
J. Math. Anal. Appl. 274 (2002) 296–304

www.academicpress.com

Boundary regularity for a family of
overdetermined problems for the Helmholtz

equation

Stephen A. Williams

Department of Mathematics, Wayne State University, Detroit, MI 48202, USA

Received 27 March 2000

Submitted by N.S. Trudinger

Abstract

If a nonconstant solutionu of the Helmholtz equation exists on a bounded domain
with u satisfying overdetermined boundary conditions (u and its normal derivative both
required to be constant on the boundary), then under certain assumptions the boundary
of the domain is proved to be real-analytic. Under weaker assumptions, if a real-analytic
portion of the boundary has a real-analytic extension, then that extension must also be part
of the boundary. Also, an explicit formula foru is given and a condition (which does not
involve u) is given for a bounded domain to have such a solutionu defined on it. Both of
these last results involve acoustic single- and double-layer potentials.
 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

Throughout this paper, letΩ denote a nonempty bounded open connected
subset ofRn, with n � 2. Let a, b ∈ R and λ ∈ C be constants. We consider
solutionsu of theHelmholtz equation
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∆u+ λu= 0 inΩ, (1)

subject to the overdetermined boundary conditions

u= a on∂Ω, and (2)
∂u

∂n
= b on∂Ω, (3)

where∆ is the Laplacian operator,∂Ω is the boundary ofΩ , and∂/∂n takes the
(exterior) normal derivative on∂Ω . This two-parameter family (a andb being the
parameters) of overdetermined problems is that studied in Willms and Gladwell
[27] and Willms et al. [26]. Ifb = 0 (anda �= 0), we get as a special caseSchiffer’s
problem(see [27] and Yau [28]), which was shown to be the same as thePompeiu
problem. (See [26–28], Agranovsky [1], Aviles [2], Berenstein [3], Brown and
Kahane [4], Brown, Schreiber and Taylor [5], Ebenfelt [9–11], Garofalo and
Segala [12], Kobayashi [15], Ramm [18], Williams [24,25], and Zalcman [29,
30].) On the other hand, ifa = 0 (andb �= 0), we get as a special case what is
called “Serrin’s problem” in [27] (see also Serrin [20] and Weinberger [23]) and
(apparently incorrectly; see above)Schiffer’s conjecturein Chatelain et al. [6].

For any domainΩ there are constant solutionsu of (1)–(3) (necessarily with
b = 0 and eithera = 0 orλ= 0). If, however, anonconstantsolutionu of (1)–(3)
exists on a domainΩ (for some constantsa, b andλ), that makes a very strong
statement aboutΩ . In fact, the following striking conjecture is quite reasonable
to make ([27], with modifications; forb = 0 this is thePompeiu conjecture, see
references cited for thePompeiu problemabove):

Conjecture. LetΩ be aLipschitz domain (i.e., everyx in ∂Ω has a neighborhood
Ux such that∂Ω ∩ Ux is, after a possible rotation of the coordinate system,
the graph of a Lipschitz continuous function). Assume thatRn \ Ω (i.e., the
complement ofΩ in Rn) is connected. Assume that there is anonconstant
solutionu of (1)–(3) for some constantsa, b and λ. ThenΩ must be ann-di-
mensional ball.

(See Remark 5 after Theorem 1 to see why the Lipschitz domain generality is
appropriate and how the boundary conditions (2) and (3) should be interpreted
in that case. For the rest of this paper, outside of Remark 5, the boundary values
of u and ∂u/∂n in (2) and (3) should be interpreted classically as continuous
extensions to∂Ω of the values ofu and∂u/∂n in Ω .)

Section 2 derives an explicit formula foru and also gives a characterization of
any domainΩ having a nonconstant solutionu of (1)–(3) defined on it. Both of
these involveacoustic single- and double-layer potentials, defined in Section 2.

Section 3 proves two results (Theorems 2 and 3) about the regularity of∂Ω .
While they fall far short of proving the above conjecture, they provide at least
some evidence in its favor.
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2. An explicit formula for u and other results

By Trèves [21, pp. 257–259], a rotation-symmetric fundamental solution of
∆+ λ is γλ(|x − y|), where

γλ(r)= 1

4

( √
λ

2πr

)β
Nβ

(√
λr

)
for r > 0,

whereβ = (n − 2)/2,
√
λ is either square root ofλ, andNβ is the Neumann

function of orderβ .
Following Colton and Kress [7, p. 38 forn = 3 and pp. 63–66 forn = 2],

we define theacoustic single-layer potentialSλ(y) and theacoustic double-layer
potentialDλ(y) (both withdensity1) by

Sλ(y)=
∫
∂Ω

γλ(|x − y|) ds(x), for y ∈ Rn \ ∂Ω,

and

Dλ(y)=
∫
∂Ω

∂

∂nx
γλ(|x − y|) ds(x), for y ∈ Rn \ ∂Ω,

whereds(x) indicates that integration is done using surface measure on∂Ω with
respect to thex variables (for each fixedy) and where∂/∂nx takes the (exterior)
normal derivative with respect to thex variables.

In the proof of the following theorem, we will useGreen’s first identity∫
Ω

v∆u+ ∇u · ∇v dx =
∫
∂Ω

v
∂u

∂n
ds (4)

andGreen’s second identity∫
Ω

u∆v − v∆udx =
∫
∂Ω

u
∂v

∂n
− v ∂u

∂n
ds (5)

(see [7, p. 16] and Miranda [16, pp. 12–14]).

Theorem 1. Assume thatΩ is of classC1. Assume thatu is a solution onΩ of
(1)–(3). Then:

(a) λ
∫
Ω

|u|2dx = ∫
Ω

|∇u|2dx − ab (surface measure of∂Ω),
(b) u(y)≡ −bSλ(y)+ aDλ(y) for y ∈Ω,
(c) for anyv ∈ C2(Ω)∩C1(Ω) with∆v + λv = 0 in Ω , we have∫

∂Ω

a
∂v

∂n
− bv ds = 0, and (6)
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(d) 0≡ −bSλ(y)+ aDλ(y) for y ∈ Rn \Ω.

Proof. (a) follows by takingv = u (i.e., the complex conjugate ofu) in (4).
Letting δy(x) denote thedelta “function” based aty, using the fact thatγλ(|x −
y|) is a fundamental solution of∆ + λ, using∆xγλ(|x − y|) ≡ ∆yγλ(|x − y|)
for x �= y (∆x and∆y are the Laplacian operators with respect to thex andy
variables, respectively), (1)–(3) and (5), we havefor y in Ω that

u(y)=
∫
Ω

u(x)δy(x) dx

=
∫
Ω

u
[
∆xγλ(|x − y|)+ λγλ(|x − y|)] − γλ(|x − y|)[∆u+ λu]dx

=
∫
∂Ω

a
∂

∂nx
γλ(|x − y|)− γλ(|x − y|)b ds(x)

= aDλ(y)− bSλ(y), proving (b).

Now letv ∈ C2(Ω)∩C1(Ω) with ∆v+ λv = 0 inΩ . Then by (1)–(3) and (5)
we have

0=
∫
Ω

u[∆v+ λv] − v[∆u+ λu]dx =
∫
∂Ω

a
∂v

∂n
− vb ds,

proving (c). For any fixedy ∈ Rn \Ω , we obtain (d) by takingv(x)≡ γλ(|x− y|)
(for x ∈Ω) in (c). ✷
Remarks.

1. From (a) above, we see thatλ must be real. From Lemma 3 of [27] we see
that the conjecture of Section 1 holds ifλ < 0 (assumingΩ is of classC2+ε
for someε > 0). If λ= 0, a solution of (1) is harmonic onΩ so that it must
attain its maximum and minimum values on∂Ω (cf. Gilbarg and Trudinger
[13, Theorem 3.1]). Thus by (2) it must be constant. Thus we may assume
thatλ > 0 in trying to prove the conjecture (so long asΩ is of classC2+ε ).

2. (b) above gives an explicit formula foru.
3. (c) was first proved in [26]. They also proved the converse, that if (6) holds

for someλ > 0 and for everyv ∈C2(Ω) with∆v+λv = 0, then (1)–(3) have
a nonconstantsolutionu onΩ .

4. (d) gives an alternative (with no reference tou) to assuming that (1)–(3) have
a nonconstant solutionu onΩ . The alternative is to assume thatSλ(y) and
Dλ(y) are linearly dependent onRn \Ω (for some realλ). In fact, ifΩ is of
classC2 and if (d) holds for somea, b andλ, thenu given by (b) satisfies
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(1)–(3) (by [7, Theorem 3.1], with the real part of theirΦ(x,y) equal to
−γλ(|x − y|) with n= 3 andk = √

λ, by Courant and Hilbert [8, p. 496]).
5. Theorem 1 can be generalized to the case thatΩ is a Lipschitz domain.

(This is the appropriate setting now that a good theory of Dirichlet and
Neumann boundary value problems for the Helmholtz equation and of
single- and double-layer acoustic potentials is available for such domains;
see Mitrea [17].) The results will only be summarized here, since the
technical details would take too long to describe carefully (and the extra
generality may not be of interest to everyone). Letp > 1 andq > 1 with
p−1 + q−1 = 1. Equation (1) would be interpreted classically, as before.
Equation (2) would hold in the sense thatN (u) ∈ Lp(∂Ω,ds) (whereN (u)
is the inward nontangential maximal function ofu [17]) andu|∂Ω = a in the
sense of nontangential limitsds-a.e. Equation (3) would hold in the sense
thatN (∇u) ∈ Lq(∂Ω,ds) and∂u/∂n|∂Ω = b, interpreted in a similar way.
The key to the proof of the generalized theorem is the existence (see Verchota
[22, Theorem 1.12]) of a sequence{Ωj }∞j=1 of open subsets ofΩ with each
∂Ωj ∈C∞, with ∂Ωj converging nontangentially and uniformly to∂Ω , with
the unit exterior normal vectorsnj of ∂Ωj convergingds-a.e. and in every
Lr(∂Ω,ds) (for 1 � r <∞) to the unit exterior normaln of ∂Ω , and with
the boundary measuresdsj for ∂Ωj converging tods as j → ∞. If the
constructions of the proof above are carried out for eachΩj , taking the limit
asj → ∞ gives the conclusions as before. In part (a), some care is required to
prove that our reinterpretations of (2) and (3) guarantee that

∫
Ω

|u|2dx <∞.
(From the limit process leading to the equation of (a), it then follows that∫
Ω

|∇u|2dx <∞.) In part (c), weaker assumptions can be assumed forv. For
the samep andq as foru, assume thatv ∈ C2(Ω) with ∆v + λv = 0 inΩ ,
but with N (v) ∈ Lp(∂Ω,ds), v|∂Ω ∈ Lp(∂Ω,ds),N (∇v) ∈ Lq(∂Ω,ds),
and∂v/∂n|∂Ω ∈ Lq(∂Ω,ds).

3. Two results on the regularity of ∂Ω

For the remainder of this paper, for anyδ > 0 and anyx ∈ Rn, letBδ(x) denote
the open ball inRn with centerx and radiusδ.

Definition. A nonempty subsetS of Rn is an(n− 1)-dimensional real-analytic
surfaceif for eachx ∈ S there is a real-analytic one-to-one map of the open unit
ballB1(0) (centered at the origin 0) onto an open neighborhoodUx of x such that
the inverse map is also real-analytic and such thatB1(0) ∩ {x = (x1, . . . , xn) ∈
Rn;xn = 0} maps ontoUx ∩ S.

A theorem very similar to the following (but in the context of the Pompeiu
problem) was proved in [24]:
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Theorem 2. Assume thatΩ is of classC1 (this includes the assumption thatΩ
is locally on one side of∂Ω near any point of∂Ω) and thatu is a nonconstant
solution onΩ of (1)–(3). Assume thatS andW are nonempty connected(n− 1)-
dimensional real-analytic surfaces withS ⊆ ∂Ω andS ⊆W . Assume thatW is
orientable. ThenW ⊆ ∂Ω .

Proof. Select a pointy0 ∈ S. Letn be the exterior unit normal vector to∂Ω aty0.
SinceW is connected, smooth and orientable, there is a unique extension ofn to a
smooth unit normal field (also denoted byn) onW . At each pointx onW , use the
Cauchy–Kovalevskaya theorem (Renardy and Rogers [19, pp. 46–58]) to solve the
equation∆U +λU = 0 on some open neighborhoodUx of x subject to the initial
dataU = a and ∂U/∂n = b onW ∩ Ux (∂/∂n is taken in the direction of the
normal fieldn described above). Using the Holmgren uniqueness theorem [19,
pp. 61–65] and the uniqueness of analytic continuation, we may piece together
these local solutions to obtain a real analytic functionU defined on an open set
N∗ containingW , with ∆U + λU = 0 onN∗ and withU = a and∂U/∂n = b
onW . We consider two cases.

Case 1. If b �= 0, then clearly (since∇U is then a nonzero normal vector at
each point ofW ) for eachx ∈ W there is an open ballBx ⊆ N∗ centered atx
such thatz ∈ Bx andU(z)= a imply thatz ∈W .

Case 2. If b = 0, thena �= 0 (otherwiseu ≡ 0 onΩ by (b) of Theorem 1)
and λ �= 0 (otherwiseu ≡ constant onΩ by Remark 1 above), so for each
x ∈ W we have∆U(x) = −λa �= 0, so there is ani with 1 � i � n such that
(∂2U/∂x2

i )(x) �= 0. Thus, by the implicit function theorem, there is an open ball
Bx ⊆ N∗ centered atx such that{z ∈ Bx; (∂U/∂xi)(z) = 0} is contained in the
graph of a continuously differentiable function of(x1, . . . , xi−1, xi+1, . . . , xn).
But ∇U ≡ 0 onW (in this b = 0 case), so∂U/∂xi ≡ 0 onW . Thus (decreasing
the radius ofBx if necessary but keepingx as the center),z ∈ Bx and∇U(z)= 0
imply thatz ∈W .

For either Case 1 or Case 2 above, letN be the union over allx ∈W of the
open setsBx . ClearlyW ⊆ N ⊆ N∗. Let y0 ∈ S be the point selected above.
There is clearly an open ballG ⊆ N centered aty0 so thatG \ ∂Ω consists of
precisely two nonempty componentsG1 andG2, withG1 ⊆Ω andG2 ⊆ Rn \Ω
and such thatU ≡ u onG1 (by the Holmgren uniqueness theorem). LetC be the
component ofΩ ∩N which containsG1. By uniqueness of analytic continuation,
U ≡ u onC.

LetW∗ =W ∩ ∂Ω ∩ C. Sincey0 ∈W∗, W∗ is not empty. Since∂Ω ∩ C is
closed inRn,W∗ is closed in the relative topology ofW . SinceW is connected,
once it is proved thatW∗ is open relative toW we haveW =W∗, so thatW ⊆ ∂Ω
and the theorem is proved.

To prove thatW∗ is open relative toW , let x0 be any point ofW∗. For
someε > 0, we haveBε(x0) ⊆ N with Bε(x0) \W consisting of precisely two
components,C1 andC2. SinceC is open andx0 ∈C,C has nonempty intersection
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with one of these components, sayC1. We claim now thatC1 ⊆ C. If not, there
would be az ∈ C1 with z ∈ ∂C. SinceC1 ⊆ N , z would have to be in∂Ω .
SinceU ≡ u onC we haveU(z)= a in Case 1 above and∇U(z)= 0 in Case 2
above. SinceN is the union of the ballsBx , there is anx ∈W such thatz ∈ Bx .
Thus in either Case 1 or Case 2 above we conclude thatz ∈ W , contradicting
z ∈ C1 ⊆ Bε(x0) \W . Therefore the claim thatC1 ⊆ C is established. (Note that
thusC1 ⊆Ω.)

We claim now thatC2 ∩ C is empty. If not, then by replacingC1 by C2 in
the above argument, we also haveC2 ⊆ C, so thatC1 ∪C2 ⊆Ω . Thenx0 would
not be in∂Ω (sinceΩ is locally on only one side of∂Ω near any point of∂Ω),
a contradiction. ThusC2 ∩ C is empty. We claim now thatBε(x0) ∩W ⊆ ∂Ω .
If not, there is az0 ∈ Bε(x0) ∩W with z0 �∈ ∂Ω . Sincez0 ∈ C1 ⊆ C, we have
z0 ∈ Ω , so z0 ∈ Ω , in which caseC2 ∩ C is nonempty, a contradiction. Thus
Bε(x

0) ∩W ⊆W∗, proving thatW∗ is open in the relative topology ofW and
completing the proof. ✷

Remark. SupposeΩ is of classC1 with a nonconstant solutionu of (1)–(3) on
it. Suppose that∂Ω contains a nonempty, relatively open portion of an(n− 1)-
dimensional hyperplane. Then Theorem 2 tells us that the entire hyperplane is
contained in∂Ω , contradicting the boundedness ofΩ . Thus no such portion of a
hyperplane can be part of∂Ω .

A theorem somewhat similar to the following (but in the context of the
Pompeiu problem) was proved in [25]:

Theorem 3. Assume thatΩ is of classC1. Assume that there is anonconstant
solutionu ∈ C2(Ω) of (1)–(3). Then∂Ω is an(n− 1)-dimensional real-analytic
surface.

Proof. Apply Theorem 2 of Kinderlehrer and Nirenberg [14] with theiru equal to
ouru− a, theirF(x,u,Du,D2u)≡∆u+λu+ aλ, and theirg(x,p1, . . . , pn)≡
p2

1 + · · · + p2
n − b2. They do everything locally about a general point of∂Ω ,

assumed to be the origin 0. Ifb �= 0, |gradu| = |b| �= 0 clearly holds at the
origin. (If b = 0, the conclusion of Theorem 3 is proved in [25].) Setting up our
coordinate system so thexn-direction is the exterior normal direction at the origin
0, ∂g/∂pn = 2pn, so∂g/∂pn(0, (gradu)(0)) = 2(∂u/∂n)(0)= 2b �= 0. SinceF
andg are real-analytic, so is∂Ω . ✷
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Remarks.

1. The assumption in Theorem 3 thatu ∈ C2(Ω) is strong and hard to verify
in general. If we are willing to assume thatΩ is of classC2+ε (for some
ε > 0) however, then Theorem 6.14 of [13] insures the stronger result that
u ∈C2+ε(Ω).

2. The analysis in [14] is local about any point of the boundary (assumed to be
the origin 0). Thus ifΩ is of classC1 and if the nonconstant solutionu of
(1)–(3) has second derivatives that extend continuously to∂Ω ∩ Bε(0) (for
someε > 0), then∂Ω ∩Bε(0) is real analytic.
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