Contents lists available at SciVerse ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

The economic production quantity with rework process in supply chain management

Kun-Jen Chung*

College of Business, Chung Yuan Christian University, 32023 Chung Li, Taiwan, ROC

ARTICLE INFO

Article history: Received 18 June 2010 Accepted 10 July 2011

Keywords: Economic order quantity Economic production Rework process and planned backorders

ABSTRACT

Cardenas-Barron [L.E. Cardenas-Barron, Economic production quantity with rework process at a single-stage manufacturing system with planned backorders, Computers and Industrial Engineering 57 (2009) 1105–1113] minimizes the annual total relevant cost TC(Q, B) to find the economic production quantity with rework process at a manufacturing system and assumes that TC(Q, B) is convex. So, the solution (\bar{Q}, \bar{B}) satisfying the first-order-derivative condition for TC(Q, B) will be the optimal solution. However, this paper indicates that (\bar{Q}, \bar{B}) does not necessarily exist although TC(Q, B) is convex. Consequently, the main purpose of this paper is two-fold:

- (A) This paper tries to develop the sufficient and necessary condition for the existence of the solution (\bar{Q}, \bar{B}) satisfying the-first-derivative condition of TC(Q, B).
- (B) This paper tries to present a concrete solution procedure to find the optimal solution of TC(Q, B).

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Cardenas-Barron [1] minimizes the annual total relevant function TC(Q, B) to find the economic production quantity with rework process at a manufacturing system with planned backorders and assumes that the annual total relevant cost TC(Q, B) is convex. So, the solution $(\overline{Q}, \overline{B})$ satisfying the-first-derivative condition for TC(Q, B) will be the optimal solution. However, this paper indicates that $(\overline{Q}, \overline{B})$ does not necessarily exist although TC(Q, B) is convex. Consequently, the main purpose of this paper is two-fold:

- (A) This paper tries to develop the sufficient and necessary condition for the existence of the solution $(\overline{Q}, \overline{B})$ satisfying the-first-derivative condition of TC(Q, B).
- (B) This paper tries to present a concrete solution procedure to find the optimal solution of TC(Q, B).

2. The model

The model makes the following assumptions and notations that are used throughout this paper: Assumptions:

- (1) demand rate is constant and known over horizon planning;
- (2) production rate is constant and known over horizon planning;
- (3) the production rate is greater than demand rate;
- (4) the production of defective products is known;

* Fax: +886 3 2655099. E-mail address: kjchung@cycu.edu.tw.

^{0898-1221/\$ –} see front matter s 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.camwa.2011.07.039

ת	Demand rate units per time
D D	Demand rate, units per time $(D > D)$
P	Production fate, units per time $(P > D)$
ĸ	Proportion of defective products in each cycle $\left(0 < R < 1 - \frac{2}{P}\right)$
Κ	Cost of a production setup (fixed cost), \$ per setup
С	Manufacturing cost of a product, \$ per unit
Н	Inventory carrying cost per product per unit of time, $H = iC$
i	Inventory carrying cost rate, a percentage
W	Backorder cost per product per unit of time (linear backorder cost)
F	Backorder cost per product (fixed backorder cost)
Q	Batch size (units)
В	Size of backorders (units)
Α	1 - R
Ε	$1-R-\frac{D}{P}$
L	$1 - (1 + R + R^2) \frac{D}{R}$
Т	Time between production runs
TC(O, B)) Total cost per unit of time
0* B*	The optimal solution of $TC(O, B)$
ζ, D	The optimilit solution of $TC(Q, D)$.

(5) the products are 100% screened and the screening cost is not considered;

- (6) all defective products are reworked and converted into good quality products;
- (7) scrap is not generated at any cycle;
- (8) inventory holding costs are based on the average inventory;
- (9) backorders are allowed and all backorders are satisfied;
- (10) production and reworking are done in the same manufacturing system at the same production rate;
- (11) two types of backorder costs are considered: linear backorder cost (backorder cost is applied to average backorders) and fixed backorder cost (backorder cost is applied to maximum backorder level allowed);
- (12) inventory storage space and the availability of capital is unlimited;

(13) the model is for only one product;

(14) the planning horizon is infinite.

Based on the above assumptions and notation, Cardenas-Barron [1] show that the total cost per unit of time TC(Q, B) can be written as:

$$TC(Q, B) = \frac{KD}{Q} + \frac{HQL}{2} + \frac{HB^2A}{2QE} - HB + \frac{FBD}{Q} + \frac{WB^2A}{2QE} + CD(1+R).$$
 (1)

Eq. (1) shows that the respective partial derivatives with respect to Q and B can be expressed as:

$$\frac{\partial TC(Q,B)}{\partial Q} = -\frac{KD}{Q^2} + \frac{HL}{2} - \frac{HB^2A}{2Q^2E} - \frac{FBD}{Q^2} - \frac{WB^2A}{2Q^2E},$$
(2)

$$\frac{\partial TC(Q,B)}{\partial B} = \frac{HBA}{QE} - H + \frac{FD}{Q} - \frac{WBA}{QE}.$$
(3)

Consider the first-order-derivative condition for TC(Q, B)

$$\frac{\partial TC(Q,B)}{\partial Q} = 0 \tag{4}$$

and

$$\frac{\partial TC(Q,B)}{\partial B} = 0.$$
(5)

Eqs. (4) and (5) imply

$$H [AL(H + W) - EH] Q^{2} = 2KDA(H + W) - E(FD)^{2},$$

$$A(H + W)B = E(HQ - FD).$$
(6)
(7)

3. The sufficient and necessary condition for the existence of the solution of the simultaneous Eqs. (4) and (5)

Let (\bar{Q}, \bar{B}) denote the solution of the simultaneous Eqs. (4) and (5).

Solving Eqs. (6) and (7) simultaneously for \overline{Q} and \overline{B} , we get

$$\bar{Q} = \sqrt{\frac{2KDA(H+W) - E(FD)^2}{H[A(H+W)L - EH]}}$$
(8)
$$= E(H\bar{Q} - FD)$$

$$\bar{B} = \frac{P(HQ - HD)}{A(H + W)}.$$
(9)

Theorem 4.31 [2, page 92] explains that if TC(Q, B) is convex, then $(Q^*, B^*) = (\bar{Q}, \bar{B})$. However, the solution (\bar{Q}, \bar{B}) of the simultaneous Eqs. (4) and (5) does not necessarily exist if

$$\frac{2KDA(H+W) - E(FD)^2}{H[A(H+W)L - EH]} \le 0,$$
(10)

or

$$\bar{B} = \frac{E(HQ - FD)}{A(H + W)} < 0.$$
⁽¹¹⁾

To overcome Eq. (11), substituting (8) into (9) to make $\overline{B} \ge 0$, we have

$$2KDH \ge F^2 D^2 L. \tag{12}$$

Lemma 1. AL(H + W) - EH > 0

Proof.

$$AL(H+W) - EH = (1-R) \left[1 - (1+R+R^2) \frac{D}{P} \right] (H+W) - \left(1 - R - \frac{D}{P} \right) H$$

= $(1-R)W - (1-R^3) \frac{D}{P} (H+W) + \frac{D}{P} H$
= $\frac{1}{P} \left\{ [P(1-R)W + DH] - (1-R^3)D(H+W) \right\}.$ (13)

According to Fig. 1 in [1], we have

$$P(1-R) > D. \tag{14}$$

Eqs. (13) and (14) reveal

$$AL(H+W) - EH > \frac{1}{P} \left\{ D(H+W) - (1-R^3)D(H+W) \right\}$$
$$= \frac{R^3D}{P} (H+W) > 0.$$

This completes the proof of Lemma 1. \Box

Lemma 2. If $2KDH \ge F^2D^2L$, then

(i)
$$2KDA(H + W) - E(FD)^2 > 0$$
.

(ii) TC(Q, B) is convex.

Proof. (i) $H[2KDA(H + W) - E(FD)^2] \ge F^2D^2[A(H + W)L - EH] > 0$ (by Lemma 1). (ii) Eqs. (11), (12), and (17) in [1] imply TC(Q, B) is convex.

Incorporating (i) and (ii), we have completed the proof of Lemma 2. \Box

Lemmas 1 and 2 conclude that the following result holds.

Theorem 1. The solution $(\overline{Q}, \overline{B})$ satisfying the first-order-derivative condition for TC(Q, B) exists if and only if $2KDH \ge F^2D^2L$.

4. The solution procedure to locate the optimal solution (Q^*, B^*) of TC(Q, B)

From Theorem 1, two cases occur:

Case (A): $2KDH \ge F^2D^2L$.

This case implies that TC(Q, B) is convex on Q > 0 and $B \ge 0$. The first-order-derivative conditions for a minimum imply that the optimal solution (Q^*, B^*) of TC(Q, B) is the solution $(\overline{Q}, \overline{B})$ of the simultaneous Eqs. (4) and (5). Furthermore, (Q^*, B^*) can be expressed by Eqs. (8) and (9), respectively.

(15)

Case (B): $2KDH < F^2D^2L$. This case implies that three situations occur: (b1) $2KDA(H + W) - E(FD)^2 > 0$. In this situation, Eq. (8) is well-defined. Substituting (8) into (9), we get $\overline{B} < 0$. So, $(\overline{Q}, \overline{B})$ does not exist. (b2) $2KDA(H + W) = E(FD)^2$. In this situation, $\overline{Q} = 0$ and $\overline{B} = -\frac{EFD}{A(H+W)} < 0$. So, $(\overline{Q}, \overline{B})$ does not exist. (b3) $2KDA(H + W) < E(FD)^2$. In this situation, \overline{Q} is not well-defined. So, $(\overline{Q}, \overline{B})$ does not exist.

Incorporating (b1)–(b3), it is concluded that if Q > 0 and B > 0, then (Q, B) is never the optimal solution of TC(Q, B) on Q > 0 and $B \ge 0$. So, if the optimal solution of TC(Q, B) on Q > 0 and $B \ge 0$ exists, then $B^* = 0$. Consequently, we have the following result.

Theorem 2. (1) If $2KDH \ge F^2D^2L$, then the optimal solution (Q^*, B^*) of TC(Q, B) on Q > 0 and $B \ge 0$ can be determined by Eqs. (8) and (9), respectively.

(II) If
$$2KDH < F^2D^2L$$
, then $B^* = 0$ and $Q^* = \sqrt{\frac{2KD}{HL}}$.

The above arguments reveal that the optimal solution (Q^*, B^*) of TC(Q, B) using our approach is consistent with that using [1]. Furthermore, if Eq. (15) is not satisfied, then we obtain a negative value under the radical in Eq. (8). In such a case, Cardenas-Barron [1] does not explain why the optimal inventory policy to implement is to permit no backorders $(B^* = 0)$ which results in a lot size given by

$$Q^* = \sqrt{\frac{2KD}{HL}}.$$
(16)

Cardenas-Barron [1] indicates that one may obtain a negative value under the radical in Eq. (16) when *L* is less than zero. However, Theorem 2 (II) demonstrates that if $(Q^*, B^*) = \left(\sqrt{\frac{2KD}{HL}}, 0\right)$ is the optimal solution of TC(Q, B), then L > 0. So, the valid interval for *R* is $\left(0, 1 - \frac{D}{p}\right)$. Therefore, Theorem 2(II) explains that Eq. (26) in [1] is meaningless.

5. Conclusions

If $2KDH \ge F^2D^2L$, then T(Q, B) is convex on Q > 0 and $B \ge 0$. The solution $(\overline{Q}, \overline{B})$ satisfying the simultaneous Eqs. (4) and (5)

$$\frac{\partial TC(Q,B)}{\partial Q} = 0,\tag{4}$$

and

$$\frac{\partial TC(Q,B)}{\partial B} = 0,\tag{5}$$

will be the optimal solution (Q^*, B^*) . Under this case, $(Q^*, B^*) = (\overline{Q}, \overline{B})$. However, as argued in this paper, if $2KDH < F^2D^2L$, then $(\overline{Q}, \overline{B})$ does not exist. Under this case, L > 0 and $(Q^*, B^*) = (\sqrt{\frac{2KD}{HL}}, 0)$. Cardenas-Barron [1] does not explain why the optimal inventory policy to implement is to permit no backorders $(B^* = 0)$ if Eq. (15) is not satisfied. Theorem 2 (II) complements the reason and indicates that Equation (26) in [1] is meaningless. In sum, this paper improves [1].

References

L.E. Cardenas-Barron, Economic production quantity with rework process at a single-stage manufacturing system with planned backorders, Computers and Industrial Engineering 57 (2009) 1105–1113.

^[2] M. Avrial, Nonlinear Programming: Analysis and Methods, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1976.