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Abstract

If a nonconstant solutiom of the Helmholtz equation exists on a bounded domain
with u satisfying overdetermined boundary conditionsafid its normal derivative both
required to be constant on the boundary), then under certain assumptions the boundary
of the domain is proved to be real-analytic. Under weaker assumptions, if a real-analytic
portion of the boundary has a real-analytic extension, then that extension must also be part
of the boundary. Also, an explicit formula faris given and a condition (which does not
involve ) is given for a bounded domain to have such a solutiatefined on it. Both of
these last results involve acoustic single- and double-layer potentials.
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1. Introduction

Throughout this paper, le2 denote a nonempty bounded open connected
subset ofR"”, with n > 2. Leta,b € R and A € C be constants. We consider
solutionsu of theHelmholtz equation
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Au+iu=0 1ing2, D

subject to the overdetermined boundary conditions

u=a onds2, and 2)
ad
M _p onoe, )
on

whereA is the Laplacian operatods2 is the boundary of2, andd/dn takes the
(exterior) normal derivative o8$2. This two-parameter familyu(andb being the
parameters) of overdetermined problems is that studied in Willms and Gladwell
[27] and Willms et al. [26]. Ifh = 0 (anda # 0), we get as a special caSehiffer’s
problem(see [27] and Yau [28]), which was shown to be the same aBdh®eiu
problem (See [26-28], Agranovsky [1], Aviles [2], Berenstein [3], Brown and
Kahane [4], Brown, Schreiber and Taylor [5], Ebenfelt [9-11], Garofalo and
Segala [12], Kobayashi [15], Ramm [18], Williams [24,25], and Zalcman [29,
30].) On the other hand, # = 0 (andb # 0), we get as a special case what is
called “Serrin’s problemin [27] (see also Serrin [20] and Weinberger [23]) and
(apparently incorrectly; see abov@ghiffer’'s conjecturen Chatelain et al. [6].

For any domain2 there are constant solutionsof (1)—(3) (necessarily with
b =0 and either = 0 or » = 0). If, however, anonconstansolutionu of (1)—(3)
exists on a domai®? (for some constants, » and), that makes a very strong
statement abou®. In fact, the following striking conjecture is quite reasonable
to make ([27], with modifications; fob = O this is thePompeiu conjecturesee
references cited for theRompeiu problenabove):

Conjecture. Let£2 be aLipschitz domaini(e., everye in £2 has a neighborhood
U, such thata$2 N U, is, after a possible rotation of the coordinate system,
the graph of a Lipschitz continuous functjossume thaR” \ £ (i.e., the
complement of2 in R") is connected. Assume that there isnanconstant
solutionu of (1)—(3) for some constantg, b and 1. Then$2 must be am-di-
mensional ball.

(See Remark 5 after Theorem 1 to see why the Lipschitz domain generality is
appropriate and how the boundary conditions (2) and (3) should be interpreted
in that case. For the rest of this paper, outside of Remark 5, the boundary values
of u anddu/dn in (2) and (3) should be interpreted classically as continuous
extensions t@s2 of the values oft anddu/an in £2.)

Section 2 derives an explicit formula ferand also gives a characterization of
any domain®2 having a nonconstant solutionof (1)—(3) defined on it. Both of
these involveacoustic single- and double-layer potentiadefined in Section 2.

Section 3 proves two results (Theorems 2 and 3) about the regularitg of
While they fall far short of proving the above conjecture, they provide at least
some evidence in its favor.
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2. An explicit formulafor u and other results

By Tréves [21, pp. 257-259], a rotation-symmetric fundamental solution of

A+ 1isy(lx — y]), where
1V’
ya(r) = Z(E) Nﬂ(\/xr) forr >0,

where 8 = (n — 2)/2, /A is either square root of, and Ng is the Neumann
function of orders.

Following Colton and Kress [7, p. 38 for = 3 and pp. 63—66 fon = 2],
we define theacoustic single-layer potentiah (y) and theacoustic double-layer
potential D, (y) (both withdensityl) by

suy):/nux—ynds(x), for y e R"\ 922,
082
and

D = [ Gyl = yhdst). fory eR"\ o2,
se
whereds (x) indicates that integration is done using surface measutgowith
respect to the variables (for each fixegl) and whered /an, takes the (exterior)
normal derivative with respect to thevariables.
In the proof of the following theorem, we will usgreen’s first identity

d
/vAu—}—Vu-Vvdx:/va—uds 4)
n
2 Y]
andGreen’s second identity
0 d
/uAv—vAudx:/u—U—v—uds (5)
on on
Q2 30

(see [7, p. 16] and Miranda [16, pp. 12—-14]).

Theorem 1. Assume thaf? is of classC!. Assume thai is a solution ons2 of
(1)—(3). Then

@) A g lul?dx = [, |Vul|?dx — ab (surface measure @fs2),
(b) u(y)=-bSi(y) +aD;(y) fory e 2,
(c) foranyv e C2(£22) N C1(2) with Av + Av=0in £2, we have

9

/a—”—bvds=o, and (6)
on

082
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(d) 0= —bS,(y) +aD,(y) fory e R"\ 2.

Proof. (a) follows by takingv = u (i.e., the complex conjugate of) in (4).
Letting 8, (x) denote thedelta “function” based aty, using the fact thag; (|x —
y]) is a fundamental solution of 4+ A, using Ay, (lx — y) = Ayya(lx — y))
for x #y (A and A, are the Laplacian operators with respect to thand y
variables, respectively), (1)—(3) and (5), we h&wey in £2 that

u(y):/u(x)Sy(x) dx

2
zfu[Axn(lx—yl)+/\n(lx—yl)]—n(lx—yl)[Aquku]dx
2
]
Z/aanxn(lx—yl)—yx(lx—yl)de(x)
982

=aD;(y) —bS,(y), proving (b).
Now letv € C%(£2) N C1(2) with Av+ Av =01in £2. Then by (1)—(3) and (5)

we have

0
O:/M[Av—l—)uv]—U[Au+ku]dx=/a8—v—vbds,
n

2 52

proving (c). For any fixed € R" \ 2, we obtain (d) by taking (x) = v, (Jx — y|)
(forx e 2)in(c). O

Remarks.

1. From (a) above, we see thatmust be real. From Lemma 3 of [27] we see
that the conjecture of Section 1 holds.it< 0 (assuming? is of classC?t¢
for somee > 0). If A =0, a solution of (1) is harmonic of? so that it must
attain its maximum and minimum values 6 (cf. Gilbarg and Trudinger
[13, Theorem 3.1]). Thus by (2) it must be constant. Thus we may assume
that > 0 in trying to prove the conjecture (so long &sis of classC?+¢).
. (b) above gives an explicit formula for
3. (c) was first proved in [26]. They also proved the converse, that if (6) holds
for somex > 0 and for every e C2(£2) with Av + v = 0, then (1)—(3) have
anonconstansolutionu on £2.
4. (d) gives an alternative (with no referencedao assuming that (1)—(3) have
a nonconstant solutiom on £2. The alternative is to assume th®t(y) and
D, (y) are linearly dependent d®* \ £2 (for some real). In fact, if 2 is of
classC? and if (d) holds for some, b and x, thenu given by (b) satisfies

N
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(1)—(3) (by [7, Theorem 3.1], with the real part of tha(x, y) equal to
—y,(Ix — y]) with n = 3 andk = +/2, by Courant and Hilbert [8, p. 496]).

5. Theorem 1 can be generalized to the case thas a Lipschitz domain.
(This is the appropriate setting now that a good theory of Dirichlet and
Neumann boundary value problems for the Helmholtz equation and of
single- and double-layer acoustic potentials is available for such domains;
see Mitrea [17].) The results will only be summarized here, since the
technical details would take too long to describe carefully (and the extra
generality may not be of interest to everyone). lpet- 1 andg > 1 with
p~1+ ¢~ =1. Equation (1) would be interpreted classically, as before.
Equation (2) would hold in the sense thiétu) € L? (952, ds) (WhereN (u)
is the inward nontangential maximal function:of17]) andu|3 = a in the
sense of nontangential limités-a.e. Equation (3) would hold in the sense
that V' (Vu) € L9(082,ds) anddu/dn|yo = b, interpreted in a similar way.
The key to the proof of the generalized theorem is the existence (see Verchota
[22, Theorem 1.12]) of a sequenf®;}Z, of open subsets a with each
982; € C*, with 3£2; converging nontangentially and uniformlyds2, with
the unit exterior normal vectors; of 92, convergingds-a.e. and in every
L"(082,ds) (for 1 < r < 00) to the unit exterior normat of 42, and with
the boundary measures; for 92; converging tods as j — oo. If the
constructions of the proof above are carried out for e@¢htaking the limit
asj — oo gives the conclusions as before. In part (a), some care is required to
prove that our reinterpretations of (2) and (3) guaranteefgl;atlzdx < 00.
(From the limit process leading to the equation of (a), it then follows that
]Q |Vu|?dx < 00.) In part (c), weaker assumptions can be assumeu féor
the samep andg as foru, assume that € C2(£2) with Av + Av =0in £2,
but with N'(v) € L?(3£2,ds), v|ye € LP(382,ds), N (Vv) € L1(382, ds),
andov/on|yo € L1(382,ds).

3. Tworesultson theregularity of 92

For the remainder of this paper, for ahy 0 and any € R”, let Bs(x) denote
the open ball irR" with centerx and radiuss.

Definition. A nonempty subsesf of R” is an(n — 1)-dimensional real-analytic
surfaceif for eachx € S there is a real-analytic one-to-one map of the open unit
ball B1(0) (centered at the origin 0) onto an open neighborhidedf x such that
the inverse map is also real-analytic and such #0) N {x = (x1,...,x,) €

R"; x, = 0} maps ontd/, N S.

A theorem very similar to the following (but in the context of the Pompeiu
problem) was proved in [24]:
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Theorem 2. Assume thaf? is of classC? (this includes the assumption thet
is locally on one side o2 near any point 0b£2) and thatu is a nonconstant
solution ons2 of (1)—(3). Assume thaf and W are nonempty connectéd — 1)-
dimensional real-analytic surfaces withC 952 and § € W. Assume thaW is
orientable. Therw C 452.

Proof. Selectapoint® € S. Letn be the exterior unit normal vector 82 at y°.
SinceW is connected, smooth and orientable, there is a unique extensiao af
smooth unit normal field (also denotedbyon W. At each point on W, use the
Cauchy—Kovalevskayatheorem (Renardy and Rogers [19, pp. 46-58]) to solve the
equationAU + AU = 0 on some open neighborhodq of x subject to the initial
datalU = a anddU/on =b on W N U, (8/9n is taken in the direction of the
normal fieldn described above). Using the Holmgren unigueness theorem [19,
pp. 61-65] and the uniqueness of analytic continuation, we may piece together
these local solutions to obtain a real analytic functidrefined on an open set

N* containingW, with AU 4+ AU =0 on N* and withU =a andoU/dn =b

on W. We consider two cases.

Case 11If b # 0, then clearly (sinc& U is then a nonzero normal vector at
each point ofW) for eachx € W there is an open baB, € N* centered ak
such that € B, andU (z) = a imply thatz € W.

Case 21If b =0, thena # 0 (otherwisex = 0 on 2 by (b) of Theorem 1)
and A # 0 (otherwiseu = constant ons2 by Remark 1 above), so for each
x € W we haveAU (x) = —Aa # 0, so there is ai with 1 <i < n such that
(82U/8xl.2)(x) # 0. Thus, by the implicit function theorem, there is an open ball
B, C N* centered ak such that{z € B,; (30U /dx;)(z) = 0} is contained in the
graph of a continuously differentiable function 6f1, ..., xi—1, Xi+1, ..., Xn).

But VU =0 onW (in thisb = 0 case), s&U/dx; =0 on W. Thus (decreasing
the radius ofB, if necessary but keepingas the centery, € B, andvVU (z) =0
imply thatz € W.

For either Case 1 or Case 2 above,Nebe the union over alt € W of the
open setsB,. Clearly W € N C N*. Let y? € S be the point selected above.
There is clearly an open ball € N centered at° so thatG \ 952 consists of
precisely two nonempty componerts andG,, with G; € 2 andG, CR"\ 2
and such that/ = u on G1 (by the Holmgren uniqueness theorem). Cebe the
component of2 N N which containg5 1. By uniqueness of analytic continuation,
U=uonC.

Let W* =W N 32N C. Sincey® ¢ W*, W* is not empty. Sincés2 N C is
closed inR", W* is closed in the relative topology &¥. SinceW is connected,
once itis proved tha* is open relative t&V we haveW = W*, so thatW C 9£2
and the theorem is proved.

To prove thatW* is open relative toW, let x° be any point of W*. For
somee > 0, we haveB, (x%) C N with B, (xo) \ W consisting of precisely two
components;; andCa. SinceC is open anot0 e C, C has nonempty intersection
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with one of these components, s@y. We claim now thatC; C C. If not, there
would be az € C;1 with z € 3C. SinceC1 € N, z would have to be ims2.
SinceU =u on C we havelU (z) =a in Case 1 above andU (z) =0 in Case 2
above. SinceV is the union of the ball®,, there is arnx € W such that; € B,.
Thus in either Case 1 or Case 2 above we concludeztlaW, contradicting
z € C1 C B.(x% \ W. Therefore the claim that; C C is established. (Note that
thusCy C 2))

We claim now thatC> N C is empty. If not, then by replacingy by C> in
the above argument, we also haveC C, so thatC1 U C» € £2. Thenx® would
not be ind$2 (sinces?2 is locally on only one side of$2 near any point 06 42),

a contradiction. Thug€, N C is empty. We claim now thaB. (x°) N W C 32.

If not, there is az° € B.(x%) N W with z° ¢ 8£2. Sincez® € C1 € C, we have
% e 2, s0z% € £2, in which caseC, N C is nonempty, a contradiction. Thus
B.(x%) N W < W*, proving thatW* is open in the relative topology d¥ and
completing the proof. O

Remark. Suppose? is of classC! with a nonconstant solutiom of (1)—(3) on

it. Suppose thad§2 contains a nonempty, relatively open portion of@n- 1)-
dimensional hyperplane. Then Theorem 2 tells us that the entire hyperplane is
contained ind£2, contradicting the boundedness@f Thus no such portion of a
hyperplane can be part 61f2.

A theorem somewhat similar to the following (but in the context of the
Pompeiu problem) was proved in [25]:

Theorem 3. Assume that? is of classCl. Assume that there is monconstant
solutionu € C2(£2) of (1)—(3). Thend 2 is an (n — 1)-dimensional real-analytic
surface.

Proof. Apply Theorem 2 of Kinderlehrer and Nirenberg [14] with theequal to
ouru —a, their F(x, u, Du, D?u) = Au+ Au+a, and theirg(x, p1, ..., pn) =

p? + -+ p2 — b2 They do everything locally about a general pointaa?,
assumed to be the origin 0. i # 0, |gradu| = |b| # O clearly holds at the
origin. (If 5 = 0, the conclusion of Theorem 3 is proved in [25].) Setting up our
coordinate system so thg-direction is the exterior normal direction at the origin
0, 0g/dpn = 2py, S00g/3p, (0, (gradu)(0)) = 2(du/dn)(0) = 2b £ 0. Since F
andg are real-analytic, so i82. O



S.A. Williams / J. Math. Anal. Appl. 274 (2002) 296-304 303

Remarks.

1. The assumption in Theorem 3 that C2(£2) is strong and hard to verify
in general. If we are willing to assume that is of classC?*¢ (for some
€ > 0) however, then Theorem 6.14 of [13] insures the stronger result that
ueCe(Q).

2. The analysis in [14] is local about any point of the boundary (assumed to be
the origin 0). Thus if$2 is of classC? and if the nonconstant solutianof
(1)—(3) has second derivatives that extend continuousbs2an B, (0) (for
somee > 0), thend 2 N B, (0) is real analytic.
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