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Dynamical properties are studied for escaping particles, injected through a hole in an oval billiard. The
dynamics is considered for both static and periodically moving boundaries. For the static boundary, two
different decays for the recurrence time distribution were observed after exponential decay for short
times: A changeover to: (i) power law or; (ii) stretched exponential. Both slower decays are due to sticky
orbits trapped near KAM islands, with the stretched exponential apparently associated with a single
group of large islands. For time dependent case, survival probability leads to the conclusion that sticky
orbits are less evident compared with the static case.

© 2012 Elsevier B.V. Open access under the Elsevier OA license.
1. Introduction

Billiards are dynamical systems where an ensemble of moving
particles do not interact with each other and suffer specular re-
flections with the boundary [1,2]. Applications of billiards can be
made to different physical systems including experiments in reflec-
tion of light from mirrors [3], superconducting [4] and confinement
of electrons in semiconductors by electric potentials [5,6], wave
guides [7], microwave billiards [8,9], ultra-cold atoms trapped in a
laser potential [10–13] and also mesoscopic quantum dots [14].

Billiard dynamics falls into three main classes namely: (i) regu-
lar [2]; (ii) intermittent [15] or; (iii) totally chaotic behavior [16].
Two examples of case (i) are the circular billiard [1], which pre-
serves both the energy and angular momentum, and the elliptic
billiard which preserves the energy and the product of the an-
gular momenta about the two foci [2]. Case (ii) holds for typical
billiard shapes, including many models considered so far [17–20],
producing a mixed phase space structure in the sense that elliptic
islands with fractal boundaries, generally surrounded by a chaotic
sea that often is confined by invariant spanning curves, can all be
observed. The latter case (iii) includes Sinai [21] dispersing bil-
liards with corners as the diamond [22], or periodically extended
such as the finite horizon Lorentz gas [23,24]. Billiards may also
be constructed that are fully chaotic according to the defocusing
mechanism [16,25]. However many famous examples such as the
Sinai billiard consisting of a square with a circular obstacle (or the
equivalent infinite horizon Lorentz gas [26,27] and the Bunimovich
stadium have a regular family of periodic orbits, thus making the
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dynamics intermittent as in case (ii), even though the phase space
is a single chaotic ergodic component. This makes them analyt-
ically tractable models for mixed systems, similar to the more
recently introduced mushroom billiards, which have chaotic and
regular regions of phase space, but separated by smooth (rather
than fractal) boundaries [28,29].

A time perturbation to the boundary may be considered, for ex-
ample due to thermal vibrations in solids [30], with amplitude and
typical frequency related to the temperature. Depending on the
type and shape of the billiard, such a time-dependence leads to the
so-called Fermi acceleration (FA) [31]. This phenomenon consists in
the unlimited energy growth of the bouncing particle upon colli-
sions with the, presumably, infinitely heavy moving boundary. Sev-
eral different kinds of perturbation can be considered in different
billiard-like models [32–36]. As claimed in the Loskutov–Ryabov–
Akinshin (LRA) conjecture [37], if the dynamics of the particle is
chaotic while the boundary is static, thus this is a sufficient condi-
tion to observe FA when a time perturbation to the boundary is in-
troduced. Recently it was shown [38] that even a time-dependent
elliptic billiard, which is integrable for the static boundary, can
also generate FA thanks to the appearance of a stochastic layer
replacing the separatrix curve in the phase space. Moreover, the
existence a heteroclinic orbit could extend the LRA conjecture [39]
and the unlimited energy growth can be observed even in (some)
integrable billiards. The occurrence of an exponential FA was re-
ported in a time varying rectangular billiard [40], which was latter
explained [41] as due to a sequence of highly correlated motion
which consists of alternating phases with free propagation motion
along the invariant spanning curves of the Fermi–Ulam model; see
Ref. [42] for the localization of such curves for a family of map-
pings whose angle is a diverging function of the action in the limit
of vanishing action, including the Fermi–Ulam model.
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When a hole is introduced in the boundary therefore letting the
particle leave the billiard region, we may consider related prob-
lems of escape (initial conditions in the billiard) or recurrence
(initial conditions at the hole); here we consider recurrence, but
virtually all of the following discussion applies also to escape, with
a different exponent in the distributions if there is a power law
decay. It is known that, for fully chaotic dynamics, the recurrence
time distribution, i.e. the time the particle stays confined in the
billiard domain, is characterized by an exponential decay [43]. On
the other hand, for intermittent including mixed phase space dy-
namics where there is stickiness, generated from a finite time (but
arbitrarily long) trapping near periodic/elliptic regions, a power
law decay is observed [44]. Recently, an investigation of a mush-
room billiard led to the characterization of families of marginally
unstable periodic orbits [29] responsible for trapping the particle
in sticky domains, including their effects on the escape problem.
Moreover, for a time dependent potential well [45], the dynamics
of the particle is shown to be fully chaotic for the low energy do-
main and reaching elliptic islands as far as the energy increases
until finding a limitation marked by the existence of an invari-
ant spanning curve. For the time dependent potential well, a hole
in the energy space was introduced letting the particle escape.
Therefore for the low energy regime an exponential decay was ob-
served while a slower decay characterized either as a power law
or stretched exponential marks the regime of higher energy and
consequently long time. Thus opening a billiard by considering par-
ticles escaping through a hole is a good means of identifying and
describing various kinds of intermittency present in the dynamics.

The oval considered here is defined by a finite Fourier series in
polar coordinates, and the mixed phase space of oval billiards was
first described by Berry in 1981 [15]. Since then it has remained
a popular example of a billiard with mixed phase space, including
for generalizations to time dependent boundaries [46] and wave
chaos in theory [47] and microresonator experiments [48]. In this
Letter we revisit the oval billiard considering both the static and
time-dependent boundary. We consider a hole for the first time,
seeking to understand and describe some properties of particles
returning to the hole.

This Letter is organized as follows. In Section 2, we describe
the model with fixed boundary, detailing results for the recurrence
times. Section 3 considers the moving boundary where the equa-
tions of the mapping are derived. The results for the recurrence
times are discussed here also. Final remarks and conclusions are
presented in Section 4.

2. The static oval billiard, the mapping and escaping particles

The model we consider in this section consists of a classical
particle confined to move in a domain which the radius of the
boundary is given by the following equation in polar coordinates

R(θ, ε, p) = 1 + ε cos(pθ), (1)

where ε is the amplitude of the circle’s perturbation, θ is the
angular coordinate and p > 0 is an integer. For the parameter
ε = 0 the circular billiard is obtained leading to a foliated phase
space [1]. Therefore chaos is not observed. In the case of ε �= 0
but considering ε < εc = 1/(p2 + 1), the billiard is convex, and
the phase space contains both elliptic islands, invariant spanning
curves corresponding to rotating orbits (also called whispering
gallery orbits) and chaotic regions [49] while for ε � εc the bil-
liard is no longer convex; all the invariant tori are destroyed [19]
however some elliptic islands survive.

The dynamics of the particle is described by a two-dimensional
nonlinear area preserving map T for the variables (θn,αn) where
θn is the angular position of the particle and αn is the an-
gle that the trajectory of the particle does with respect to the
Fig. 1. Illustration of the angles that describe the dynamics and an escaping trajec-
tory.

tangent vector of the boundary at the angular position θn (see
Fig. 1). The index n corresponds to the nth collision of the par-
ticle with the boundary. Using polar coordinates one has that
X(θn) = [1+ε cos(pθn)] cos(θn) and Y (θn) = [1+ε cos(pθn)] sin(θn).
For an initial condition (θn,αn), the angle between the tangent
and the boundary at the position X(θn) and Y (θn) with respect
to the horizontal is φn = arctan[Y ′(θn)/X ′(θn)]. Between collisions,
the particle travels with a constant velocity along a straight line
until reaches the boundary. The equation that gives the trajectory
of the particle is

Y (θn+1) − Y (θn) = tan(αn + φn)
[

X(θn+1) − X(θn)
]
, (2)

where φn is the slope of the tangent vector measured with respect
to the positive X-axis, X(θn+1) and Y (θn+1) are the new rectangu-
lar coordinates of the collision point at θn+1, which is numerically
obtained as solution of Eq. (2). The angle between the trajectory of
the particle and the tangent vector to the boundary at θn+1 is

αn+1 = φn+1 − (αn + φn). (3)

Fig. 1 illustrates the corresponding angles and a escaping particle
from the billiard. The mapping that describes the dynamics of the
model is thus given by

T :
{ F (θn+1) = R(θn+1) sin(θn+1) − Y (θn)

− tan(αn + φn)[R(θn+1) cos(θn+1) − X(θn)],
αn+1 = φn+1 − (αn + φn)

(4)

where θn+1 is numerically obtained as solution of F (θn+1) = 0 with
R(θn+1) = 1 + ε cos(pθn+1) and φn+1 = arctan[Y ′(θn+1)/X ′(θn+1)].

A typical phase space for the static version for different control
parameters together with a visualization of a period three orbit is
shown in Fig. 2. The parameters used in the figure were p = 3
and: (a) ε = 0.07 < εc , (b) ε = 0.1 = εc . Fig. 2(c) shows a pe-
riod three orbit indicating corresponding region in the phase space
of (a) while (d) shows zoom-in of a region near a elliptic island
of (b).

Let us now consider that the boundary has a hole through
which the particles are injected and can escape, as shown in Fig. 1.
We assume the hole is localized in θ ∈ (0,h) where h is a parame-
ter. We simulated different values of h � π/10 however in this Let-
ter we fix it at h = 0.1. The procedure used to consider the escape
of the particles assumes the evolution of an ensemble of initial
conditions. Indeed we consider 106 different initial conditions in a
window where 103 θ0 are uniformly distributed along θ0 ∈ (0,h)
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Fig. 2. Phase space for the oval billiard for the control parameters: (a) ε = 0.07 and
(b) ε = 0.1. (c) shows a typical periodic orbit and (d) a zoom-in of a specific region
of (b).

while a window of 103 different α0 also uniformly distributed
along α0 ∈ (0,π). Each one of them was let to evolve a maximum
of 106 collisions with the boundary, if it did not escape before.
When the particle reaches the region of the hole for the first time,
the number of collisions with the boundary spent up to that point
is registered and the particle is assumed to escape. A new initial
condition is then started and the procedure is repeated until all
the ensemble is exhausted. The histogram of frequency of escaping
particles, represented as H(n) is shown in Fig. 3(a) for three dif-
ferent parameters, as labeled in the figure. For a fixed p = 3, the
parameter ε = 0.07 < εc causes the phase space to have both el-
liptic islands as well as invariant spanning curves [19] correspond-
ing to the so-called whispering gallery orbits. The presence of the
elliptic islands leads the dynamics of some initial conditions to ex-
perience a sticky behavior that can be long. The invariant spanning
curves are destroyed for the cases of ε = 0.1 and ε = 0.13. Fig. 3(a)
shows the behavior of the histogram of escaping orbits. The hori-
zontal axis denotes the number of collisions the particle suffered
with the boundary before escaping while the vertical one corre-
sponds to the fraction of orbits which escaped at the nth collision.
Given that p = 3 one can see that the histogram shows a lower
value for three bounces with boundary as compared with n = 2
and n = 4. This reduction is related to the stability of period three
orbits in the phase space, therefore trapping the particle close to
this region. For large n we see a long tail which corresponds to
sticky orbits. The integration of such histogram gives the so-called
cumulative recurrence time distribution, which is defined as
Fig. 3. (a) Histogram of frequency for the escaping orbits from the billiard. (b) Corre-
sponding survival probability, obtained by integration of the histogram shown in (a).
The parameters used were p = 3 and ε = 0.07 < εc , ε = 0.1 = εc and ε = 0.13 > εc .

P = 1

N

N∑
j=1

Nrec(n), (5)

where the summation is taken along the ensemble of N = 106

different initial conditions. Nrec(n) denotes the number of initial
conditions that do not escape through the hole (i.e. recur) until a
collision n. When Eq. (5) is evaluated in a fully chaotic dynamics
its behavior is an exponential [43] while for a mixed phase space
where intermittent orbits exist along the phase space a power
law is observed [44]. We have shown recently [50] that the ex-
istence of elliptic islands may also lead to a stretched exponential
decay. Fig. 3(b) shows the behavior of three curves of P (n) vs
n for the same set of control parameters used in Fig. 3(a). For
ε = 0.07 < εc the decay is exponentially fast at the beginning un-
til about 200 collisions of the particle with the boundary when
the curve changes to a slower decaying regime marked by a power
lay with exponent −2.431(4). For ε = 0.1 = εc , the invariant span-
ning curves creating the whispering gallery orbits are destroyed.
The decay of P at the beginning is the same for ε = 0.07 when a
hump appeared around n ∼= 500 lasting until n ∼= 1500. Indeed the
hump is described by a stretched exponential of the type

P = P0 exp
(
bnγ

)
(6)

with the coefficients P0 = 0.0054, b = −0.104 and γ = 0.4674 ∼=
0.5. From the 106 different initial conditions, the region corre-
sponding to the hump is due to 947 initial conditions. The major
part of the trapping happens near a period three orbit as shown
in Fig. 4(a) with the corresponding sticky orbit plotted in Fig. 4(b).
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Fig. 4. Plot of a typical long-lived orbit in the billiard (a), (c) and its corresponding
representation in the phase space (b), (d) for the parameters p = 3, h = 0.1 and:
(a), (b) ε = 0.1 = εc ; (c), (d) ε = 0.13 > εc .

Finally, for ε = 0.13 > εc the elliptic regions in the phase space
are reduced and the recurrence distribution decays rapidly at first.
After n > 1360, some of the initial conditions are trapped for long
time in a sticky region. The few orbits trapped for a long time were
mostly observed near a period twelve orbit, as shown in Fig. 4(c)
with its corresponding plot in the phase space shown in Fig. 4(d).

3. Time dependent oval billiard and escaping particles results

This section is devoted to discussing the recurrence time distri-
bution of the time-dependent oval billiard. We first construct the
mapping that gives the precise description of the dynamics. The
radius of the boundary in polar coordinates, to include the time-
dependence, is now written as

Rb(θ, t) = 1 + ε
[
1 + a cos(t)

]
cos(pθ), (7)

where a corresponds to the amplitude of oscillation of the bound-
ary. The introduction of the time perturbation to the boundary
produces two new additional variables that have to be considered,
namely: (i) the velocity of the particle, V , and the time t . The
map describing the dynamics has now four dynamical variables,
i.e. T (θn,αn, Vn, tn) = (θn+1,αn+1, Vn+1, tn+1). Supposing the ini-
tial conditions (θn,αn, Vn, tn) are given, a similar procedure as
made in the previous section can be used to describe the posi-
tion and trajectory of the particle. Then the instant of the collision
is obtained by the numerical solution of the following equation
Fig. 5. Plot of five snapshots of a trajectory for an escaping particle in the time
varying billiard. The control parameters used, for visual purposes, were p = 3, ε =
0.1 and a = 0.8.

R p(θ, t) = Rb(θ, t), (8)

where Rb(θ, t) = 1 + ε[1 + a cos(tn + t)] cos(pθp) and R p(t) =√
X2

p(t) + Y 2
p(t) with the corresponding angle θp = arctan[Y p(t)/

X p(t)], X p(t) = X(θn, tn) + | �Vn| cos(φn + αn)(t − tn), and Y p(t) =
Y (θn, tn) + | �Vn| sin(φn + αn)(t − tn), with t � tn .

The angular coordinate at the new collision, θn+1, is numeri-
cally obtained from Eq. (8) via a numerical procedure similar to
the molecular dynamics method leading to an accuracy of 10−12

in the time of the collision. Given θn+1, the time at the collision is
written as

tn+1 = tn + [(�X)2 + (�Y )2]1/2

vn
, (9)

where �X = X p(θn+1) − X p(θn) and �Y = Y p(θn+1) − Y p(θn). The
velocity of the moving boundary is given by

�vb(tn+1) = −εa sin(tn+1) cos(pθn+1)

× [
cos(θn+1)�i + sin(θn+1)�j

]
. (10)

The reflection laws used are

�V ′
n+1 · �Tn+1 = �V ′

n · �Tn+1, (11)

�V ′
n+1 · �Nn+1 = −�V ′

n · �Nn+1, (12)

where the upper prime denotes the variables are represented in
the moving referential frame. From Eq. (11) one concludes that
the tangent component of the velocity does not indeed suffers any
modification after the impact. Returning to the inertial frame of
reference, we obtain that

�vn+1 · �Tn+1 = vn
[
cos(αn + φn) cos(φn+1)

]
+ vn

[
sin(αn + φn) sin(φn+1)

]
. (13)

Considering Eq. (12), in the rest referential frame, the normal com-
ponent of the velocity of the particle is

�vn+1 · �Nn+1 = −vn
[− cos(αn + φn) sin(φn+1)

]
+ vn

[
sin(αn + φn) cos(φn+1)

]
− 2εa sin(tn+1) cos(pθn+1)

× [− cos(θn+1) sin(φn+1)
]

− 2εa sin(tn+1) sin(θn+1) cos(φn+1).
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Fig. 6. (a) Histogram of frequency for the escaping orbits from the billiard. (b) Corre-
sponding survival probability, obtained by integration of the histogram shown in (a).
The parameters used were p = 3 and ε = 0.07 < εc , ε = 0.1 = εc and ε = 0.13 > εc

and a = 0.1.

The velocity of the particle immediately after the impact is

vn+1 =
√

(�vn+1 · �Tn+1)2 + (�vn+1 · �Nn+1)2, (14)

and finally, the angle that the particle leaves the boundary, mea-
sured with respect to a tangent to the point θn+1 is written as

αn+1 = arctan

[ �vn+1 · �Nn+1

�vn+1 · �Tn+1

]
. (15)

For a �= 0 the particle can gain or lose energy upon collisions
with the boundary and given that the phase space has chaotic
components, unlimited energy growth is observed [51] therefore
confirming the LRA conjecture. Fig. 5 shows 5 snapshots of an orbit
as well as the corresponding position of the wall at the instant of
the collisions. The parameters used, only for visual purposes were
p = 3, ε = 0.1, a = 0.8 with h = 0.1.

The histogram of frequency for the escaping orbits is shown in
Fig. 6(a) for the parameters p = 3, a = 0.1 and the same three dif-
ferent ε , as used in the static case. We can see from the histogram
(Fig. 6(a)) that the escaping particles at 3 collisions are still less ob-
served than the ones for 2 and 4 collisions. The survival probability
was considered for different values of ε and for three different val-
ues of initial velocity. For ε = 0.07, we can see in Fig. 6(b) that the
survival probability decays exponentially fast and few orbits keep
trapped at large n therefore leading the curve to slower the de-
cay at the end. The slower initial velocity V 0 = 0.1 seems to affect
less the dynamics while a short tail of slower decay is observed for
V 0 = 1 and V 0 = 10. For ε = 0.1 (see Fig. 6(c)), the survival prob-
ability for V 0 = 10 is marked by a hump starting at n ≈ 400 while
few orbits are trapped in sticky domain for V 0 = 1 and V 0 = 0.1.
On the other hand, when ε = 0.13 (see Fig. 6(d)), no significant
changes from fast exponential decay was observed as dependent
on the initial velocity.

Let us discuss the results obtained for the survival probabil-
ity considering the two cases of (i) static and (ii) time-varying
boundary. For the static boundary, the velocity of the particle is
constant and for a mixed phase space where invariant spanning
curves and KAM islands coexist, the sticky behavior observed is
larger as compared to the case where invariant spanning curves
are destroyed (ε � εc (see Ref. [19])) and chaotic sea is limited by
KAM islands only. Therefore the decay of the survival probability
starts exponentially at short collisions and suddenly it is marked
by a changeover turning into a power law for large number of col-
lisions. On the other hand, when the invariant spanning curves are
destroyed but the period three region in the phase space still in-
fluences the dynamics, several instances of trapping were observed
leading the dynamics to spend long time near period three or-
bits. The decay of the survival probability starts exponentially fast
at short collisions and suddenly it changes to a slower decay be-
ing characterized by a stretched exponential. The decay is slower
than exponential but is still faster than a power law. Indeed, as
the control parameters are varied and invariant spanning curves
are destroyed, one can observe a continuum spectrum of decay
ranging from exponential to a power law. This variation is still an
open problem and extensive theoretical and numerical investiga-
tions should be made to describe it properly. As the parameter ε
rises, the elliptic region in the phase space decreases and the ex-
ponentially fast decay of the survival probability is most evident.
However trapping is still observed for large times. In our case we
observed a few long orbits trapped near a region of period twelve.
Such orbits indeed slow the decay of the survival probability at the
very long time but were observed only in a few trajectories.

For case (ii) where a time varying boundary is considered, the
velocity of the particle is no longer constant. The LRA conjecture
claims [37], the chaotic dynamics of the particle for the static
boundary leads to the unlimited energy growth when a time per-
turbation is considered; numerical studies of this model are consis-
tent with this prediction [46,51]. A consequence is that a particle
with high energy collides many more times with the boundary in
a given interval of time while compared with a lower energy parti-
cle at the same interval of time. Over a small number of collisions
the billiard it sees is effectively static, and it is likely to escape
well before Fermi acceleration is evident. This is observed partic-
ularly for the case of ε = 0.1 and V 0 = 10 where a hump in the
survival probability is evident.

4. Concluding remarks

We have studied some dynamical properties of an oval-like bil-
liard with a hole in the boundary, considering both static as well
as time dependent boundaries. For the static case, the recurrence
time distribution of the hole has a fast decay for short collisions
changing the decay either to a power law or stretched exponen-
tial, depending on the control parameter. The power law observed
for ε = 0.07 in the static case has slope −2.431(4) while the
stretched exponential for ε = 0.1 is given by P = P0 exp(bnγ ) with
coefficients P0 = 0.0054, b = −0.104 and γ = 0.47. The sticky or-
bits present in the dynamics are responsible for slowing the decay
of the recurrence time distribution. For the time dependent case,
the survival probability was considered for different values of ε
and for three different values of initial velocity. For ε = 0.07, the
lower initial velocity seems to affect less the trapping orbits while
a short tail is observed for larger initial velocities indicating a
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sticky regime. For ε = 0.1, the initial V 0 = 10 lead the survival
probability to exhibit a hump starting at n ≈ 400 therefore indi-
cating a sticky regime. Indeed at that large energy, the particle
suffers many more collisions with the boundary at the same in-
terval of time as compared to a low energy particle, hence seeing
less the influence of the moving boundary compared with a lower
energy particle, therefore seem to be more susceptible to sticky
behavior. For ε = 0.13 the initial velocities considered do not seem
to change significantly the fast exponential decay as observed for
ε = 0.1 and ε = 0.07.

The observation of stretched exponential decays, as in Ref. [50],
invites further investigation, as previous studies have concentrated
on algebraic decay models. We would like to remark that as in
Ref. [50], a stretched exponential decay is observed where there
is a single prominent elliptic periodic orbit responsible for the
stickiness, and also that the exponent γ is very close to 1/2. In
general, opening a dynamical system with a hole is a very effec-
tive method of elucidating the structure of intermittent dynam-
ics.
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