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a b s t r a c t

Cardenas-Barron [L.E. Cardenas-Barron, Economic production quantity with rework
process at a single-stage manufacturing system with planned backorders, Computers and
Industrial Engineering 57 (2009) 1105–1113] minimizes the annual total relevant cost
TC(Q , B) to find the economic production quantitywith rework process at amanufacturing
system and assumes that TC(Q , B) is convex. So, the solution (Q̄ , B̄) satisfying the first-
order-derivative condition for TC(Q , B) will be the optimal solution. However, this paper
indicates that (Q̄ , B̄) does not necessarily exist although TC(Q , B) is convex. Consequently,
the main purpose of this paper is two-fold:

(A) This paper tries to develop the sufficient and necessary condition for the existence of
the solution (Q̄ , B̄) satisfying the-first-derivative condition of TC(Q , B).

(B) This paper tries to present a concrete solution procedure to find the optimal solution
of TC(Q , B).

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Cardenas-Barron [1] minimizes the annual total relevant function TC(Q , B) to find the economic production quantity
with rework process at a manufacturing system with planned backorders and assumes that the annual total relevant cost
TC(Q , B) is convex. So, the solution (Q̄ , B̄) satisfying the-first-derivative condition for TC(Q , B) will be the optimal solution.
However, this paper indicates that (Q̄ , B̄) does not necessarily exist although TC(Q , B) is convex. Consequently, the main
purpose of this paper is two-fold:
(A) This paper tries to develop the sufficient and necessary condition for the existence of the solution (Q̄ , B̄) satisfying

the-first-derivative condition of TC(Q , B).
(B) This paper tries to present a concrete solution procedure to find the optimal solution of TC(Q , B).

2. The model

The model makes the following assumptions and notations that are used throughout this paper:
Assumptions:

(1) demand rate is constant and known over horizon planning;
(2) production rate is constant and known over horizon planning;
(3) the production rate is greater than demand rate;
(4) the production of defective products is known;

∗ Fax: +886 3 2655099.
E-mail address: kjchung@cycu.edu.tw.

0898-1221/$ – see front matter© 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2011.07.039

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82523465?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.camwa.2011.07.039
http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
mailto:kjchung@cycu.edu.tw
http://dx.doi.org/10.1016/j.camwa.2011.07.039


2548 K.-J. Chung / Computers and Mathematics with Applications 62 (2011) 2547–2550

Notations

D Demand rate, units per time
P Production rate, units per time (P > D)
R Proportion of defective products in each cycle


0 < R < 1 −

D
P


K Cost of a production setup (fixed cost), $ per setup
C Manufacturing cost of a product, $ per unit
H Inventory carrying cost per product per unit of time, H = iC
i Inventory carrying cost rate, a percentage
W Backorder cost per product per unit of time (linear backorder cost)
F Backorder cost per product (fixed backorder cost)
Q Batch size (units)
B Size of backorders (units)
A 1 − R
E 1 − R −

D
P

L 1 − (1 + R + R2)D
P

T Time between production runs
TC(Q , B) Total cost per unit of time
Q ∗, B∗ The optimal solution of TC(Q , B).

(5) the products are 100% screened and the screening cost is not considered;
(6) all defective products are reworked and converted into good quality products;
(7) scrap is not generated at any cycle;
(8) inventory holding costs are based on the average inventory;
(9) backorders are allowed and all backorders are satisfied;

(10) production and reworking are done in the same manufacturing system at the same production rate;
(11) two types of backorder costs are considered: linear backorder cost (backorder cost is applied to average backorders)

and fixed backorder cost (backorder cost is applied to maximum backorder level allowed);
(12) inventory storage space and the availability of capital is unlimited;
(13) the model is for only one product;
(14) the planning horizon is infinite.

Based on the above assumptions and notation, Cardenas-Barron [1] show that the total cost per unit of time TC(Q , B) can
be written as:

TC(Q , B) =
KD
Q

+
HQL
2

+
HB2A
2QE

− HB +
FBD
Q

+
WB2A
2QE

+ CD(1 + R). (1)

Eq. (1) shows that the respective partial derivatives with respect to Q and B can be expressed as:

∂TC(Q , B)
∂Q

= −
KD
Q 2

+
HL
2

−
HB2A
2Q 2E

−
FBD
Q 2

−
WB2A
2Q 2E

, (2)

∂TC(Q , B)
∂B

=
HBA
QE

− H +
FD
Q

−
WBA
QE

. (3)

Consider the first-order-derivative condition for TC(Q , B)

∂TC(Q , B)
∂Q

= 0 (4)

and

∂TC(Q , B)
∂B

= 0. (5)

Eqs. (4) and (5) imply

H [AL(H + W ) − EH]Q 2
= 2KDA(H + W ) − E(FD)2, (6)

A(H + W )B = E(HQ − FD). (7)

3. The sufficient and necessary condition for the existence of the solution of the simultaneous Eqs. (4) and (5)

Let (Q̄ , B̄) denote the solution of the simultaneous Eqs. (4) and (5).
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Solving Eqs. (6) and (7) simultaneously for Q̄ and B̄, we get

Q̄ =


2KDA(H + W ) − E(FD)2

H[A(H + W )L − EH]
(8)

B̄ =
E(HQ̄ − FD)

A(H + W )
. (9)

Theorem 4.31 [2, page 92] explains that if TC(Q , B) is convex, then (Q ∗, B∗) = (Q̄ , B̄). However, the solution (Q̄ , B̄) of
the simultaneous Eqs. (4) and (5) does not necessarily exist if

2KDA(H + W ) − E(FD)2

H[A(H + W )L − EH]
≤ 0, (10)

or

B̄ =
E(HQ̄ − FD)

A(H + W )
< 0. (11)

To overcome Eq. (11), substituting (8) into (9) to make B̄ ≥ 0, we have

2KDH ≥ F 2D2L. (12)

Lemma 1. AL(H + W ) − EH > 0

Proof.

AL(H + W ) − EH = (1 − R)
[
1 − (1 + R + R2)

D
P

]
(H + W ) −


1 − R −

D
P


H

= (1 − R)W − (1 − R3)
D
P

(H + W ) +
D
P
H

=
1
P


[P(1 − R)W + DH] − (1 − R3)D(H + W )


. (13)

According to Fig. 1 in [1], we have

P(1 − R) > D. (14)

Eqs. (13) and (14) reveal

AL(H + W ) − EH >
1
P


D(H + W ) − (1 − R3)D(H + W )


=

R3D
P

(H + W ) > 0.

This completes the proof of Lemma 1. �

Lemma 2. If 2KDH ≥ F 2D2L, then

(i) 2KDA(H + W ) − E(FD)2 > 0. (15)
(ii) TC(Q , B) is convex.

Proof. (i) H

2KDA(H + W ) − E(FD)2


≥ F 2D2 [A(H + W )L − EH] > 0 (by Lemma 1).

(ii) Eqs. (11), (12), and (17) in [1] imply TC(Q , B) is convex.
Incorporating (i) and (ii), we have completed the proof of Lemma 2. �

Lemmas 1 and 2 conclude that the following result holds.

Theorem 1. The solution (Q̄ , B̄) satisfying the first-order-derivative condition for TC(Q , B) exists if and only if 2KDH ≥ F 2D2L.

4. The solution procedure to locate the optimal solution (Q ∗, B∗) of TC(Q , B)

From Theorem 1, two cases occur:
Case (A): 2KDH ≥ F 2D2L.
This case implies that TC(Q , B) is convex on Q > 0 and B ≥ 0. The first-order-derivative conditions for a minimum

imply that the optimal solution (Q ∗, B∗) of TC(Q , B) is the solution (Q̄ , B̄) of the simultaneous Eqs. (4) and (5). Furthermore,
(Q ∗, B∗) can be expressed by Eqs. (8) and (9), respectively.
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Case (B): 2KDH < F 2D2L.
This case implies that three situations occur:
(b1) 2KDA(H + W ) − E(FD)2 > 0.
In this situation, Eq. (8) is well-defined. Substituting (8) into (9), we get B̄ < 0. So, (Q̄ , B̄) does not exist.
(b2) 2KDA(H + W ) = E(FD)2.
In this situation, Q̄ = 0 and B̄ = −

EFD
A(H+W )

< 0. So, (Q̄ , B̄) does not exist.
(b3) 2KDA(H + W ) < E(FD)2.
In this situation, Q̄ is not well-defined. So, (Q̄ , B̄) does not exist.
Incorporating (b1)–(b3), it is concluded that if Q > 0 and B > 0, then (Q , B) is never the optimal solution of TC(Q , B) on

Q > 0 and B ≥ 0. So, if the optimal solution of TC(Q , B) on Q > 0 and B ≥ 0 exists, then B∗
= 0. Consequently, we have

the following result.

Theorem 2. (I) If 2KDH ≥ F 2D2L, then the optimal solution (Q ∗, B∗) of TC(Q , B) on Q > 0 and B ≥ 0 can be determined by
Eqs. (8) and (9), respectively.

(II) If 2KDH < F 2D2L, then B∗
= 0 and Q ∗

=


2KD
HL .

The above arguments reveal that the optimal solution (Q ∗, B∗) of TC(Q , B) using our approach is consistent with that
using [1]. Furthermore, if Eq. (15) is not satisfied, then we obtain a negative value under the radical in Eq. (8). In such a case,
Cardenas-Barron [1] does not explain why the optimal inventory policy to implement is to permit no backorders (B∗

= 0)
which results in a lot size given by

Q ∗
=


2KD
HL

. (16)

Cardenas-Barron [1] indicates that one may obtain a negative value under the radical in Eq. (16) when L is less than zero.

However, Theorem 2 (II) demonstrates that if (Q ∗, B∗) =


2KD
HL , 0


is the optimal solution of TC(Q , B), then L > 0. So, the

valid interval for R is

0, 1 −

D
P


. Therefore, Theorem 2(II) explains that Eq. (26) in [1] is meaningless.

5. Conclusions

If 2KDH ≥ F 2D2L, then T (Q , B) is convex on Q > 0 and B ≥ 0. The solution (Q̄ , B̄) satisfying the simultaneous Eqs. (4)
and (5)

∂TC(Q , B)
∂Q

= 0, (4)

and

∂TC(Q , B)
∂B

= 0, (5)

will be the optimal solution (Q ∗, B∗). Under this case, (Q ∗, B∗) = (Q̄ , B̄). However, as argued in this paper, if 2KDH < F 2D2L,

then (Q̄ , B̄) does not exist. Under this case, L > 0 and (Q ∗, B∗) =


2KD
HL , 0


. Cardenas-Barron [1] does not explain why

the optimal inventory policy to implement is to permit no backorders (B∗
= 0) if Eq. (15) is not satisfied. Theorem 2 (II)

complements the reason and indicates that Equation (26) in [1] is meaningless. In sum, this paper improves [1].
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