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Abstract

In this work, semiclassical orthogonal polynomials in two variables are defined as the orthogonal polynomials associated with
a quasi definite linear functional satisfying a matrix Pearson-type differential equation. Semiclassical functionals are characterized
by means of the analogue of the structure relation in one variable. Moreover, non trivial examples of semiclassical orthogonal
polynomials in two variables are given.
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1. Introduction

Classical orthogonal polynomials in one variable (Hermite, Laguerre, Jacobi and Bessel) can be defined as the only
sequences of polynomials which are orthogonal with respect to a linear functional u satisfying the Pearson differential
equation

D(�u) = �u, (1)

where � and � are fixed polynomials with deg ��2, and deg � = 1.
In 1985, Hendriksen and van Rossum [4], extended these ideas introducing a new class of orthogonal polynomials.

In fact, these authors studied orthogonal polynomials associated with linear functionals satisfying Eq. (1), with no
restrictions in the degrees of the polynomials �, and �.

Obviously, orthogonal polynomials defined as above, generalize in a natural way the classical ones. They were called
semiclassical orthogonal polynomials. Later, Maroni in [13] showed that semiclassical functionals can be characterized
as quasi definite functionals, with an orthogonal polynomial sequence {Pn}n satisfying

�P ′
n =

n+p−1∑
j=n−s−1

cn,jPj ,
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where � is a fixed polynomial, s and p are integers (in fact, � is the same polynomial as in Eq. (1)). This property is
the so-called Structure relation.

Classical orthogonal polynomials in two variables constitute a very old subject in the literature. Usually, they are
studied as the polynomial eigenfunctions of a partial differential operator. The classification of the classical orthogonal
polynomials in two variables was started in a pioneering paper by Krall and Sheffer [11]. Later, several authors (Kim,
et al. [6], Koornwinder [8], Littlejohn [12], and Suetin [14], among others), made some contributions in this direction.

Our point of view in [1,3] provides a wider perspective in the subject. We consider as classical every quasi definite
linear moment functional u satisfying the matrix Pearson differential equation

div(�u) = �tu,

where � is a symmetric 2 × 2 polynomial matrix in two variables of total degree not greater than 2, and � is a 2 × 1
polynomial vector in two variables of total degree 1.A restricted version of this kind of relation appears as a consequence
of the partial differential equation in the above-mentioned papers.

Our matrix notation for the Pearson equation was inspired by the vector representation for orthogonal polynomials
in several variables introduced by Kowalski in [9,10], and developed by Xu in [15].

In this work, using this matrix formalism, we introduce the concept of semiclassical linear functional in two variables,
and we prove the bivariate analogues of the Structure relation. Of course, as the reader can check, all the results in this
paper can be easily extended to the multivariate case.

The structure of the paper is as follows. Section 2 is devoted to collect definitions and basic results, essential for the
rest of the paper. In the next section, the definition of the semiclassical linear functional is given. The Structure relation
is proved in Section 4, and finally, in the last section, we analyze some nontrivial examples of semiclassical orthogonal
polynomials. In particular, we prove that the examples of two–variables analogues of the Jacobi polynomials given by
Koornwinder in [8] are semiclassical orthogonal polynomials in two variables, according to our definition.

In [8], those orthogonal polynomials are called classical since they are eigenfunctions of two commuting and
algebraically independent partial differential operators. The definition of classical orthogonal polynomials in two
variables considered in this paper provides a different perspective on the subject.

2. Preliminaries

Let Pn, n�0, denote the linear space of real polynomials in two variables of total degree not greater than n, and
let P =⋃

n�0Pn. Let Mh×k(R) denote the linear space of h × k real matrices and Mh(R) the real space of square
matrices. The linear spaces of polynomial matrices will be denoted by Mh×k(P) and Mh(P). In addition, we denote
by In the identity matrix of order n.

If M = (mi,j (x, y))
h,k
i,j=1 ∈ Mh×k(P) is a polynomial matrix, we define the degree of M as deg M =

max{deg mi,j (x, y), 1� i�h, 1�j �k}�0.

Let {�h,k}h,k �0 be a doubly indexed sequence of real numbers and let u be the linear functional defined on P by

〈u, xhyk〉 = �h,k, h, k = 0, 1, . . . ,

then u is called a moment functional defined by {�h,k}h,k �0 (see [2, p. 64]).
We will say that f ∈ Pn is an orthogonal polynomial with respect to u if

〈u, fg〉 = 0, ∀g ∈ P, deg g < deg f .

In this way, we can define the linear space

Vn = {f ∈ Pn: 〈u, fg〉 = 0, ∀g ∈ Pn−1}.
A linear functional u will be said quasi definite if dim Vn = n + 1, ∀n�0.

The action of u over a polynomial matrix M = (mi,j (x, y))
h,k
i,j=1 ∈ Mh×k(P), (see [7,15]) is defined in the following

way,

〈u, M〉 = (〈u, mi,j (x, y)〉)h,k
i,j=1 ∈ Mh×k(R),
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and the left multiplication of u by the polynomial matrix M is given by

〈Mu, f 〉 = 〈u, M tf 〉, ∀f ∈ P.

Definition 1. A polynomial system (PS) is a sequence of vector polynomials {Pn}n�0, defined by

Pn = (Pn,0, Pn−1,1, . . . , P0,n)
t ∈ M(n+1)×1(Pn),

where {Pn,0, Pn−1,1, . . . , P0,n}, are n + 1 polynomials of total degree n, independent modulus Pn−1, that is, for each
p ∈ Pn there is a unique expansion

p =
n∑

j=0

cjPn−j,j + p0 with cj ∈ R and p0 ∈ Pn−1.

Moreover, if a PS {Pn}n�0 satisfies

〈u, PnPt
m〉 = Hn�n,m, n, m�0,

where Hn ∈ Mn+1(R) is a symmetric and non–singular matrix, then {Pn}n�0 is called a weak orthogonal polynomial
system (WOPS) associated with u.

In addition, {Pn}n�0 is an orthogonal polynomial system (OPS) if Hn is diagonal, and an orthonormal polynomial
system if Hn = In+1.

Observe that, a linear functional u is quasi definite if and only if there exists a WOPS with respect to u [6,
Proposition 2.1].

If every polynomial Ph,k(x, y), for h + k = n, contains only one higher degree term, that is,

Ph,k(x, y) = xhyk + R(x, y), R(x, y) ∈ Pn−1,

then {Pn}n�0 is called a monic WOPS.
In this paper, we will use the standard differential operators in two variables, the gradient operator, ∇, and the

divergence operator, div. These operators can be extended to matrices M, M1, M2 ∈ Mh×k(P) as follows:

∇M =
(

�xM

�yM

)
∈ M2h×k(P), div

(
M1

M2

)
= �xM1 + �yM2 ∈ Mh×k(P).

We will use the same symbols to denote the dual of these operators and thus, we define the distributional gradient and
divergence operators as follows:〈

∇u,

(
f

g

)〉
= −

〈
u, div

(
f

g

)〉
= −〈u, �xf + �yg〉, ∀f, g ∈ P,

〈
div

(
u1
u2

)
, f

〉
= −

〈(
u1
u2

)
, ∇f

〉
= −(〈u1, �xf 〉 + 〈u2, �yf 〉), ∀f ∈ P.

3. Semiclassical orthogonal polynomials in two variables

Definition 2. Let u be a quasi definite linear functional, and let

� =
(

�1,1 �1,2
�2,1 �2,2

)
∈ M2(P) and � =

(
�1
�2

)
∈ M2×1(P),

be polynomial matrices with � symmetric (�1,2=�2,1), and deg �=p�0, deg �=q �1. Define s=max{p−2, q−1}.
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We say that u is s-Pearson if it satisfies the matrix Pearson–type differential equation

div(�u) = �tu, (2)

and det〈u, �〉 	= 0.

The above definition means that, for all polynomial f ∈ P, then

〈div(�u), f 〉 = 〈�tu, f 〉,
that is,

〈u, �∇f + �f 〉 = 0 ⇐⇒
{ 〈u, �1,1�xf + �1,2�yf + �1f 〉 = 0,

〈u, �2,1�xf + �2,2�yf + �2f 〉 = 0.

The natural extension of this property to matrices with h rows involves the Kronecker product ⊗ (see, for instance,
[5]). Therefore, matrix equation (2) can be extended as follows:

div((� ⊗ Ih)u) = (�t ⊗ Ih)u, h�1. (3)

Expression (3) means that, for all M ∈ Mh×k(P), we get

〈div((� ⊗ Ih)u), M〉 = 〈(�t ⊗ Ih)u, M〉.
In particular, if we consider a monic PS {Pn}n�0, the above relation can be written as follows:

〈u, (� ⊗ In+1)∇Pn + (� ⊗ In+1)Pn〉 = 0, n�0.

The expression (� ⊗ In+1)∇Pn + (� ⊗ In+1)Pn is a 2(n + 1) × 1 polynomial matrix of degree at most n + s + 1. So,
there exist matrices �n+s+1 ∈ M2(n+1)×(n+s+2)(R) and An

m ∈ M2(n+1)×(m+1)(R) such that

(� ⊗ In+1)∇Pn + (� ⊗ In+1)Pn = �n+s+1Pn+s+1 +
n+s∑
m=0

An
mPm. (4)

Observe that we can split �n+s+1 as a block matrix in the form:

�n+s+1 =
(

�(1)
n+s+1

�(2)
n+s+1

)
,

where �(k)
n+s+1 = (w

(k)
i,j )

n,n+s+1
i,j=0 ∈ M(n+1)×(n+s+2)(R), for k = 1, 2. Let us denote by �(k,l)

i,j and �(k)
i,j the coefficients

in the polynomials

�k,l(x, y) =
s+2∑
j=0

s+2−j∑
i=0

�(k,l)
s+2−j−i,ix

s+2−j−iyi ,

�k(x, y) =
s+1∑
j=0

s+1−j∑
i=0

�(k)
s+1−j−i,ix

s+1−j−iyi ,

for k, l = 1, 2. Then, �(k)
n+s+1, k = 1, 2, are lower Hessenberg band matrices, that is, they are (s + 4)–diagonal matrices

whose entries are defined by

w
(k)
i,i+j = (n − i)�(k,1)

s+2−j,j + i�(k,2)
s+1−j,j+1 + �(k)

s+1−j,j ,

for 0� i�n, −1�j �s + 2, and w
(k)
i,j = 0, k = 1, 2, otherwise.
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Definition 3. A quasi definite linear functional u is said to be semiclassical if it is s-Pearson and

rank�(k)
n+s+1 = n + 1, k = 1, 2, rank�n+s+1 �n + 2, n�s + 1. (5)

A WOPS with respect to u is called a semiclassical WOPS.

Remark. Observe that, for s =0, we recover the concept of classical WOPS in two variables introduced by the authors
in [3]. And, of course, this definition includes the classical bivariate orthogonal polynomials given by Krall and Sheffer
[11], and Suetin [14].

4. The structure relation

As in the univariate case, we are going to prove that the semiclassical character of a linear functional is equivalent
to the existence of a short representation of the derivatives of the orthogonal polynomials in terms of the polynomials
themselves. First, we need a technical Lemma

Lemma 4. (1) For M ∈ Mh×k(P), and N ∈ Ml×m(P), we get

(M ⊗ Il)(Ik ⊗ N) = M ⊗ N = (Ih ⊗ N)(M ⊗ Im).

(2) For M ∈ Mh×k(P), and N ∈ Mk×l (P), we have

∇(MN) = (∇M)N + (I2 ⊗ M)∇N .

(3) As a consequence,

(I2 ⊗ Pm)�∇Pt
n = (� ⊗ Im+1)[∇(PmPt

n) − (∇Pm)Pt
n].

Theorem 5 (Structure relation). Let u be a quasi definite linear functional and let {Pn}n�0 be the monic WOPS
associated with u. Then, u is semiclassical if and only if {Pn}n�0 satisfy

�∇Pt
n =

n+p−1∑
j=n−s−1

(I2 ⊗ Pt
j )F

n
j for n�s + 1, (6)

where Fn
j = (F n

m,1/F
n
m,2) ∈ M2(j+1)×(n+1)(R), such that

rankFn
n−s−1,i = n − s, i = 1, 2, rank Fn

n−s−1 �n − s + 1.

Proof. Since deg � = p, the entries in the matrix �∇Pt
n are polynomials of degree at most n + p − 1. Then, we can

write

�∇Pt
n =

n+p−1∑
j=0

(I2 ⊗ Pt
j )F

n
j ,

where Fn
j ∈ M2(j+1)×(n+1)(R). Using the orthogonality, we obtain

〈u, (I2 ⊗ Pm)(�∇Pt
n)〉 = 〈u, (I2 ⊗ Pm)

n+p−1∑
i=0

(I2 ⊗ Pt
i )F

n
i 〉

= (I2 ⊗ Hm)Fn
m, 0�m�n + p − 1. (7)

On the other hand, using the above Lemma, and (3), we get

〈u, (I2 ⊗ Pm)�∇Pt
n〉

= 〈u, (� ⊗ Im+1)[∇(PmPt
n) − (∇Pm)Pt

n]〉
= −〈(�t ⊗ Im+1)u, PmPt

n〉 − 〈u, (� ⊗ Im+1)(∇Pm)Pt
n〉

= −〈u, [(� ⊗ Im+1)Pm + (� ⊗ Im+1)∇Pm]Pt
n〉. (8)
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Combining (7) and (8), we conclude

(I2 ⊗ Hm)Fn
m = −〈u, [(� ⊗ Im+1)Pm + (� ⊗ Im+1)∇Pm]Pt

n〉. (9)

Observe that, (� ⊗ Im+1)Pm + (� ⊗ Im+1)∇Pm is a polynomial matrix of degree at most m + s + 1. So, from the
orthogonality of the polynomials {Pn}n�0, we deduce that Fn

m = 0, for m + s + 1 < n, and relation (6) holds.
Reciprocally, let us assume that (6) holds. Define

� = −(I2 ⊗ H0)

(
s+1∑
i=0

F i
0H−1

i Pi

)
.

In order to prove the semiclassical character of u, we want to check that 〈div(�u), Pt
n〉 = 〈�tu, Pt

n〉, for n�0. In the
case 0�n�s + 1, we get

〈div(�u), Pt
n〉 = − 〈u, �∇Pt

n〉 = −
〈
u,

n+p−1∑
j=0

(I2 ⊗ Pt
j )F

n
j

〉

= −
〈
u, (I2 ⊗ P0)

n+p−1∑
j=0

(I2 ⊗ Pt
j )F

n
j

〉
= −(I2 ⊗ H0)F

n
0 ,

and

〈�tu, Pt
n〉 = 〈u, �Pt

n〉 =
〈
u, −(I2 ⊗ H0)

(
s+1∑
i=0

F i
0H−1

i Pi

)
Pt

n

〉

= − (I2 ⊗ H0)F
n
0 H−1

n 〈u, PnPt
n〉 = −(I2 ⊗ H0)F

n
0 .

In the same way, if n�s + 2,

〈div(�u), Pt
n〉 = − 〈u, �∇Pt

n〉 = −
〈
u,

n+p−1∑
j=n−s−1

(I2 ⊗ Pt
j )F

n
j

〉

= −
〈
u, (I2 ⊗ P0)

n+p−1∑
j=n−s−1

(I2 ⊗ Pt
j )F

n
j

〉
= 0,

and 〈�tu, Pt
n〉 = 〈u, �Pt

n〉 = 0, using that deg ��s + 1 < n.
Finally, the rank condition can be deduced from (9), taking m + s + 1 = n, and using (4). In fact, we get

(I2 ⊗ Hn−s−1)F
n
n−s−1 = −

〈
u,

(
�nPn +

n−1∑
m=0

An−s−1
m Pm

)
Pt

n

〉
= −�nHn,

and thus, rankFn
n−s−1 = rank �n. �

5. Examples

In this section, some examples of semiclassical orthogonal polynomials in two variables are given. Naturally, classical
orthogonal polynomials in two variables [3,11,14] are semiclassical with s = 0. Moreover, it is very easy to check that
tensor product of semiclassical orthogonal polynomials in one variable are semiclassical polynomials in two variables.

In 1975, Koornwinder studied in [8] examples of two–variables analogues of the Jacobi polynomials, introducing
seven classes of such polynomials in two variables. Class I, II, IV, andV are well known classical orthogonal polynomials
in two variables. Classes III, VI, and VII constitute a nontrivial example of semiclassical orthogonal polynomials in
two variables, according to our definition.
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Class III : For 	, 
 > − 1, the polynomials

P
(	,
)

n,k (x, y) = P
(	,
+k+1/2)

n−k (2x − 1)x(1/2)kP
(
,
)

k (x−1/2y), n�k�0,

are orthogonal with respect to the weight function w(x, y) = (1 − x)	(x − y2)
, on the region {(x, y)/y2 < x < 1},
which is bounded by a straight line and a parabola. Defining

� = (1 − x)(x − y2)I2 and � =
(−(	 + 1)(x − y2) + (
 + 1)(1 − x)

−2(
 + 1)(1 − x)y

)
,

these polynomials are semiclassical, since the weight function w(x, y) satisfies (2), and the matrix

has rank �n+2 = n + 2 and rank �(1)
n+2 = rank �(2)

n+2 = n + 1, so condition (5) holds. In this case, deg � = p = 3, and
deg � = q = 2, so s = max{p − 2, q − 1} = 1, and the structure relation has, at most, p + s + 1 = 5 terms.

In the following examples, rank condition (5) is satisfied. The details are omitted for reasons of space.
Class VI : Let 	, 
, � > − 1, 	 + � + 3/2 > 0, and 
 + � + 3/2 > 0, and consider the weight function

w(u, v) = (1 − u + v)	(1 + u + v)
(u2 − 4v)�,

defined on the region {(u, v)/|u| < v +1, u2 −4v > 0}, which is bounded by two straight lines and a parabola touching
these lines.

If we take � = (1 − u + v)(1 + u + v)(u2 − 4v)I2, and

�1 = [−(	 + 1)(1 + u + v) + (
 + 1)(1 − u + v)](u2 − 4v)

+ 2(� + 1)u(1 − u + v)(1 + u + v),

�2 = [(	 + 1)(1 + u + v) + (
 + 1)(1 − u + v)](u2 − 4v)

− 4(� + 1)(1 − u + v)(1 + u + v),

then conditions (2) and (5) are satisfied, and orthogonal polynomials associated with w(u, v) are semiclassical. There-
fore, deg � = p = 4, and deg � = q = 3, so s = max{p − 2, q − 1} = 2, and the Structure relation has, at most,
p + s + 1 = 7 terms.

Class VII : Consider the weight function

w(x, y) = [−(x2 + y2 + 9)2 + 8(x3 − 3xy2) + 108]	,

for 	 > − 5
6 , defined on the region bounded by the three–cusped deltoid (or Steiner’s hypocycloid) −(x2 + y2 + 9)2 +

8(x3 − 3xy2) + 108 = 0. Orthogonal polynomials associated with w(x, y) are semiclassical again. In fact, we can
choose � = [−(x2 + y2 + 9)2 + 8(x3 − 3xy2) + 108]I2, and

� =
(

(	 + 1)[−4x(x2 + y2 + 9) + 24(x2 − y2)]
(	 + 1)[−4y(x2 + y2 + 9) − 48xy]

)
.

In this case, the rank condition (5) holds again, and deg � = p = 4, and deg � = q = 3, so s = max{p − 2, q − 1} = 2,

and the Structure relation has, at most, p + s + 1 = 7 terms as in Class VI.
Finally, using Koornwinder’s tools, we present an example of a semiclassical weight function with unbounded

support. For 	, 
 > − 1, the polynomials

P
(	,
)

n,k (x, y) = L
(	+2k+1)
n−k (x)xkP

(
,0)

k (x−1y), n�k�0,
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are orthogonal with respect to the weight function

w(x, y) = x	e−x(1 − x−1y)
,

on the region {(x, y)/ − x < y < x, x > 0}. Defining

� =
(

x(x − y) 0
0 x2(x − y)

)
,

� =
(−x2 + xy + (	 + 2)x + (
 − 	 − 1)y

−(
 + 1)x2

)
,

these polynomials are semiclassical, since the weight function w(x, y) satisfies (2), and rank condition (5) holds. In
this case, deg � = p = 3, and deg � = q = 2, so s = max{p − 2, q − 1} = 1, and the Structure relation has, at most,
p + s + 1 = 5 terms.
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