,
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3. �2 = �2 and �1 is incident to �1, or
4. �2 = �1 and �1 is incident to �2.

Let M = (mi,j ) be the P(C)n−1 × P(C)n matrix, with entries in Z2, defined by

mi,j =
{

0 if j is not incident to i, and

1 if j is incident to i.
(2)

For a mapping in general position � of C into n-space, let y(�) = y ∈ Z
P(C)n
2 be the row vector

with y{�1,�2} = I2(�(�1), �(�2)) for {�1, �2} ∈ P(C)n. Now, if � is any other mapping in general
position, of C into n-space, then y(�)−y(�) belongs to the row space of M. To see this informally,
deform � to �; we assume that the deformation is in general position. We can split the deformation
into a series of small deformations where each such a small deformation is either a deformation
in which new intersection points of the image of a cell �1 with the image of another cell �2 with
{�1, �2} ∈ P(C)n appear, or a deformation in which the image of a cell �1 moves through the
image of a cell �2 with {�1, �2} ∈ P(C)n−1. (If none of these small deformations occur, then
evidently y(�) = y(�).) If new intersection points of the image of a cell �1 with the image of
another cell �2 with {�1, �2} ∈ P(C)n appear, then an even number of new intersection points
appear, and hence if �1 is the mapping before the small deformation and �2 is the mapping after
the small deformation, then y(�) = y(�). If the image of a cell �1 moves through the image of
cell �2 with {�1, �2} ∈ P(C)n−1, then y(�1) = y(�2) + n{�1,�2}, where m{�1,�2} is the {�1, �2}th
row of M, if �1 is the mapping before the small deformation and �2 is the mapping after the small
deformation.

If there is a mapping � of C into n-space, such that I2(�(�1), �(�2)) = 0 for every {�1, �2} ∈
P(C)n, then y(�) = 0. Hence, for any other mapping � in general position of C into n-space,
y(�) belongs to the row space of N. So, if we can show that y(�) does not belong to the row space
of N for a mapping �, then there is no mapping � of C into n-space with I2(�(�1), �(�2)) = 0
for each {�1, �2} ∈ P(C)n.

This can be given more flavor of algebraic topology; see [12–16], and see any book on algebraic
topology for the definition of cycles, cocycles, etc. Let C be a finite regular cell complex. The
deleted product C∗ of C is defined as the subcomplex of C×C consisting of all cells �×� with � and
� nonadjacent. On C∗ we put an antipodal map T defined by T (x, y) = (y, x), (x, y) ∈ C∗. The
complex C∗ is obtained from C∗ by identifying (x, y) with (y, x) = T (x, y) for each (x, y) ∈ C∗.
By � � � we denote the image of �× � after identification of (x, y) with (y, x) for all (x, y) ∈ C∗.

For a mapping � of C into n-space, define the n-cochain ϑ[�] by ϑ[�](� � �) := I2(�(�), �(�))
for each n-cell � � � of C∗; this is well-defined as I2(�(�), �(�)) = I2(�(�), �(�)). The n-cochain
ϑ[�] is a n-cocycle since, for any (n + 1)-cell �1 � �2 of C∗:

�ϑ[�](�1 � �2) = ϑ[�](��1 � �2 + �1 � ��2)

= link2(�(��1), �(��2)) + link2(�(��1), �(��2))

= 0.

If � is another mapping of C into n-space, then ϑ[�] − ϑ[�] is equal to the coboundary of a
(n − 1)-cochain, and hence ϑ[�] and ϑ[�] belong to the same cohomology class of Hn(C∗, Z2).
We shall denote this class by ϑn

C .
If G belongs to I2, then there is a mapping � of G into 2-space such that I2(�(g), �(h)) = 0

for every pair of nonadjacent edges {g, h} of G. Hence ϑ2
G = ϑ[�] = 0. Thus, ϑ2

G �= 0 implies
that G does not belong to I2. Now ϑ2

G �= 0 if and only if there is a 2-cycle d of G∗, such that
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ϑ2
G(d) = 1. Hence the existence of a 2-cycle d, such that ϑ2

G(d) = 1 implies that G does not
belong to I2. Conversely, if ϑ2

G = 0, then there exists a mapping � of G into 2-space such that
ϑ[�] = 0; that is, I2(�(g), �(h)) = 0 for every pair of nonadjacent edges {g, h} of G (see [14,
Theorem 7]).

The same argument can be used for I3 and I4. These are the classes of graphs G with ϑ3
C2(G)

= 0

and ϑ4
C2(G) = 0, respectively.

The graphs in I2 are easy to describe.

Lemma 8. The graphs K5 and K3,3 do not belong to I2.

Proof. We shall show this only for K3,3, the proof for K5 is analogous. Let d = ∑
e � f be the

2-chain of K∗
3,3 where the sum is over all unordered pairs of nonadjacent edge e, f of K3,3. It is

easy to see that d is a 2-cycle of K∗
3,3. Since there is a mapping of K3,3 into the 2-space which

has exactly one unordered pair of nonadjacent edges with odd intersection number, we see that
ϑ2

K3,3
(d) = 1. �

Theorem 9. A graph belongs to I2 if and only if it is planar.

Proof. If a graph is planar, then evidently it belongs to I2. For the converse, let G be a nonplanar
graph. Then G has a subgraph homomorphic to K5 or K3,3. By Lemmas 3, 4 and 8, G does not
belong to I2. �

Proposition 9. A graph belongs to I2 if and only if its suspension belongs to I3.

Proof. Let G be a graph in I2. Then, by Theorem 9, G is planar. Since the suspension of a planar
graph is flat and any flat graph belongs to I3, we have proved one direction.

Conversely, let G be a graph not belonging to I2; let S(G) be its suspension and v the suspended
vertex. Then there is a 2-cycle d = ∑

e � f of G∗ such that ϑ2
G(d) = 1. For each edge e of G,

denote by �e the 2-cell of C2(S(G)) whose boundary is the triangle formed by e and v. Let d ′ be
the 3-chain

∑
(�e � f + e � �f ), where the sum is over all unordered pairs {e, f }, such that e � f

has nonzero coefficient in d. Then

�d ′ =
∑

(�e � �f + �e � �f ),

which is equal to zero since d is a 2-cycle. Hence d ′ is a 3-cycle. Let � be a mapping in general
position of G into 2-space, where we view the 2-space as E2 × {0}, and let �′ be a mapping
in general position of C2(S(G)) into 3-space such that the suspended vertex of S(G) is mapped
into E2 × E+, V (G) is embedded into E2 × {0}, the interior of each edge of G is mapped
into E2 × E−, such that the projection of �′ to the plane E2 × {0} is �. Each edge e incident
with the suspended vertex v is mapped on the line segment between �(v) and �(w), where w is
the other end of e. The union of all line segments between �′(p) and �(p), and between �(v)

and �(p), for all points p of e, forms a 2-disc onto which we map �e. Since I2(�(e), �(f )) =
I2(�

′(e), �′(�f )) + I2(�
′(�e), �

′(f )), we have ϑ[�′](d ′) = ϑ[�](d) = 1. Hence S(G) does not
belong to I3. �

Proposition 10. None of the graphs in the Petersen family belongs to I3.
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Proof. Since each graph in the Petersen family can obtained from K6 by a series of �Y - or Y�-
transformations, it suffices to show that K6 does not belong to I3, by Theorems 7 and 8. Now,
this follows from Proposition 9. �

It is possible to prove that the suspension of a graph in I2 belongs to I3 without using Theorem 9.
It is then interesting to notice that, from the facts that K5 does not belong to I2 (so K6 does not
belong to I3) and that K3,3,1 belongs to the Petersen family, we can deduce that K3,3 does not
belong to I2.

Theorem 10. A graph belongs to I3 if and only if it is flat.

Proof. If a graph is flat then, evidently, it belongs to I3. For the converse, use Propositions 6
and 10 to show that a graph does not belong to I3 if it is not flat. �

7. Some excluded minors for I4

A collection D of pairs of disjoint circuits of G is even if for each pair of nonadjacent edges e, f

of G, there is an even number of pairs (C, D) ∈ D with e ∈ E(C) and f ∈ E(D), or e ∈ E(D)

and f ∈ E(C).

Lemma 11. A collection D of pairs of disjoint circuits of G is even if and only if the number∑
(C,D)∈D

link2(�(C), �(D)) (3)

is independent of the embedding � of G in 3-space.

Proof. Let �, � be embeddings of G into 3-space. There exists a series of embeddings � =
�1, . . . , �n = �, where �i+1 is obtained from �i by moving an edge e through an edge f. The
difference∑

(C,D)∈D
link2(�i+1(C), �i+1(D)) −

∑
(C,D)∈D

link2(�i (C), �i (D)) (4)

is equal to the number of pairs (C, D) ∈ D with e ∈ E(C) and f ∈ E(D), or e ∈ E(D) and
f ∈ E(C). Hence, if D is even, then∑

(C,D)∈D
link2(�(C), �(D)) =

∑
(C,D)∈D

link2(�(C), �(D))

and conversely, if (3) is independent of the embedding, then D is even. �

Lemma 12. A graph G does not belong to I3 if and only if there is a collection D of pairs of
disjoint circuits of G, such that∑

(C,D)∈D
link2(�(C), �(D)) = 1 (5)

for every embedding � of G into 3-space.
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Proof. Let d be a 3-cycle of C2(G)∗ for which ϑ3
C2(G)

(d) = 1. Let � be a mapping of C2(G) into
3-space in general position.

For each 2-cell �, let C� be the set of all edges f for which � � f has nonzero coefficient in
d. Since d is a 3-cycle of C2(G)∗, we have that C� is a cycle of G. Furthermore, C� ∩ C� �= ∅
implies � = �. Let F be the set of all 2-cells � for which there is an edge e, such that � � e has
nonzero coefficient in d. We can write

d =
∑

�∈F,e∈C�

� � e

and hence we have

ϑ3
C2(G)(d) =

∑
�∈F,e∈C�

I2(�(�), �(e))

=
∑
�∈F

link2(�(��), �(C�)).

Since ϑ3
C2(G)

(d) = 1, we have
∑

�∈F link2(�(��), �(C�)) = 1, and because each cycle is a sum
of circuits, we have proved one direction of the theorem.

Conversely, let D be a collection of pairs (C, D) of circuits of G, such that (5) holds for every
embedding � of G into 3-space. By Lemma 11, D is even. Let

d :=
∑

(C,D)∈D

∑
e∈E(D)

�C � e.

We can write∑
(C,D)∈D

link2(�(C), �(D)) =
∑

(C,D)∈D

∑
e∈E(D)

I2(�(�C), �(e))

= ϑ[�](d)

= 1.

Since

�d =
∑

(C,D)∈D

∑
f ∈E(C),e∈E(D)

f � e

and, since D is even, �d = 0. Hence d is a cycle. Hence, we can write (6) as ϑ3
C2(G)

(d) = 1. �

Proposition 13. A graph belongs to I3 if and only if its suspension belongs to I4.

Proof. Let G be a graph belonging to I3. Then G is flat, by Theorem 10. By Theorem 2, its
suspension S(G) is 4-flat, which implies that S(G) belongs to I4.

Conversely, let G be a graph not belonging to I3. By Lemma 12, there is a collection D of pairs
of disjoint circuits (C, D) such that for every embedding � of G into 3-space,∑

(C,D)∈D
link2(�(C), �(D)) = 1.

From Lemma 11, it follows that D is even.
Let v be the suspended vertex of the suspension S(G) of G. For any e of G, we denote by �e

the 2-cell of C2(S(G)) whose boundary is the triangle spanned by e and v.
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Let

d :=
∑

(C,D)∈D
�C � �D +

∑
e∈E(C),(C,D)∈D

�e � �D +
∑

e∈E(D),(C,D)∈D
�C � �e.

Then

�d =
∑

e∈E(C),(C,D)∈D
�e � ��D +

∑
e∈E(D),(C,D)∈D

��C � �e.

Because D is even, �d = 0, and hence d is a 4-cycle.
Let � be a mapping of C2(S(G)) into 4-space such that G is embedded into E3 × {0}, v and

each edge connecting v to a vertex of G is mapped into E3 ×E+, the interior of each �e is mapped
into E3 × E+, and the interior of each 2-cell �C is mapped into E3 × E−. Then

ϑ[�](d) =
∑

(C,D)∈D
I2(�(�C), �(�D)) +

∑
e∈E(C),(C,D)∈D

I2(�(�e), �(�D))

+
∑

e∈E(D),(C,D)∈D
I2(�(�C), �(�e)).

Since �(�e) ∩ �(�D) = ∅ for e ∈ E(C), (C, D) ∈ D and �(�C) ∩ �(�e) = ∅ for e ∈
E(D), (C, D) ∈ D, we get

ϑ[�](d) =
∑

(C,D)∈D
I2(�(�C), �(�D))

=
∑

(C,D)∈D
link2(�(C), �(D))

= 1.

Hence ϑ4
C2(S(G))(d) = ϑ[�](d) = 1. �

Corollary 13.1. K7 and K3,3,1,1 do not belong to I4.

From Theorems 7, 8 and Corollary 13.1 it follows

Corollary 13.2. None of the graphs of the Heawood family belongs to I4.

Corollary 13.3. None of the graphs of the Heawood family is 4-flat.

Lemma 14. Every proper minor of a graph of the Heawood family belongs to I4.

Proof. Since each proper minor of K3,3,1,1 or K7 is 4-flat, by Lemma 2, we have that each proper
minor of K3,3,1,1 or K7 belongs to I4. By Lemma 1, the lemma follows. �

Corollary 14.1. The graphs of the Heawood family are (some) excluded minors for I4.

8. Conclusion

In Section 6, we saw that the class of planar graphs and the class of flat graphs coincide with
I2 and I3, respectively. We conjecture that the graphs in I4 are exactly the 4-flat graphs.
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Since each graph G in the Heawood family has �(G) > 5, we make the following conjecture.

Conjecture 3. A graph G has �(G)�5 if and only if it is 4-flat.
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