The economic production quantity with rework process in supply chain management

Kun-Jen Chung*
College of Business, Chung Yuan Christian University, 32023 Chung Li, Taiwan, ROC

ARTICLE INFO

Article history:

Received 18 June 2010
Accepted 10 July 2011

Keywords:

Economic order quantity
Economic production
Rework process and planned backorders

Abstract

Cardenas-Barron [L.E. Cardenas-Barron, Economic production quantity with rework process at a single-stage manufacturing system with planned backorders, Computers and Industrial Engineering 57 (2009) 1105-1113] minimizes the annual total relevant cost $T C(Q, B)$ to find the economic production quantity with rework process at a manufacturing system and assumes that $T C(Q, B)$ is convex. So, the solution (\bar{Q}, \bar{B}) satisfying the first-order-derivative condition for $T C(Q, B)$ will be the optimal solution. However, this paper indicates that (\bar{Q}, \bar{B}) does not necessarily exist although $T C(Q, B)$ is convex. Consequently, the main purpose of this paper is two-fold:

(A) This paper tries to develop the sufficient and necessary condition for the existence of the solution (\bar{Q}, \bar{B}) satisfying the-first-derivative condition of $T C(Q, B)$.
(B) This paper tries to present a concrete solution procedure to find the optimal solution of $T C(Q, B)$.
© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Cardenas-Barron [1] minimizes the annual total relevant function $T C(Q, B)$ to find the economic production quantity with rework process at a manufacturing system with planned backorders and assumes that the annual total relevant cost $T C(Q, B)$ is convex. So, the solution (\bar{Q}, \bar{B}) satisfying the-first-derivative condition for $T C(Q, B)$ will be the optimal solution. However, this paper indicates that (\bar{Q}, \bar{B}) does not necessarily exist although $T C(Q, B)$ is convex. Consequently, the main purpose of this paper is two-fold:
(A) This paper tries to develop the sufficient and necessary condition for the existence of the solution (\bar{Q}, \bar{B}) satisfying the-first-derivative condition of $T C(Q, B)$.
(B) This paper tries to present a concrete solution procedure to find the optimal solution of $T C(Q, B)$.

2. The model

The model makes the following assumptions and notations that are used throughout this paper:
Assumptions:
(1) demand rate is constant and known over horizon planning;
(2) production rate is constant and known over horizon planning;
(3) the production rate is greater than demand rate;
(4) the production of defective products is known;

[^0]
Notations

$D \quad$ Demand rate, units per time
$P \quad$ Production rate, units per time $(P>D)$
$R \quad$ Proportion of defective products in each cycle $\left(0<R<1-\frac{D}{P}\right)$
$K \quad$ Cost of a production setup (fixed cost), \$ per setup
C Manufacturing cost of a product, \$ per unit
$H \quad$ Inventory carrying cost per product per unit of time, $H=i C$
$i \quad$ Inventory carrying cost rate, a percentage
W Backorder cost per product per unit of time (linear backorder cost)
$F \quad$ Backorder cost per product (fixed backorder cost)
Q Batch size (units)
B Size of backorders (units)
A $\quad 1-R$
E $\quad 1-R-\frac{D}{P}$
$L \quad 1-\left(1+R+R^{2}\right) \frac{D}{P}$
$T \quad$ Time between production runs
$T C(Q, B)$ Total cost per unit of time
Q^{*}, B^{*} The optimal solution of $T C(Q, B)$.
(5) the products are 100% screened and the screening cost is not considered;
(6) all defective products are reworked and converted into good quality products;
(7) scrap is not generated at any cycle;
(8) inventory holding costs are based on the average inventory;
(9) backorders are allowed and all backorders are satisfied;
(10) production and reworking are done in the same manufacturing system at the same production rate;
(11) two types of backorder costs are considered: linear backorder cost (backorder cost is applied to average backorders) and fixed backorder cost (backorder cost is applied to maximum backorder level allowed);
(12) inventory storage space and the availability of capital is unlimited;
(13) the model is for only one product;
(14) the planning horizon is infinite.

Based on the above assumptions and notation, Cardenas-Barron [1] show that the total cost per unit of time TC (Q, B) can be written as:

$$
\begin{equation*}
T C(Q, B)=\frac{K D}{Q}+\frac{H Q L}{2}+\frac{H B^{2} A}{2 Q E}-H B+\frac{F B D}{Q}+\frac{W B^{2} A}{2 Q E}+C D(1+R) \tag{1}
\end{equation*}
$$

Eq. (1) shows that the respective partial derivatives with respect to Q and B can be expressed as:

$$
\begin{align*}
& \frac{\partial T C(Q, B)}{\partial Q}=-\frac{K D}{Q^{2}}+\frac{H L}{2}-\frac{H B^{2} A}{2 Q^{2} E}-\frac{F B D}{Q^{2}}-\frac{W B^{2} A}{2 Q^{2} E} \tag{2}\\
& \frac{\partial T C(Q, B)}{\partial B}=\frac{H B A}{Q E}-H+\frac{F D}{Q}-\frac{W B A}{Q E} \tag{3}
\end{align*}
$$

Consider the first-order-derivative condition for $T C(Q, B)$

$$
\begin{equation*}
\frac{\partial T C(Q, B)}{\partial Q}=0 \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial T C(Q, B)}{\partial B}=0 \tag{5}
\end{equation*}
$$

Eqs. (4) and (5) imply

$$
\begin{align*}
& H[A L(H+W)-E H] Q^{2}=2 K D A(H+W)-E(F D)^{2} \tag{6}\\
& A(H+W) B=E(H Q-F D) \tag{7}
\end{align*}
$$

3. The sufficient and necessary condition for the existence of the solution of the simultaneous Eqs. (4) and (5)

Let (\bar{Q}, \bar{B}) denote the solution of the simultaneous Eqs. (4) and (5).

Solving Eqs. (6) and (7) simultaneously for \bar{Q} and \bar{B}, we get

$$
\begin{align*}
& \bar{Q}=\sqrt{\frac{2 K D A(H+W)-E(F D)^{2}}{H[A(H+W) L-E H]}} \tag{8}\\
& \bar{B}=\frac{E(H \bar{Q}-F D)}{A(H+W)} \tag{9}
\end{align*}
$$

Theorem 4.31 [2, page 92] explains that if $T C(Q, B)$ is convex, then $\left(Q^{*}, B^{*}\right)=(\bar{Q}, \bar{B})$. However, the solution (\bar{Q}, \bar{B}) of the simultaneous Eqs. (4) and (5) does not necessarily exist if

$$
\begin{equation*}
\frac{2 K D A(H+W)-E(F D)^{2}}{H[A(H+W) L-E H]} \leq 0 \tag{10}
\end{equation*}
$$

or

$$
\begin{equation*}
\bar{B}=\frac{E(H \bar{Q}-F D)}{A(H+W)}<0 \tag{11}
\end{equation*}
$$

To overcome Eq. (11), substituting (8) into (9) to make $\bar{B} \geq 0$, we have

$$
\begin{equation*}
2 K D H \geq F^{2} D^{2} L . \tag{12}
\end{equation*}
$$

Lemma 1. $A L(H+W)-E H>0$
Proof.

$$
\begin{align*}
A L(H+W)-E H & =(1-R)\left[1-\left(1+R+R^{2}\right) \frac{D}{P}\right](H+W)-\left(1-R-\frac{D}{P}\right) H \\
& =(1-R) W-\left(1-R^{3}\right) \frac{D}{P}(H+W)+\frac{D}{P} H \\
& =\frac{1}{P}\left\{[P(1-R) W+D H]-\left(1-R^{3}\right) D(H+W)\right\} . \tag{13}
\end{align*}
$$

According to Fig. 1 in [1], we have

$$
\begin{equation*}
P(1-R)>D . \tag{14}
\end{equation*}
$$

Eqs. (13) and (14) reveal

$$
\begin{aligned}
A L(H+W)-E H & >\frac{1}{P}\left\{D(H+W)-\left(1-R^{3}\right) D(H+W)\right\} \\
& =\frac{R^{3} D}{P}(H+W)>0 .
\end{aligned}
$$

This completes the proof of Lemma 1.
Lemma 2. If $2 K D H \geq F^{2} D^{2} L$, then

$$
\begin{equation*}
\text { (i) } 2 K D A(H+W)-E(F D)^{2}>0 \text {. } \tag{15}
\end{equation*}
$$

(ii) $T C(Q, B)$ is convex.

Proof. (i) $H\left[2 K D A(H+W)-E(F D)^{2}\right] \geq F^{2} D^{2}[A(H+W) L-E H]>0$ (by Lemma 1).
(ii) Eqs. (11), (12), and (17) in [1] imply $T C(Q, B)$ is convex.

Incorporating (i) and (ii), we have completed the proof of Lemma 2.
Lemmas 1 and 2 conclude that the following result holds.
Theorem 1. The solution (\bar{Q}, \bar{B}) satisfying the first-order-derivative condition for $T C(Q, B)$ exists if and only if $2 K D H \geq F^{2} D^{2} L$.

4. The solution procedure to locate the optimal solution $\left(Q^{*}, B^{*}\right)$ of $T C(Q, B)$

From Theorem 1, two cases occur:
Case (A): $2 K D H \geq F^{2} D^{2} L$.
This case implies that $T C(Q, B)$ is convex on $Q>0$ and $B \geq 0$. The first-order-derivative conditions for a minimum imply that the optimal solution (Q^{*}, B^{*}) of $T C(Q, B)$ is the solution (\bar{Q}, \bar{B}) of the simultaneous Eqs. (4) and (5). Furthermore, (Q^{*}, B^{*}) can be expressed by Eqs. (8) and (9), respectively.

Case (B): $2 K D H<F^{2} D^{2} L$.
This case implies that three situations occur:
(b1) $2 K D A(H+W)-E(F D)^{2}>0$.
In this situation, Eq. (8) is well-defined. Substituting (8) into (9), we get $\bar{B}<0$. So, (\bar{Q}, \bar{B}) does not exist.
(b2) $2 K D A(H+W)=E(F D)^{2}$.
In this situation, $\bar{Q}=0$ and $\bar{B}=-\frac{E F D}{A(H+W)}<0$. So, (\bar{Q}, \bar{B}) does not exist.
(b3) $2 K D A(H+W)<E(F D)^{2}$.
In this situation, \bar{Q} is not well-defined. So, (\bar{Q}, \bar{B}) does not exist.
Incorporating (b1)-(b3), it is concluded that if $Q>0$ and $B>0$, then (Q, B) is never the optimal solution of $T C(Q, B)$ on $Q>0$ and $B \geq 0$. So, if the optimal solution of $T C(Q, B)$ on $Q>0$ and $B \geq 0$ exists, then $B^{*}=0$. Consequently, we have the following result.

Theorem 2. (I) If $2 K D H \geq F^{2} D^{2} L$, then the optimal solution (Q^{*}, B^{*}) of $T C(Q, B)$ on $Q>0$ and $B \geq 0$ can be determined by Eqs. (8) and (9), respectively.
(II) If $2 K D H<F^{2} D^{2} L$, then $B^{*}=0$ and $Q^{*}=\sqrt{\frac{2 K D}{H L}}$.

The above arguments reveal that the optimal solution $\left(Q^{*}, B^{*}\right)$ of $T C(Q, B)$ using our approach is consistent with that using [1]. Furthermore, if Eq. (15) is not satisfied, then we obtain a negative value under the radical in Eq. (8). In such a case, Cardenas-Barron [1] does not explain why the optimal inventory policy to implement is to permit no backorders $\left(B^{*}=0\right)$ which results in a lot size given by

$$
\begin{equation*}
Q^{*}=\sqrt{\frac{2 K D}{H L}} \tag{16}
\end{equation*}
$$

Cardenas-Barron [1] indicates that one may obtain a negative value under the radical in Eq. (16) when L is less than zero. However, Theorem 2 (II) demonstrates that if $\left(Q^{*}, B^{*}\right)=\left(\sqrt{\frac{2 K D}{H L}}, 0\right)$ is the optimal solution of $T C(Q, B)$, then $L>0$. So, the valid interval for R is $\left(0,1-\frac{D}{P}\right)$. Therefore, Theorem 2(II) explains that Eq. (26) in [1] is meaningless.

5. Conclusions

If $2 K D H \geq F^{2} D^{2} L$, then $T(Q, B)$ is convex on $Q>0$ and $B \geq 0$. The solution (\bar{Q}, \bar{B}) satisfying the simultaneous Eqs. (4) and (5)

$$
\begin{equation*}
\frac{\partial T C(Q, B)}{\partial Q}=0 \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial T C(Q, B)}{\partial B}=0 \tag{5}
\end{equation*}
$$

will be the optimal solution $\left(Q^{*}, B^{*}\right)$. Under this case, $\left(Q^{*}, B^{*}\right)=(\bar{Q}, \bar{B})$. However, as argued in this paper, if $2 K D H<F^{2} D^{2} L$, then (\bar{Q}, \bar{B}) does not exist. Under this case, $L>0$ and $\left(Q^{*}, B^{*}\right)=\left(\sqrt{\frac{2 K D}{H L}}, 0\right)$. Cardenas-Barron [1] does not explain why the optimal inventory policy to implement is to permit no backorders ($B^{*}=0$) if Eq. (15) is not satisfied. Theorem 2 (II) complements the reason and indicates that Equation (26) in [1] is meaningless. In sum, this paper improves [1].

References

[1] L.E. Cardenas-Barron, Economic production quantity with rework process at a single-stage manufacturing system with planned backorders, Computers and Industrial Engineering 57 (2009) 1105-1113.
[2] M. Avrial, Nonlinear Programming: Analysis and Methods, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1976.

[^0]: * Fax: +886 32655099.

 E-mail address: kjchung@cycu.edu.tw.

