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Abstract The purpose of this paper is to present Lotfi Zadeh’s influence on mathematics. Mathematics
rests on the foundation of logic and set theory. L.A. Zadeh’s seminal paper on fuzzy sets laid the
groundwork for fuzzy logic and thus the foundation of fuzzy mathematics.

© 2011 Sharif University of Technology. Production and hosting by Elsevier B.V.
Open access under CC BY-NC-ND license.
1. Introduction

Thepurpose of this paper is to present Lotfi Zadeh’s influence
on mathematics. Mathematics rests on the foundation of logic
and set theory. L.A. Zadeh’s seminal paper ‘‘Fuzzy Sets’’ [1] laid
the groundwork for fuzzy logic and thus the foundation of fuzzy
mathematics. His work has inspired the writing of thousands
of articles and hundreds of books involving fuzzy logic. There
have been over 200 books on fuzzy logic published just in
Springer-Verlag Studies in Fuzziness and Soft Computing alone.
It is not our intention to credit the very long list of individuals
who contributed to the development of fuzzy mathematics.
Neither do we attempt to provide an extensive bibliography
due to space constraints. The interested reader can see [2,3].
We concentrate only on topology and algebra and rely heavily
on [2,3].

The classical mathematical theories, by which certain types
of certainty can be expressed, are the classical set theory and
the probability theory. In terms of set theory, uncertainty is
expressed by any given set of possible alternatives in situations
where only one of the alternatives may actually happen.
Uncertainty expressed in terms of sets of alternatives results
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from the nonspecificity inherent in each set. Probability theory
expresses uncertainty in terms of a classicalmeasure on subsets
of a given set of alternatives. The set theory, introduced by
Zadeh [1], presents the notion that membership in a given
subset is a matter of degree rather than that of totally in or
totally out. This concept is captured in [1] by defining a fuzzy
subset of a universal set, X , to be a function from X into the
closed interval [0, 1].

Another broad framework for dealingwith uncertainty is the
fuzzy measure theory founded by Sugeno. The fuzzy measure
theory replaces the classical measure theory by replacing
the additivity requirement with the weaker requirements of
monotonicity, with respect to set inclusion and the continuity
or semicontinuity of fuzzy measures [4–13].

2. History

L.A. Zadeh published his seminal paper ‘‘Fuzzy Sets’’ in
1965. This inspired mathematicians to fuzzify mathematical
structures. The evolution of the fuzzification of mathematics
can be broken into four stages:

1. Straightforward fuzzification during the sixties and seven-
ties;

2. Exploration of numerous possible choices in the generaliza-
tion process during the eighties;

3. Standardization, axiomatization and L-fuzzification in the
nineties;

4. Deeper development of many areas of fuzzy mathematics in
the 21st century.

As communicated to me by E. Kerre, the years 2001–2009
found an expansion of the frontier of many areas in fuzzy
mathematics, such as axiomatics of structures and concepts,
fuzzy logic in the narrow sense, interval valued fuzzy sets and
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fuzzification ofmathematical disciplines, such as geometries, to
name a few. One exception is fuzzy abstract algebra where the
fuzzification of more algebraic structures took place and where
new approacheswere developed, butwhere the frontier did not
noticeably expand.

3. Fuzzy set theory

Mathematics is based on the notion of a set. One of the
most fundamental concepts is the notion of an ordered pair.
There are different approaches to the development of set theory
depending upon the underlying axiom system. For example,
take set membership and the empty set as undefined symbols,
then define a set as follows: A is a set if and only if A = ∅ or
there exists x ∈ A. Define {x} = A if and only if A is a set, A ≠ ∅,
and for all y ∈ A, y = x. Define {x, y} = A if and only if A is a set,
A ≠ ∅, and for all z ∈ A, either z = x or z = y. Then an ordered
pair (x, y) is defined to be {{x}, {x, y}}. The Cartesian product,
A×B, of sets A and B is defined to be {(x, y)|x ∈ A, y ∈ B}. Then,
a relation from A into B is a subset of A × B.

A fuzzy subset of a set, X , is defined to be a function of X
into the closed interval [0, 1]. Let F (X) denote the set of all
fuzzy subsets ofX . The notion of the Cartesian product of a fuzzy
subset, Ã, of a set, X , and a fuzzy subset, B̃, of a set, Y , can be
fuzzified as follows: for all (x, y) ∈ X × Y , (Ã × B̃)(x, y) =

min{Ã(x), B̃(y)}. The Cartesian product of fuzzy subsets satisfies
many of the properties that crisp Cartesian products satisfy.
However there are some deviations. For example, Ã× B̃ = B̃× Ã
does not imply that Ã = B̃. An extensive list can be found in [2].

A list of operations on fuzzy subsets follows.
Let {Ãi|i ∈ I} be a collection of fuzzy subsets of X . Define the

fuzzy subsets, ∩Ãi (intersection) and ∪Ãi (union), of X by for all
x in X , (∩Ãi)(x) = inf{Ãi(x)|i ∈ I} and (∪Ãi)(x) = sup{Ãi(x)|
i ∈ I}.

Let Ã and B̃ be fuzzy subsets of X . Then, Ã ⊆ B̃ if for all
x ∈ X , Ã(x) ≤ B̃(x). If Ã ⊆ B̃ and there exists x ∈ X such that
Ã(x) < B̃(x), then we write Ã ⊂ B̃.

Let x ∈ X and t ∈ (0, 1]. For a subset, A of X , define the
fuzzy subset, tA, as follows: for all x ∈ X , tA(x) = t , if x ∈ A and
tA(x) = 0, otherwise.We sometimes write xt for t{x}. We call t{x}
a fuzzy singleton in X .

Let Y and Z be sets. Let Ã be a fuzzy subset of X × Y and B̃ be
a fuzzy subset of Y × Z . Define the composition, Ã ◦ B̃, by for all
x ∈ X and z ∈ Z, (Ã ◦ B̃)(x, z) = sup{min{Ã(x, y), B̃(y, z)}|y ∈

Y }.
Let Ã be a fuzzy subset of X and let t ∈ [0, 1]. Define Ãt =

{x ∈ X |Ã(x) ≥ t}. Then Ãt is called a t-cut of Ã or a t-level set
of Ã. The support of Ã, written Supp(Ã), is defined to be the set
{x ∈ X |Ã(x) > 0}.

Let Ã be a fuzzy subset of X . Then, Ã is said to have the sup
property if for every subset Y of X , there exists y0 in Y , such that
Ã(y0) = sup{Ã(y)|y ∈ Y }.

Let f be a function from a nonempty set, X , into a nonempty
set, Y . Let B̃ be a fuzzy subset of Y . The pre-image of B̃ under f ,
written f −1(B̃), is the fuzzy subset of X defined by f −1(B̃)(x) =

B̃(f (x)) for all x in X . Let Ã be a fuzzy subset of X . The image
of Ã under f , written f (Ã), is the fuzzy subset of Y defined by
f (Ã)(y) = sup{Ã(z)|z ∈ f −1({y})}, if f −1({y}) is not empty,
f (Ã)(y) = 0 otherwise.

Krassimir Atanassov introduced the notion of the degree of
nonmembership in the definition of a fuzzy subset. This idea is
incorporated with the notion of membership in a fuzzy subset
and the resulting structure is called an intuitionistic fuzzy set.
In [14], the reader can find a fairly comprehensive and complete
treatment on intuitionistic fuzzy set theory and applications in
a variety of diverse fields.

Hohle shows that large parts of fuzzy set theory are subfields
of sheaf theory [15,16]. Consequently, fuzzy set theory is closer
tomainstreammathematics than onemight think. Other papers
on the foundation of fuzzy set theory can be found in [15,16].

4. Fuzzy logic

Fuzzy logic was first invented as a representation scheme
and calculus for uncertain or vague notions. It is an infinite-
valued logic that allows more human-like interpretation and
reasoning. Plato posited the laws of thought. One such law
was the Law of the Excluded Middle. Parminedes stated that
statements could be both true and not true at the same time.
Plato proposed a third region between true and false. Jan
Lukasciewicz was the first to propose a systematic alternative
to the bi-valued logic of Aristotle and described the 3-valued
logic, with the third being ‘‘possible’’. Zadeh, in his theory of
fuzzy sets, proposed using a membership function, µ, where
µ was a function from the set of interest into the closed
interval [0, 1]. He proposed new operations on the calculus
of logic and showed that fuzzy logic was a generalization of
classical and Boolean logic. He also proposed fuzzy numbers
as a case of fuzzy sets, as well as the corresponding rules for
consistent mathematical operations (fuzzy arithmetic).

With fuzzy set theory, one obtains a logic in which state-
ments may be true or false to different degrees rather than the
bivalent situation of being true or false; consequently, certain
laws of bivalent logic to not hold, e.g. the law of the excluded
middle and the law of contradiction. This results in an enriched
scientific methodology.

Most mathematical fuzzy logic is based on t-norm logic. The
notion of a t-norm is used for the concept of conjunction in
fuzzy logic and intersection in fuzzy set theory. The notion of
a co-norm, in particular maximum, is used for the concept of
disjunction in fuzzy logic and union in fuzzy set theory. There
are several definitions for the use of negation in fuzzy logic and
complement in fuzzy set theory. Some of the most important
propositional fuzzy logics are monodial t-norm based fuzzy
logic and basic propositional fuzzy logic, where implication is
defined as residuum of the t-norm, Lukasiewicz fuzzy logic,
Godel fuzzy logic, product fuzzy logic, and Pavelka’s logic. These
fuzzy logics have been extended to predicate fuzzy logics by
adding universal existential quantifiers.

Some of the remaining discussions on fuzzy logic is taken
from [17]. Fuzzy propositional calculus generalizes classical
propositional calculus by using the truth set, [0, 1], instead
of {0, 1}. Let V be a set of symbols representing atomic or
elementary propositions. The set of formulas, F , is built up from
V using the logical connectives ∧, ∨, ′. A truth evaluation is
obtained by taking any function, t : V → [0, 1], and extending
it to t : F → [0, 1] by replacing each element, a ∈ V ,
which appears in the formula by its value, t(a). This gives an
expression in elements of [0, 1] and the connectives,∧,∨, ′. The
expression is evaluated by letting ∧, ∨, ′ be defined as in fuzzy
set theory. If we define two formulas in F to be equivalent, if
they have the same truth evaluation for allt , then we obtain
an equivalence relation on F . The set of equivalence classes
of logically equivalent formulas forms a Kleene algebra. With
each formula, associate the fuzzy subset, [0, 1]V → [0, 1], of
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[0, 1]V given by t → t(u). Then we have a function from F into
F ([0, 1]V ). This induces a one-to-one function from F/≡ into
the set of functions from [0, 1]V into [0, 1], that is into the set
of fuzzy subsets of [0, 1]V . This one-to-one function associates
fuzzy logical equivalence with the equality of fuzzy subsets.

We next give a short discussion of interval-valued fuzzy
logic. There is a school of thought that says assigning an exact
number to an expert’s opinion is too restrictive. Assigning an
interval of values is more realistic. Hence, rather thanmap a set
U into [0, 1], it would be more realistic to map U into [0, 1][2],
where [0, 1][2] = {(a, b)|a, b ∈ [0, 1], a ≤ b}. In order
to construct the propositional calculus whose truth values are
elements of [0, 1][2], we need the appropriate algebra of these
truth values. Let ∧, ∨ be functions of [0, 1][2] × [0, 1][2] into
[0, 1][2], defined as follows:

∀(a, b), (c, d) ∈ [0, 1][2],

(a, b) ∧ (c, d) = (a ∧ b, c ∧ d),

and:

(a, b) ∨ (c, d) = (a ∨ b, c ∨ d).

Define the function ′ of [0, 1][2] into [0, 1][2] by ∀(a, b) ∈

[0, 1][2], (a, b)′ = (b′, a′).
The propositional calculus, F/≡, is a DeMorgan algebra, but

not a Kleene algebra. A more complete discussion can be found
in [17].

In 2006, Fuzzy Sets and Systems devoted four issues, 5, 6,
14 and 15, to themes concerning logic. Issue 5 dealt with the
question, ‘‘What is fuzzy logic?’’ The papers in this issue con-
cerned mathematical fuzzy logic, fuzzy logic to fuzzy mathe-
matics, interval-valued fuzzy and machine intelligence. Issue 6
considered topology and category theory. In 2008, Fuzzy Sets
and Systems devoted two issues, 9 and 19, to fuzzy logic. One
issue was concerned with algebraic aspects of fuzzy and many-
valued logics, the other with lattice-valued topology. An inter-
esting account concerning fuzzy logic and probability can be
found in [18].

In [19], Zadeh published a position paper concerning an
extended fuzzy logic. Extended fuzzy logic adds to fuzzy logic
a capability to reason imprecisely with imperfect information.
This capability is exercisedwhen precise reasoning is infeasible,
excessively costly or unneeded. In [20], Zadeh discussed the
equality of fuzzy logic and computing with words. Zadeh states
that computing with words is a methodology in which words
are used in place of numbers for computing and reasoning.
Computing with words is a necessity when the available
information is too imprecise to justify the use of numbers and
when there is a tolerance for imprecision that can be exploited
to achieve tractability, robustness, and better rapport with
reality.

In 2010, Fuzzy Sets and Systems published an editorial
concerning the 26th Linz Seminar on Fuzzy Set Theory in 2005.
The seminarwas devoted to the topic, ‘‘Fuzzy Logics andRelated
Structures’’.

5. Topology

Chang introduced the notion of a fuzzy topology of a set in
1968 [21]. A fuzzy topology on a set, X , is a set of fuzzy subsets,
T of X , such that:

1. 1X and 0X are in T ;
2. if Ã, B̃ are in T , then, Ã ∩ B̃ is in T ;
3. if {Ãi|i ∈ I} is a subset of T , then ∪i Ãi is in T .
The pair (X, T ) is called a fuzzy topological space and each
element of T is called an open fuzzy set.

Fuzzifications of the concepts of a closed set, the interior of
a set, the closure of a set, and the neighborhood of a point are
followed in a straightforward manner. However, a straightfor-
ward fuzzification of the classical neighborhood axioms failed
to characterize a fuzzy topology. References for this discussion
can be found in [2].

Let (X, T ) and (Y ,U) be fuzzy topological spaces. Let f be a
function of X into Y . Then f is said to be F-continuous if f −1(B̃) is
open in X for every open fuzzy subset, B̃ of Y . It was shown that
f is F-continuous if and only if f −1(B̃) is closed in X for every
closed fuzzy subset, B̃ of Y . Twenty-six different forms of fuzzy
continuity were introduced in the eighties. In 1991, a research
group led by Kerre obtained all these notions of fuzzy continuity
as particular cases of the central notion of fuzzy ϕψ continuity,
where ϕ and ψ denote operations on (X, T ), i.e. mappings of
F (X) into F (X), satisfying the condition that int (Ã) ⊆ ϕ(Ã)
for all Ã ∈ F (X). An account of this unification process can
be found in [2]. The group used the concept of an operation
to unify several existing notions of separation, compactness,
and open and closed mappings [2]. The group also considered
smooth topological spaces and modifications of crisp, as well
as fuzzy continuity of mappings. The fuzzy topology defined
by Chang [21], the L-fuzzy topology defined by Goguen [22],
and the stratified fuzzy topology defined by Lowen [23] are
such that a fuzzy subset may only be either open or not open.
The research group headed by the Kerre group considered a
fuzzification of topology in that a fuzzy subset may assume a
partial or intermediate degree of openness. These structures
were called smooth topologies. References to some papers on
smooth topological spaces can be found in [2].

Let (X, T ) and (Y ,U) be fuzzy topological spaces and let f be
an F-continuous function of X onto Y . If X is compact, then it
can be shown that Y is compact.

In the eighties, the concepts of normality and neighborhood
in a fuzzy topology were considered. Hutton [24] introduced
a definition of normality by a straightforward generalization
of Urysohn’s characterization in 1975. For crisp subsets, A ∩

B = ∅ if and only if A is a subset of Bc . However, for fuzzy
subsets, Ã ∩ B̃ = 1∅ only implies Ã is a subset of B̃c . The
definitions of normal, weakly normal, and completely normal
for fuzzy topologies were influenced by this fact. The definition
of complete normality did not allow for the extension of Tietze’s
characterization theorem of complete normality.

In [22,25,26], three types of membership relation involving
fuzzy singletons were defined. These membership relations led
to five different definitions of the notions of a neighborhood.
(See [2,3] for references.) The approaches of Pu–Liu and
Ghanim–Kerre–Mashour totally induce a complete formal
parallelism with ordinary topology. These different approaches
were then linked. The Mashhour neighbourhoods of a fuzzy
singleton could be expressed in terms of the Pu neighborhoods
and in terms of the Kerre neighborhoods. A lattice theoretical
study of different approaches to the neighborhood concept has
led to the introduction of several subclasses of fuzzy topological
spaces. In [2], one can findmore details concerning the relations
between these concepts.

Much of the early work in fuzzy topology was based on
its similarity with another branch of topology on a lattice
– locale theory. Some researchers used ideas and methods
of locale theory to study problems not involving ‘‘points’’ in
fuzzy topology. Many problems on fuzzy topological spaces
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must involve the notion of ‘‘point’’, such as the separation and
embedding theory. A summary of the work on points can be
found in the book by Liu and Luo [27]. Almost all Kelley’s
General Topology has been generalized in the fuzzy framework
and synthesized in [27].

A development of the theory of metric spaces of normal,
upper semicontinuous fuzzy convex fuzzy sets with closed
support sets, mainly on the base space Rn, where R denotes
the set of real numbers, can be found in [28]. The book
contains much of the work by Diamond and Kloeden on the
characterization of compactness in metric spaces of fuzzy sets.

If a completely distributive lattice, L, has an order-reversing
involution, ′ : L → L, then it is called an F-lattice. Let X be a
nonempty set, L an F-lattice, and δ ⊆ LX . Then δ is called an L-
fuzzy topology on X , and (LX , δ) is called an L-fuzzy topological
space or an L-fts if δ satisfies the following conditions:

1. 0X , 1X ∈ δ;
2. ∀A ⊆ δ,∪A ∈ δ;
3. ∀Ã, B̃ ∈ δ, Ã ∩ B̃ ∈ δ.

If L = [0, 1], then (LX , δ) or simply (X, δ) is called an F-
topological space or an F-ts. Consideration of L-stratified spaces,
the convergence theory and properties related to cardinals can
be found in [27]. Separation properties are presented in [24,27].
The pointwise characterization of L-fuzzy complete regularity
and its use in establishing the embedding theorem can be
found in [27]. The problem of the L-fuzzy form of the Tietze
Extension Theorem was raised in [29] and positively solved
by Kubiak [30]. Results on L-fuzzy complete regularity can be
found in [31]. In [27], the lattice-valued Hahn-Dieudonne-Tong
Insertion Theorem is proved, as well as Kubiak’s Fuzzy Insertion
Theorem. Notions of compactness in fuzzy topological spaces
are compared in [32]. Results concerning paracompactness can
be found in [27]. Fuzzy versions of the uniformity theory have
been established. A study of metrics in Hutton’s sense and
Erceg’s sense can be found in [33,34]. Rodabaugh gave the
first systematic on L-fuzzy topological spaces and locales [35].
Warner investigated the membership relation between points
and L-fuzzy subsets in L-fuzzy topology by applying the
notion of point in locales [12]. The relation between L-fts and
locales has been investigated by Luo. Rodabaugh considered
categorical frameworks for Stone Representation Theories [36].
Some other interesting papers are [37–41].

In [42,43], Pultr andRodebaugh examined category theoretic
aspects of chain-valued frames. Other papers on category
theory and topology can be found in the same issue. In 2008,
Fuzzy Sets and Systems published an issue devoted to lattice-
valued topology. The interested reader can findmany papers on
fuzzy topology that cover a wide variety of topics in Fuzzy Sets
and Systems alone.

In 2010, Fuzzy Sets and Systems published an issue concern-
ing the 29th Linz Seminar on Fuzzy Set Theory in 2009. The
theme was ‘‘Foundations of Lattice-Valued Mathematics with
Applications to Algebra and Topology’’.

6. Algebra

In 1971, Rosenfeld introduced the notions of a fuzzy sub-
groupoid and subgroup [44]. The closure property in the crisp
case yields the key to defining fuzzy substructures. Let X be a
nonempty set and ∗ is a binary operation on X . A subset, Y , is
closed under ∗ if for all x, y ∈ Y , x∗ y ∈ Y . The closure property
for a fuzzy subset, Ã of X , is that for all x, y ∈ X, Ã(x ∗ y) ≥

min{Ã(x), Ã(y)}. Hence ifA(x) = A(y) = 1, thenA(x ∗ y) = 1.
That is, if x and y are definitely in A, the x ∗ y is definitely inA. For groups, we have the following situation. Let (G, ∗) be a
group and H a nonempty subset of G. Then H is a subgroup of
G if and only if for all x, y ∈ H , x ∗ y−1

∈ H . This leads to the
following definition of a fuzzy subgroup of a group. Let (G, ∗)
be a group and Ã a fuzzy subset of G. Then Ã is a fuzzy subgroup
of G if for all x, y in G, Ã(x ∗ y−1) ≥ min{Ã(x), Ã(y)}.

This technique is used to define fuzzy substructures of a
variety of algebraic structures. Let X be a fuzzy subset of an
algebraic structure, A. It is common to define ⟨X⟩ to be the
intersection of all fuzzy substructures of A of a certain type, and
then show that ⟨X⟩ is a fuzzy substructure of the same type. One
then proceeds to characterize ⟨X⟩.

Since Rosenfeld’s paper, hundreds of papers fuzzifying vari-
ous algebraic structures have been published. Some of the early
work on fuzzy subgroups considered cosets, Lagrange’s Theo-
rem, free fuzzy subgroups, fuzzy subgroups of Dedekind groups
solvable groups, Hall subgroups, nilpotent groups, fuzzy quasi-
normal subgroups, generalized fuzzy subgroups, fully invariant
and characteristic fuzzy subgroups, nilpotent fuzzy subgroups,
commutator fuzzy subgroups, solvable fuzzy subgroups, lattices
of fuzzy subgroups, infinite abelian groups, including structure
results, divisible and pure fuzzy subgroups, invariants of fuzzy
subgroups, basic and p-basic fuzzy subgroups, and fuzzy direct
products, as related to a group being a direct product of its
normal subgroups, fuzzy cyclic p-subgroups. A number of in-
equivalent fuzzy subgroups of certain finite Abelian groups has
been determined. A notable early paper on fuzzy subgroupswas
by Anthony and Sherwood. They replaced min by a t-norm in
the definition of a fuzzy subgroup. They examined two types
of fuzzy subgroups: subgroup generated and function gener-
ated. They applied their results to abstract pattern recognition.
One very important paper on fuzzy subgroupswas by TomHead
[45,46]. The interested reader should see [47] for another paper
along these lines. Head presented a method for deriving fuzzy
theorems from crisp versions. Dib introduced fuzzy groups by
means of fuzzy binary operations. Using a different approach,
Demirci defined and studied vague and smooth groups via cer-
tain fuzzy binary operations involving fuzzy equalities. Using
the notion of the quasi-coincidence of a fuzzy singleton with a
fuzzy subset, Bhakat and Das defined a more general fuzzy sub-
group than the one introduced by Rosenfeld. The notion of the
quasi-coincidence used the standard fuzzy complement. These
ideas were extended by replacing the standard complement by
an arbitrary complement with an equilibrium. This notion was
extended further to (s, t]-fuzzy subgroups for 0 ≤ s < t ≤ 1
by others. Pertinent references can be found in [48].

The main contributor to the development of the theory
of fuzzy subsemigroups was Kuroki. He developed theories
concerning fuzzy ideals, fuzzy bi-ideals fuzzy interior ideals,
fuzzy quasi-ideals and fuzzy semiprime ideals of semigroups.
He also studied various types of fuzzy regular subsemigroups
of a semigroup and fuzzy congruences on a semigroup. Fuzzy
Rees congruences on a semigroup, prime fuzzy ideals, quasi-
prime ideals,weakly quasi-prime ideals of semigroups and
fuzzy ideal extensions of semigroups have been examined.
Fuzzy subsemigroupswere used to study fuzzy codes. Pertinent
references can be found in [49].

The first paper concerning fuzzy ideal theory in rings was
done by Liu [50]. Let R be a ring and let Ã be a fuzzy subset
of R. Then Ã is called a fuzzy ideal of R if for all x, y ∈ R,
Ã(x − y) ≥ min{Ã(x), Ã(y)} and Ã(xy) ≥ max{Ã(x), Ã(y)}. A
fuzzy ideal,P , of a ring, R, is called prime if for all fuzzy ideals
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A and B of R, AB ⊆ P implies either A ⊆ P or B ⊆ P . The
notion of a fuzzy prime ideal of a ring was characterized. It was
shown that a nonconstant fuzzy ideal,P , of a ring, R, is prime
if and only if Im(P) = {t, 1}, 0 ≤ t < 1, and the level ideal,P1, is a prime ideal of R. A primary representation theory of
fuzzy ideals of a ring was introduced and then the notion of a
fuzzy algebraic variety of a fuzzy ideal. The characterization of
a fuzzy irreducible algebraic variety followed, i.e. a nonconstant
fuzzy algebraic variety, V , is irreducible if and only if Im(V ) =

{0, t}, 0 < t , and the level variety, Vt , is irreducible [51,
52]. These results and those of fuzzy ideals in local rings
were applied to fuzzy intersection equations. The existence
and uniqueness properties of fuzzy ideals and fractionary
fuzzy ideals have been studied. Head, Golan, and Weinberger
wrote important papers for deriving fuzzy theorems from crisp
versions. Pertinent references can be found in [48].

The notion of a fuzzy subspace of a vector space was first
considered by Katsaras and Liu [53]. It was shown that a fuzzy
subspace with the sup property has a basis. A problem which
went unsolved for a few years was whether or not any fuzzy
subspace of an infinite dimensional vector space has a basis. The
problem was answered negatively by Abdukhaliv Tulanbaev,
and Umirbaev. Pertinent references can be found in [48].

The concept of a fuzzy submodule of a module was intro-
duced by Negoita and Ralescu [54]. Free fuzzy submodules and
their bases, primary fuzzy submodules, prime fuzzy submod-
ules, exact sequences of L-modules, projective L-modules, sim-
ple and semisimple L-modules, fuzzy projective and injective
fuzzy submodules, and homological and categorical aspects of
fuzzy submodules have been studied.

Mordeson was the main contributor to the development of
the concepts of fuzzy subfields, fuzzy algebraic varieties, and
fuzzy subgroup algebras. The notions of algebraic and transcen-
dental fuzzy field extensions, separable and inseparable fuzzy
field extensions, composites, linear disjointness, separability,
and the modularity of fuzzy field extensions have been stud-
ied [48]. The notion of neutrally closed fuzzy field extensions:
a concept unique to fuzzy field extensions, has also been intro-
duced. Other ideas have involved distinguished fuzzy subfields
and the splitting of fuzzy field extensions. Treatment of a finite
and infinite fuzzy Galois theory can be found in [48], as can a
connection between fuzzy subgroups and fuzzy field extensions
via fuzzy group subalgebras.

The areas of semirings and near-rings have seen only a
modest interest. Fuzzy k-ideals in semirings and various aspect
of fuzzy ideals in semirings have been examined. Some work
has been done on fuzzy ideals and fuzzy R-subgroups of
near-rings, hypernear-rings, and gamma near-rings. There has
been recent interest in fuzzy hyper substructures, such as
fuzzy hypergroups and semigroups, with application to fuzzy
automata theory.

The study of BCK-algebras was initiated by K. Iseki in
1966, as a generalization of the concept of set difference and
propositional calculus. He introduced a new algebra, called a
BCI-algebra. The notion of BCI-algebras is a generalization of
BCK-algebras and there is no proper class of commutative,
positive implicative and implicative BCI-algebras [55]. Groups
from Korea and Pakistan have been doing the bulk of the
work on fuzzy substructures of BCH and BCK algebras and
related algebras. A great number of papers have appeared
concerning fuzzy ideals of these algebras. Y.B. Jun has been a
major contributor.

Some important early work was undertaken by Chinese
researchers. A major contributor was Yu Yandong. Much
of Yu’s work concerned TL-fuzzy substructures, where min
is replaced with a t-norm and [0, 1] is replaced with a
complete lattice L. Lately, work on fuzzy algebraic structures
has tailed off. However, there is currently an interest in fuzzy
hypersubstructures of algebraic hyperstructures.
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