An Approximation Technique for Nonlinear Integral Operations*

Jon Helton and Stephen Stuckwisch

Department of Mathematics, Arizona State University, Tempe, Arizona 85281
Submitted by C. L. Dolph

Abstract

Approximation results for J. S. Mac Nerney's theory of nonlinear integral operations are established. For the nonlinear product integral ${ }_{x} \Pi^{y}(1+V) P$, approximations of the form $\prod_{i=1}^{n}\left[1+L_{q}\left(x_{i-1}, x_{i}\right)\right] P$ are considered, where $L_{1}(u, v) P=\int_{u}^{v} V P$ and $L_{q}(u, v) P=\int_{u}^{v} V(r, s)\left[1+L_{q-1}(s, v)\right] P$ for $q=2,3, \ldots$. Error bounds are obtained for the difference between the product integral and the preceding product.

In a recent paper [3], the authors develop approximation techniques for Riemann product integrals. The purpose of this note is to present some related results for Mac Nerney's [13] theory of nonlinear integral operations.

The letters S, G, and H denote a nondegenerate, linearly ordered set, a normed complete Abelian group with zero element 0 , and the set of functions from G to G that map 0 into 0 , respectively. Further, $\mathcal{O A}$ denotes the set such that V is in $\mathcal{O} \mathscr{A}$ if, and only if, V is an additive function from $S \times S$ to H and there exists an additive function α from $S \times S$ to the nonnegative numbers such that, if $\{x, y, P, Q\}$ is in $S \times S \times G \times G$, then

$$
\|V(x, y) P-V(x, y) Q\| \leqslant \alpha(x, y)\|P-Q\| .
$$

For convenience, α is referred to as the Lipschitz function for V. If V is in $\mathcal{O A}$ and $\{x, y, P\}$ is in $S \times S \times G$, then the product integral ${ }_{x} \Pi^{y}(1+V) P$ exists and is equal to

$$
P+\int_{x}^{y} V(r, s)\left[\prod_{s}^{y}(1+V) P\right] .
$$

The statement that ${ }_{n} \Pi^{y}(1+V) P$ exists means there exists an element L of G such that, if $\epsilon>0$, then there exists a subdivision D of $\{x, y\}$ such that, if $\left\{x_{i}\right\}_{v=0}^{n}$ is a refinement of D, then

$$
\left\|L-\prod_{i=1}^{n}\left[1+V\left(x_{i-1}, x_{i}\right)\right] P\right\|<\epsilon
$$

[^0]All definitions are the same as those used by Mac Nerney [13]. The reader is referred to this reference for a complete presentation of the definitions and notation used in this paper. Additional studies involving nonlinear operations are presented by Neuberger [7], Herod [4-7], Reneke [16-17], Webb [18-20], Lovelady [9-12], Martin [14], Gibson [1], Kay [8], and Helton [2].

In the following, a technique for approximating the product integral ${ }_{x} \Pi^{y}(1+V) P$ is presented, where V is in $\mathcal{O A}$ with Lipschitz function α. With respect to such a function V, let

$$
\begin{gathered}
L_{1}(x, y) P=\int_{x}^{y} V P, \quad L_{q}(x, y) P=\int_{x}^{y} V(r, s)\left[1+L_{q-1}(s, y)\right] P \\
I_{1}(x, y)=\int_{x}^{y} \alpha, \quad \text { and } \quad I_{q}(x, y)=\int_{x}^{y} \alpha(r, s) I_{\alpha-1}(s, y)
\end{gathered}
$$

for $\{x, y, P\}$ in $S \times S \times G$ and $q=2,3, \ldots$. The following approximation result is established. If $\{x, y, P\}$ is in $S \times S \times G, q$ is a positive integer, and $\left\{x_{i}\right\}_{i=0}^{n}$ is a subdivision of $\{x, y\}$, then

$$
\begin{aligned}
& \left\|\prod_{x}^{v}(1+V) P-\prod_{i=1}^{n}\left[1+L_{q}\left(x_{i-1}, x_{i}\right)\right] P\right\| \\
& \quad \leqslant\left\{\prod_{a}^{b}(1+\alpha)-\prod_{i=1}^{n}\left[1+\sum_{j=1}^{q} I_{j}\left(x_{i-1}, x_{i}\right)\right]\right\}\|P\| .
\end{aligned}
$$

Two other closely related results are also established.
In each of the three results, the product integral ${ }_{x} \Pi^{y}(1+V) P$ is approximated by products involving the iterated integrals $L_{q}\left(x_{i-1}, x_{i}\right)$. These products converge to ${ }_{x} \Pi^{y}(1+V) P$ more rapidly than do products involving only $V\left(x_{i-1}, x_{i}\right)$. Hence, by considering products of the form

$$
\prod_{i=1}^{n}\left[1+L_{2}\left(x_{i-1}, x_{i}\right)\right] P
$$

rather than products of the form

$$
\prod_{i=1}^{n}\left[1+V\left(x_{i-1}, x_{i}\right)\right] P
$$

one is able to increase the rate at which the product under consideration converges to ${ }_{x} \Pi^{y}(1+V) P$.

The approximation results are now presented. Five lemmas are needed.

Lemma 1. Suppose $\left\{A_{i}\right\}_{i=1}^{n}$ is a sequence with values in H and $\left\{a_{i}\right\}_{i=1}^{n}$ is a sequence of nonnegative numbers such that, if $\{P, Q\}$ is in $G \times G$ and $1 \leqslant i \leqslant n$, then

$$
\left\|A_{i} P-A_{i} Q\right\| \leqslant a_{i}\|P-Q\|
$$

Then, in conclusion, if P is in G, the following inequalities hold:

$$
\begin{equation*}
\left\|\prod_{i=1}^{n}\left(1+A_{i}\right) P\right\| \leqslant\left[\prod_{i=1}^{n}\left(1+a_{i}\right)\right]\|P\| \tag{i}
\end{equation*}
$$

and

$$
\begin{align*}
& \left\|\left[\prod_{i=1}^{n}\left(1+A_{i}\right)\right] P-\left[1+\sum_{i=1}^{n} A_{i}\right] P\right\| \tag{ii}\\
& \quad \leqslant\left[\prod_{i=1}^{n}\left(1+a_{i}\right)-\left(1+\sum_{i=1}^{n} a_{i}\right)\right]\|P\| .
\end{align*}
$$

Proof. This lemma can be established by induction. The proof of conclusion (i) is straightforward and Mac Nerney [13, Lemma 1.1(ii), p. 623] presents a proof for conclusion (ii).

Lemma 2. Suppose each of $\left\{A_{i}\right\}_{i=1}^{n}$ and $\left\{B_{i}\right\}_{i=1}^{n}$ is a sequence of functions in H and each of $\left\{a_{i}\right\}_{i=1}^{n}$ and $\left\{b_{i}\right\}_{i=1}^{n}$ is a sequence of nonnegative numbers such that, if $\{P, Q\}$ is in $G \times G$ and $1 \leqslant i \leqslant n$, then

$$
A_{i} P-A_{i} Q\left\|\leqslant a_{i}\right\| P-Q\|, \quad\| B_{i} P\left\|\leqslant b_{i}\right\| P \|
$$

and

$$
\left\|B_{i} P-A_{i} P\right\| \leqslant\left(b_{i}-a_{i}\right)\|P\| .
$$

Then, in conclusion, if $\{P, Q\}$ is in $G \times G$, the following inequality holds:

$$
\left(\prod_{i=1}^{n} B_{i}\right) P-\left(\prod_{i=1}^{n} A_{i}\right) Q\left\|\leqslant\left[\prod_{i=1}^{n} b_{i}-\prod_{i=1}^{n} a_{i}\right]\right\| P\left\|+\left[\prod_{i=1}^{n} a_{i}\right]\right\| P-Q \|
$$

Proof. This lemma is established by Mac Nerney [13, Lemma 1.2, p. 623]. Mac Nerney states the lemma with $P=Q$ but establishes it in the form given here.

Lemma 3. If V is in $\mathcal{O A}$ with Lipschitz function α, q is a positive integer and $\{x, y, P, Q\}$ is in $S \times S \times G \times G$, then

$$
\left\|\left[1+L_{q}(x, y)\right] P-\left[1+L_{q}(x, y)\right] Q\right\| \leqslant\left[1+\sum_{j=1}^{q} I_{j}(x, y)\right]\|P-Q\|
$$

Proof. This lemma is established by induction. It follows immediately that the desired inequality is true for $q=1$. Now, the inequality is assumed to true for q and established for $q+1$. Suppose $\{x, y, P, Q\}$ is in $S \times S \times$ $\boldsymbol{G} \times \boldsymbol{G}$. Then,

$$
\begin{aligned}
& \|[1+\left.L_{a+1}(x, y)\right] P-\left[1+L_{\alpha+1}(x, y)\right] Q \| \\
& \leqslant\|P-Q\|+\left\|\int_{x}^{y} V(r, s)\left[1+L_{a}(s, y)\right] P-\int_{x}^{y} V(r, s)\left[1+L_{q}(s, y)\right] Q\right\| \\
& \leqslant\|P-Q\|+\int_{x}^{y} \alpha(r, s)\left\|\left[1+L_{a}(s, y)\right] P-\left[1+L_{q}(s, y)\right] Q\right\| \\
& \quad \leqslant\|P \cdot Q\|+\int_{x}^{y} \alpha(r, s)\left[1+\sum_{j=1}^{q} I_{j}(s, y)\right]\|P-Q\|
\end{aligned}
$$

[From induction hypothesis]
$=\left[1+\sum_{j=1}^{a+1} I_{j}(x, y)\right]\|P-Q\|$.
Thus, the inequality is established for $q+1$. This completes the proof of Lemma 3.

Lemma 4. If V is in $\mathcal{O} \mathscr{A}$ with Lipschitz function α and $\{x, y, P\}$ is in $S \times S \times G$, then

$$
\left\|\prod_{x}^{y}(1+V) P\right\| \leqslant\left[\prod_{x}^{y}(1+\alpha)\right]\|P\| .
$$

Proof. This lemma follows as a corollary to Lemma 1(i).

Lemma 5. If V is in $\mathcal{O} \mathscr{A}$ with Lipschitz function α, q is a positive integer, and $\{x, y, P\}$ is in $S \times S \times G$, then

$$
\begin{aligned}
\| & \prod^{y}(1+V) P-\left[1+I_{\tau_{q}}(x, y)\right] P \| \\
& \leqslant\left\{\prod_{x}^{v}(1+\alpha)-\left[1+\sum_{j=1}^{q} I_{j}(x, y)\right]\right\}\|P\| .
\end{aligned}
$$

Proof. This lemma is established by induction. The desired inequality can be established for $q=1$ by using Lemma 1(ii). Now, the inequality is assumed
to be true for q and established for $q+1$. Suppose $\{x, y, P\}$ is in $S \times S \times G$. Then,

$$
\begin{aligned}
& \left\|\prod_{x}^{y}(1+V) P-\left[1+L_{q+1}(x, y)\right] P\right\| \\
& \quad=\left\|\int_{x}^{y} V(r, s)\left[\prod_{s}^{y}(1+V) P\right]-\int_{x}^{y} V(r, s)\left[1+L_{q}(s, y)\right] P\right\| \\
& \quad \leqslant \int_{x}^{y} \alpha(r, s)\left\|\left[\prod_{s}^{y}(1+V) P\right]-\left[1+L_{q}(s, y)\right] P\right\| \\
& \quad \leqslant \int_{x}^{y} \alpha(r, s)\left\{\prod_{s}^{y}(1+\alpha)-\left[1+\sum_{j=1}^{q} I_{j}(s, y)\right]\right\}\|P\|
\end{aligned}
$$

[From induction hypothesis]

$$
=\left\{\prod_{x}^{y}(1+\alpha)-\left[1+\sum_{j=1}^{a+1} I_{j}(x, y)\right]\right\}\|P\|
$$

Thus, the inequality is established for $q+1$. This completes the proof of Lemma 5.

The approximation results now follow.

Theorem 1. If V is in $\mathcal{O A}$ with Lipschitz function α, q is a positive integer, $\{x, y, P\}$ is in $S \times S \times G$, and $\left\{x_{i}\right\}_{i=0}^{n}$ is a subdivision of $\{x, y\}$, then

$$
\begin{aligned}
& \left\|\prod_{x}^{y}(1+V) P-\prod_{i=1}^{n}\left[1+L_{q}\left(x_{i-1}, x_{i}\right)\right] P\right\| \\
& \quad \leqslant\left\{\prod_{x}^{y}(1+\alpha)-\prod_{i=1}^{n}\left[1+\sum_{j=1}^{q} I_{j}\left(x_{i-1}, x_{i}\right)\right]\right\} \| P_{\|} .
\end{aligned}
$$

Proof. This theorem is established as a corollary to Lemma 2. For $i=1,2, \ldots, n$, let

$$
\begin{gathered}
A_{i}=1+L_{q}\left(x_{i-1}, x_{i}\right), \quad B_{i}=\prod_{x_{i-1}}^{x_{i}}(1+V), \\
a_{i}==1+\sum_{j=1}^{q} I_{j}\left(x_{i-1}, x_{i}\right), \quad \text { and } \quad b_{i}=\prod_{x_{i-1}} \prod^{x_{i}}(1+\alpha) .
\end{gathered}
$$

With the preceding definitions, it follows from Lemmas 3, 4, and 5 that the hypothesis of Lemma 2 is satisfied. Thus, Lemma 2 produces the desired inequality. This completes the proof of Theorem 1.

Theorem 2. If V is in $\mathcal{O A}$ with Lipschitz function α, q is a positive integer, $\{x, y, P\}$ is in $S \times S \times G$, and $\left\{x_{i}\right\}_{i=0}^{n}$ is a subdivision of $\{x, y\}$, then

$$
\begin{aligned}
& \left\|\prod_{x}^{y}(1+V) P-\prod_{i=1}^{n}\left[1+L_{q}\left(x_{i-1}, x_{i}\right)\right] P\right\| \\
& \quad \leqslant \sum_{i=1}^{n}\left\{\prod_{k=1}^{i-1}\left[1+\sum_{j=1}^{q} I_{j}\left(x_{k-1}, x_{k}\right)\right]\right\}\left\{\sum_{j=q+1}^{\infty} I_{j}\left(x_{i-1}, x_{i}\right)\right\}\left\{\prod_{x_{i}} \prod^{y}(1+\alpha)\right\} P \|
\end{aligned}
$$

Proof. If each of $\left\{a_{i}\right\}_{i=1}^{n}$ and $\left\{b_{i}\right\}_{i=1}^{n}$ is a sequence of numbers, then

$$
\prod_{i=1}^{n} b_{i}-\prod_{i=1}^{n} a_{i}=\sum_{i=1}^{n}\left[\prod_{k=1}^{i-1} a_{k}\right]\left[b_{i}-a_{i}\right]\left[\prod_{k=i+1}^{n} b_{k}\right]
$$

This identity can be established by induction. Further, if $\{r, s\}$ is in $S \times S$, then

$$
\prod_{r}^{s}(1+\alpha)=1+\sum_{j=1}^{\infty} I_{j}(r, s)
$$

This identity is the Peano series representation for a product integral. The theorem now follows as a corollary to Theorem 1 by using the two preceding equalities. This completes the proof of Theorem 2.

Theorem 3. Suppose S is the set of real numbers, K is a positive constant, V is in $\mathcal{O A}$ with Lipschitz function α, q is a positive integer, and $\{x, y\}$ is an element of $S \times S$ such that, if $\{x, u, v, y\}$ is a subdivision of $\{x, y\}$, then

$$
\alpha(u, v) \leqslant K|v-u| .
$$

Then, in conclusion, there exists a positive constant B such that, if P is in G, n is a positive integer, $h=(y-x) / n$ and $x_{i}=x+$ hi for $i=0,1, \ldots, n$, then

$$
\left\|\prod_{x}^{y}(1+V) P-\prod_{i=1}^{n}\left[1+L_{q}\left(x_{i-1}, x_{i}\right)\right] P\right\| \leqslant|h|^{q} B\|P\|
$$

Proof. Let B_{1} denote a number such that, if $\left\{x_{i}\right\}_{i=0}^{n}$ is a subdivision of $\{x, y\}$ and $1 \leqslant i \leqslant n$, then

$$
\prod_{x_{i}}^{y}(1+\alpha)<B_{1} \quad \text { and } \quad \prod_{k=1}^{i-1}\left[1+\sum_{j=1}^{q} I_{j}\left(x_{k-1}, x_{k}\right)\right]<B_{1}
$$

Further, let B_{2} denote a number such that, if $\left\{x_{i}\right\}_{i=0}^{n}$ is a subdivision of $\{x, y\}$, then

$$
\sum_{i=1}^{n} \sum_{j=q+1}^{\infty} K^{j}\left|x_{i}-x_{i-1}\right|^{j-q} / j!<B_{2}
$$

Let $B=B_{1}{ }^{2} B_{2}$.

Suppose P is in G, n is a positive integer, $h=(y-x) / n$ and $x_{i}=x+h i$ for $i=0,1, \ldots, n$. It can be established by induction that

$$
I_{j}\left(x_{i-1}, x_{i}\right) \leqslant K^{j}\left|x_{i}-x_{i-1}\right|^{j} j j!
$$

for $j=1,2, \ldots$. Hence,

$$
\begin{aligned}
& \left\|\prod_{x}^{y}(1+V) P-\prod_{i=1}^{n}\left[1+L_{q}\left(x_{i-1}, x_{i}\right)\right] P\right\| \\
& \quad \leqslant \sum_{i=1}^{n}\left\{\prod_{k=1}^{i-1}\left[1+\sum_{j=1}^{q} I_{j}\left(x_{k-1}, x_{k}\right)\right]\right\}\left\{\sum_{j=\alpha+1}^{\infty} I_{j}\left(x_{i-1}, x_{i}\right)\right\}\left\{\prod_{x_{i}} \prod^{y}(1+\alpha)\right\}\|P\|
\end{aligned}
$$

[From Theorem 2]
$\leqslant B_{1}{ }^{2}\left[\sum_{i=1}^{n} \sum_{j=q+1}^{\infty} K^{j}\left|x_{i}-x_{i-1}\right|^{j} / j!\right]\|\boldsymbol{P}\|$
$=|h|^{q} B_{1}{ }^{2}\left[\sum_{i=1}^{n} \sum_{j=q+1}^{\infty} K^{j}\left|x_{i}-x_{i-1}\right|^{j-q} / j!\right]\|P\|$
$\leqslant|h|^{4} B_{1}{ }^{2} B_{2}\|P\|$
$=|h|^{q} B\|P\|$.
This completes the proof of Theorem 3.
Remark. In the preceding, we have restricted our study to interval functions in H. This restriction can be relaxed by considering a new class H^{*} of functions such that, if V is a function from $S \times S$ to the set of functions mapping G into G, then V is in H^{*} if, and only if, there exists an additive function γ from $S \times S$ to the nonnegative numbers such that, if $\{x, y\}$ is in $S \times S$, then

$$
\|V(x, y) 0\| \leqslant \gamma(x, y)
$$

Then, our results can be extended to functions in H^{*} by suitably defining V on the direct product of G and the group of order 2. This technique is given by Mac Nerney [13, Remark, p. 637].

Two examples are now presented.

Example 1. Let R^{n} denote the set of n-dimensional real vectors. Further, suppose $[a, b]$ is a number interval and $f(x, z)$ is a function from $[a, b] \times R^{n}$ to R^{n} which is continuous in x and satisfies the Lipschitz condition

$$
\|f(x, z)-f(x, w)\| \leqslant B\|z-w\|
$$

for x in $[a, b]$ and z, w in R^{n}. If V is defined by

$$
V(u, v) z=\int_{u}^{v}-f(x, z) d x
$$

for u, v in $[a, b]$ and \approx in R^{n}, then V is in $\mathscr{O A}$ on $[a, b]$ with respect to R^{n}. The Lipschitz function α for V is defined by $\alpha(u, v)=B|v-u|$. If V does not map 0 into 0 , then it is necessary to use the embedding technique referred to in the remark.

The initial value problem

$$
\begin{equation*}
y(a)=c, \quad d y / d x=f(x, y) \quad \text { for } a \leqslant x \leqslant b \tag{1}
\end{equation*}
$$

can be reformulated as

$$
\begin{aligned}
y(x) & =c+\int_{a}^{x} f[t, y(t)] d t \\
& =c+\int_{x}^{a}-f[t, y(t)] d t \\
& =c+\int_{x}^{a} V(u, v) y(v)
\end{aligned}
$$

Thus, $y(x)={ }_{x} \Pi^{a}(1+V) c$ is the solution of the initial value problem in (1). Hence, the results presented in this paper provide a means of approximating the solutions of initial value problems.

For this example, $L_{q}(u, v)$ is a function from R^{n} to R^{n} such that $\left[L_{q}(u, v)\right](z)$ is an iterated integral of the function $f(x, z)$. In the case $q=3$, this integral is given by

$$
\begin{aligned}
{\left[L_{3}(u, v)\right](z) } & =\left[\int_{v}^{u} f\left\{t,-+\int_{v}^{t} f\left[s,--+\int_{v}^{s} f(r,-) d r\right] d s\right\} d t\right](z) \\
& =\int_{v}^{u} f\left\{t, z+\int_{v}^{t} f\left[s, z+\int_{v}^{s} f(r, z) d r\right] d s\right\} d t
\end{aligned}
$$

for u, v in $[a, b]$ and z in R^{n}.
Example 2. Let R^{n} and $[a, b]$ be defined as in Example 1. Further, suppose $f(x, t, z)$ is a function from $[a, b] \times[a, b] \times R^{n}$ to R^{n} which is continuous in each of x and t and satisfies the Lipschitz condition

$$
\|f(x, t, z)-f(x, t, w)\| \leqslant B\|z-w\|
$$

for x, t in $[a, b]$ and z, w in R^{n}. Let G denote the set of all continuous functions from $[a, b]$ to R^{n} and, for g in G, let

$$
\|g\|_{G}=l u b\|g(x)\|, \quad a \leqslant x \leqslant b
$$

If V is defined by

$$
\begin{aligned}
{[V(u, v) g](x) } & =\left[\int_{u}^{v}-f\{-, t, g(t)\} d t\right](x) \\
& =\int_{u}^{v}-f\{x, t, g(t)\} d t
\end{aligned}
$$

for u, v in $[a, b]$ and g in G, then V is in $\mathcal{O A}$ on $[a, b]$ with respect to G. That is, $V(u, v)$ maps a continuous function into a continuous function. The Lipschitz function α for V is defined by $\alpha(u, v)=B|v-u|$. If V does not map 0 into 0 , then it is necessary to use the embedding technique referred to in the remark.

The solution of the Volterra integral equation

$$
\begin{equation*}
y(x)=g(x)+\int_{a}^{x} f\{x, t, y(t)\} d t \quad \text { for } a \leqslant x \leqslant b \tag{2}
\end{equation*}
$$

can be obtained from an integral equation in which the unknown is a function from $[a, b]$ to G. This equation is

$$
\begin{aligned}
h(x) & =g+\int_{a}^{x} f\{-, t,[h(t)](t)\} d t \\
& =g+\int_{x}^{a}-f\left\{_{-}, t,[h(t)](t)\right\} d t \\
& =g+\int_{x}^{a} V(u, v) h(v) .
\end{aligned}
$$

The preceding integral equation has

$$
h(x)=\prod_{x}^{a}(1+V) g
$$

as its solution. The function h maps $[a, b]$ into G, and the function y defined by

$$
\begin{aligned}
y(x) & =[h(x)](x) \\
& =\left[\prod_{x}^{a}(1+V) g\right](x) \\
& =\left[g+\int_{a}^{x} f\{-, t,[h(t)](t)\} d t\right](x) \\
& =g(x)+\int_{a}^{x} f\{x, t, y(t)\} d t
\end{aligned}
$$

maps $[a, b]$ into R^{n} and is the solution of the integral equation in (2). Hence, the results presented in this paper provide a means of approximating the solutions of Volterra integral equations. This example is due to Reneke [16].

References

1. W. L. Gibson, "Stieltjes and Stieltjes-Volterra Integral Equations," Doctoral Dissertation, University of Houston, 1974.
2. J. Helton, Nonlinear operations and the solution of integral equations, Trans. Amer. Math. Soc. 237 (1978), 373-390.
3. J. Helton and S. Stuckwisch, Numerical approximation of product integrals, J. Math. Anal. Appl. 56 (1976), 410-437.
4. J. V. Herod, Solving integral equations by iteration, Duke Math. J. 34 (1967), 519-534.
5. J. V. Herod, A pairing of a class of evolution systems with a class of generators, Trans. Amer. Math. Soc. 157 (1971), 247-260.
6. J. V. Herod, A product integral representation for an evolution system, Proc. Amer. Math. Soc. 27 (1971), 549-556.
7. J. V. Herod, Coalescence of solutions for nonlinear Stieltjes equations, J. Reine Angew. Math. 252 (1972), 187-194.
8. A. J. Kay, Nonlinear integral equations and product integrals, Pacific J. Math. 60 (1975), 203-222.
9. D. L. Lovelady, Addition in a class of Stieltjes integrators, Israel J. Math. 10 (1971), 391-396.
10. D. L. Lovelady, Algebraic structure for a set of nonlinear integral operations, Pacific J. Math. 37 (1971), 421-427.
11. D. L. Lovelady, Multiplicative integration of infinite products, Canad. J. Math. 23 (1971), 692-698.
12. D. L. Lovelady, Perturbations of solutions of Stieltjes integral equations, Trans. Amer. Math. Soc. 155 (1971), 175-187.
13. J. S. Mac Nerney, A nonlinear integral operation, Illinois J. Math. 8 (1964), 621-638.
14. R. H. Martin, Product integral approximations of solutions to linear operator equations, Proc. Amer. Math. Soc. 41 (1973), 506-512.
15. J. W. Neuberger, Continuous products and nonlinear integral equations, Pacific J. Math. 8 (1958), 529-549.
16. J. A. Reneke, A product integral solution of a Stieltjes-Volterra integral equation, Proc. Amer. Math. Soc. 24 (1970), 621-626.
17. J. A. Reneke, Product integral solutions for hereditary systems, Trans. Amer. Math. Soc. 181 (1973), 483-493.
18. G. F. Webs, Nonlinear evolution equations and product integration in Banach spaces, Trans. Amer. Malh. Suc. 148 (1970), 273-282.
19. G. F. Webb, Product integral representation of time dependent nonlinear evolution equations in Banach spaces, Pacific J. Math. 32 (1970), 269-281.
20. G. F. Werb, Nonlinear evolution equations and product stable operators on Banach spaces, Trans. Amer. Math. Soc. 155 (1971), 409-426.

[^0]: * This research was supported in part by a grant from Arizona State University.

