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a b s t r a c t

It is obvious that a q-analog of Cα , the Cesáro matrix of order α, can be defined in different
ways. In this paper we introduce a method to find q-analogs of Cα , where α is a positive
integer. Using this method, we obtain the most natural q-analogs of Cα . We also prove that
the strength of C1(qk) does not depend on q, where C1(qk) is the most natural q-analog of
C1. Finally, we define a density function and q-statistical convergence using C1(qk).

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Let A = (ank) n, k = 0, 1, 2, . . . be an infinite matrix and let x =

xj

j∈N be a sequence of real numbers. The A-transform

of x is denoted by A(x) = (Ax)n and defined as;

(Ax)n =

∞−
k=0

ankxk

provided that the series converges for each n ∈ N0. The sequence space cA := {x ∈ w : Ax ∈ c} is called the convergence
domain of A, where w and c are the spaces of all and convergent sequences respectively. The matrix A is said to be
conservative if the convergence of the sequence x implies the convergence of A(x), (or equivalently c ⊂ cA). In addition, if
A(x) converges to the limit of x, for each convergent sequence x, then it is called regular. The following Theorem states the
well known characterization of conservative matrices and can be found in any standard summability book [1].

Theorem 1. An infinite matrix A = (ank) n, k = 0, 1, 2, . . . is conservative if and only if
(i) limn→∞ ank = λk, for each k = 0, 1, . . .
(ii) limn→∞

∑
∞

k=0 ank = λ, and
(iii) supn

∑
∞

k=0 |ank| ≤ M < ∞, for some M > 0.
Here, of course, the limits λk and λ are finite. If λk = 0, for all k and λ = 1 then the above theorem reduces to the well
known theorem of Silverman and Toeblitz which provides necessary and sufficient conditions for regularity of the infinite
matrix A = (ank) n, k = 0, 1, 2, . . . .

Let α be a real number with −α ∉ N. Then, the regular matrices Cα := (cα
nk) defined by

cα
nk =




n − k + α − 1
n − k



n + α
n

 if k ≤ n, n, k = 0, 1, . . .

0 otherwise

(1.1)
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and the associated matrix summability methods, are called the Cesáro matrix and Cesáro summability method of order α
respectively. The Cesáro mean (tn) of a real or complex sequence x = (xj) is defined to be the sequence, tn =

x0+x1+···+xn
n+1 ,

n = 0, 1, . . . and in the case of limn→∞ tn = t, x is said to be Cesáro summable to t . The Cesáro methods have played a
central role in connection with the applications of summability theory to different branches of mathematics.

An obvious generalization of C1 is the weightedmean (or Rieszmethod). Let p = (pk) be a sequence of real numbers with
p0 > 0, pk ≥ 0, k ∈ N and Pn =

∑n
k=0 pk, then the matrix method Rp = (rnk) defined by

rnk =

pk
Pn

if k ≤ n,

0 otherwise
n, k = 0, 1, . . .

is called a weighted mean associated with the sequence p. Obviously C1 is a weighted mean associated with e = (1, 1, . . .).
On the other hand, the value [r]q denotes the q-integer of r , which is given by

[r]q =


1 − qr

1 − q
, q ∈ R+

− {1}

r, q = 1.

For the last thirty years, studies involving q-integers and their applications (for example, q-analogs of positive linear
operators and their approximation properties) have become active research areas. During the same period a large number
of research papers on q-analogs of existing theories, involving interesting results, have been published (see [2–4]). The
motivation of the present paper is the following question ‘‘What kind of results can be achieved by considering q-analogs of
regular matrices and the existing summability theory?’’ In this paper we will mainly focus on q-analogs of Cesáro matrices
of order α ∈ N and its properties. The next section of this paper will introduce amethod to find q-analogs of Cesáromatrices
of order α ∈ N.

2. q-Cesáro summability

Let S := (snk) be the summation matrix with snk = 1 for k ≤ n and snk = 0 otherwise and let I be the identity matrix. For
any sequence x = (xk), define

B0
nx = I(x) = xn, (2.1)

B1
nx = S(x) =

n−
ν=0

xυ =

n−
ν=0

B0
ν(x) (2.2)

and

Bα
n (x) = Sα(x) =

n−
ν=0

Bα−1
ν x. (2.3)

α ∈ N, α ≥ 2. Recall that the entries sαnk of the matrix Sα can be determined in the following way. By (2.3) we have∑n
k=0 s

α
nkxk = Bα

n (x). But,

(1 − z)
−
n

Bα
n (x)z

n
=

−
n

(Bα
n (x) − Bα

n−1(x))z
n

=

−
n

Bα−1
n (x)zn

with Bα
−1(x) = 0, therefore,−
n

Bα
n (x)z

n
=

1
(1 − z)α

−
n

B0
n(x)z

n

=

−
n

n−
k=0


n − k + α − 1

n − k


xkzn.

By comparing coefficients of zn, we have

Bα
n (x) =

n−
k=0


n − k + α − 1

n − k


xk, with n, k = 0, 1, . . . , k ≤ n,

or equivalently,

sαnk =


n − k + α − 1

n − k


.

On the other hand, the sum of the nth row is;
n−

k=0

sαnk =

n−
k=0


n − k + α − 1

n − k


=


n + α

n
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and the matrix defined by

cα
nk :=

1 n+α

n

 sαnk (2.4)

gives exactly the Cesáro matrix of order α ∈ N. Although the above calculations are not new and can be found in standard
summability books, they can be modified to obtain q-analogs of Cesáro matrices of order α ∈ N. Before giving more details
about this process, we need the following definition.

Definition 2. Let

Sq =


ank(q), if k ≤ n
0, otherwise

be the infinite, lower triangular matrix, satisfying

ank(1) = 1,

then Sq is called the q-analog of the summation matrix S generated by the sequence ank(q).

Replacing S by its q-analog in the above process, we will obtain a q-analog of the Cesáro matrix of order α ∈ N (or
q-Cesáro matrix generated by ank(q)). In the following theorem, we introduce a general formula for Cesáro matrix of order
one associated with ank(q).

Theorem 3. The q-analog of the Cesáro matrix of order one associated with ank(q) is C1(ank(q)) = (c1nk(ank(q))) where

c1nk(ank(q)) =

ank(q)


n−

k=0

ank(q)

−1

, if k ≤ n

0, otherwise,

n, k = 0, 1, . . . . (2.5)

Proof. Let Sq be the q-analog of S associatedwith ank(q). By applying the above process forα = 1, Eqs. (2.1) and (2.2) become

B0
nx = I(x) = xn,

B1
nx =


Sq(x)


n =

n−
ν=0

anν(q)xν,

respectively. The matrix multiplication yields that Sq = (s1nk(ank(q))) where

s1nk(ank(q)) =


ank(q) if k ≤ n
0 otherwise, n, k = 0, 1, . . . .

Now, the sum of the nth row will be an0(q) + an1(q) + · · · + ann(q) =
∑n

k=0 ank(q), therefore in a way parallel to (2.4), one
can obtain the q-Cesáro matrix of order one given in (2.5). �

It is obvious that in the case q = 1, C1(ank(q)) reduces to the ordinary Cesáro matrix C1 given in (1.1) for α = 1.

Remark 4. It should bementioned that, under the conditions ank(q) = ak(q), for all n, with a0(q) > 0, and ak(q) ≥ 0, k ∈ N,
C1(ank(q)) is a Riesz method associated with ak(q).

Remark 5. The q-Cesáro matrix associated with ank(q) = q−k is the q-analog of the Cesáro matrix suggested by Bustoz and
Gordillo [5].

Of course, there are many ways to define q-analogs of Cesáro matrices. In the following theorem, we suggest the most
suitable q-analog of the Cesáro matrix of order α ∈ N.

Theorem 6. C1(qk) = (c1nk(q
k)) with

c1nk(q
k) =


qk

[n + 1]q
if k ≤ n

0 otherwise,
n, k = 0, 1, . . . (2.6)

and C2(qk) = (c2nk(q
k)) with

c2nk(q
k) =

[n − k + 1] q2k


n−
k=0

q2k [n − k + 1]q

−1

if k ≤ n

0 otherwise,

n, k = 0, 1, . . .
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and more generally Cα(qk) =

cα
nk(q

k)

where

cα
nk(q

k) =



qαk
n−k∑
m1=0

qm1
m1∑

m2=0
qm2 · · ·

mα−1∑
mα−2=0

qmα−2 [mα−2 + 1]

n∑
k=0


qαk

n−k∑
m1=0

qm1
m1∑

m2=0
qm2 · · ·

mα−1∑
mα−2=0

qmα−2 [mα−2 + 1]

 if k ≤ n

0 otherwise,

n, k = 0, 1, . . .

with α > 2, α ∈ N.

Proof. To find C1(qk) given in (2.6), replace ank(q) by qk in Theorem 3. For Cα(qk) take ank(q) = qk and apply the process
described above. �

Recall that in the ordinary case the sum of the nth row of the summation matrix S was n+ 1, and the most natural q-analog
of n + 1 is [n + 1]q. To have the sum [n + 1]q on the nth row of Sq the generating sequence can be selected as ank(q) = qk.
Therefore, it seems that the most suitable q-analog of the Cesáro matrix Cα is Cα(qn).

In the rest of this paper, we will concentrate on the q-analog C1(qn). As a direct consequence of Theorem 1, one can state
the following lemma.

Lemma 7. (i) C1(qn) is conservative for each q ∈ R,
(ii) C1(qn) is regular for each q ≥ 1.

Remark 8. If q1 ≠ q2, then C1(qn1) ≠ C1(qn2), moreover if q1 > 1, then C1(qn1) is regular but C1(qn2) is not regular for q2 = q−1
1 .

The following theorem will be used to compare C1(qn1) by C1(qn2) and C1 by C1(qn), as summability methods.

Theorem 9 ([1], Theorem 3.2.8, p. 114). Let Rp be a regular Riesz method with pk > 0 for k = 0, 1, . . . and let A = (ank) be a
conservative matrix method. Then, A is stronger than Rp if and only if the following conditions hold:

(i) limk→∞


ank
pk


= 0, n = 0, 1, . . .

(ii) supn
∑

k Pk
 ankpk

−
an(k+1)
pk+1

 < ∞.

It is natural to ask how the strength of C1(qk) changes with q. The answer is given in the following theorem.

Theorem 10. C1(qk1) is equivalent to C1(qk2), for 1 < q1 < q2.

Proof. Assume that 1 < q1 < q2. Then,

sup
n

n−
k=0

[k + 1]q2

 qk1
[n + 1]q1 q

k
2

−
qk+1
1

[n + 1]q1 q
k+1
2

 ≤ sup
n

n−
k=0

[k + 1]q2
qk2

 qk1
[n + 1]q1

−


q1
q2


qk1

[n + 1]q1


≤ sup

n

n−
k=0

[k + 1]q2
qk2


qk1

[n + 1]q1



≤ sup
n

n−
k=0

[k + 1]q2
qk2

≤ sup
n

n−
k=0


1
q2

k

≤
q2

q2 − 1
.

Conversely,

sup
n

n−
k=0

[k + 1]q1

 qk2
[n + 1]q2 q

k
1

−
qk+1
2

[n + 1]q2 q
k+1
1

 ≤ sup
n

n−
k=0

[k + 1]q1
qk1

 qk2
[n + 1]q2

−
qk+1
2

[n + 1]q2 q1


≤ sup

n

n−
k=0

[k + 1]q1
qk1

 qk2
[n + 1]q2

−
q2
q1

qk2
[n + 1]q2


≤ sup

n

n−
k=0

[k + 1]q1
qk1


q2
q1

qk2
[n + 1]q2

−
qk2

[n + 1]q2


≤ sup

n

q2
q1

n−
k=0

[k + 1]q1
qk1


qk2

[n + 1]q2
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≤ sup
n

q2
q1

n−
k=0

[k + 1]q1
qk1

≤ sup
n

q2
q1

q1
q1 − 1

=
q2

q1 − 1
.

The proof is completed using Theorem 9 and the fact that C1(qk1) and C1(qk2) are both regular, row finite matrices. �

Theorem 11. The summability method C1 is stronger than C1(qn) for q ≥ 1.

Proof. For q = 1, C1(qn) reduces to C1, therefore we may assume that q > 1. By using Theorem 9 and the fact that C1 is a
row finite regular method, it is enough to show that

sup
n

1
n + 1


q − 1
q

 n−
k=0

[k + 1]q
qk

< ∞. (2.7)

Using

[k + 1]q
qk

=

k−
i=0

1
qi

≤
q

q − 1

in (2.7), completes the proof. �

Theorem 12. For q ≤ 1, c ( cC1(qn).

Proof. For any fixed q ≤ 1, the divergent sequence x = (xk) with

xk =


1
q

k = 0, 2, . . .

−
1
q2

k = 1, 3, . . .

is C1(qn)-summable to 0. �

3. q-statistical convergence

Freedman and Sember [6] showed that each non-negative regular matrix A can be associated by a density function

δA (K) = lim
n→∞

inf(AχK )n (3.1)

where χK denotes the characteristic function of K ⊂ N. Replacing A by C1 and lim inf by an ordinary limit in (3.1), we obtain
the well-known natural density function

δ (K) = δC1(K) := lim
n→∞

1
n

∞−
k=1

χK (k)

provided that a limit exists. A sequence x :=

xj

is called statistically convergent to L and denoted by st- limn→∞ xn = L, if

for every ε > 0,

δ {n ∈ N : |xn − L| ≥ ε} = 0

(see [7]). Using the regularity of Cq
1 for q ≥ 1, and replacing A by Cq

1 in (2.1), we can define the following density functions
δCq

1
, between the subsets of natural numbers and the interval [0, 1];

δq(K) = δCq
1
(K) = lim

n→∞
inf

Cq
1χK


n , q ≥ 1. (3.2)

Lemma 13. (i) δq(2N) = δq(2N + 1) =
1
[2]

(ii) δq(aN + b) =
1
[a] where a and b are positive integers.

Proof. Using (3.2)

δq(2N) = lim
n→∞

inf
−
k∈2N

qk−1

[n]
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where

−
k∈2N

qk−1

[n]
=



n
2−

k=1

q2k−1

[n]
if n is even

n−1
2−

k=1

q2k−1

[n]
if n is odd.

(i) If n is even, then the nth partial sum

sn =
q
[n]

+
q3

[n]
+ · · · +

qn−1

[n]
(3.3)

and

q2sn =
q3

[n]
+

q5

[n]
+ · · · +

qn+1

[n]
. (3.4)

Combining (3.3) and (3.4) we have

sn =
q(1 − qn)

(1 − q2) [n]

and

lim
n→∞

sn = lim
n→∞

q(1 − qn)
(1 − q2) [n]

=
q

1 + q
.

If n is odd, then the nth partial sum

sn =
q
[n]

+
q3

[n]
+ · · · +

qn−2

[n]
(3.5)

and

q2sn =
q3

[n]
+

q5

[n]
+ · · · +

qn

[n]
. (3.6)

Similarly combining (3.5) and (3.6) yields

lim
n→∞

sn = lim
n→∞

q − qn

(1 − q2) [n]
=

1
1 + q

.

Since q ≥ 1, we have 1
1+q ≤

q
1+q and

δq(2N) = lim inf
n→∞

−
k∈2N

qk−1

[n]
=

1
[2]

.

By using the above technique one can prove that δq(2N + 1) =
1
[2] .

(ii) Since {aN + j : j = 0, 1, . . . , a − 1} is a partition for N and using the method of (i)

lim
n→∞

 −
k∈aN+J

qk−1

[n]


=

qa−1−j

[a]

for fixed j ∈ {0, 1, . . . , a − 1}, we have

δq(aN + b) = inf

qa−1−j

[a]
: j = 0, 1, . . . , a − 1.


=

1
[a]

. �

Finally we will define a new type of convergence which is different from statistical convergence.

Definition 14. A number sequence x = (xk) is called q-statistically convergent to L, written stq- lim x = L, if for every
ε > 0, δq(Kε) = 0, where Kε = {k : |xk − L| ≥ ε} .
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Example 15. Consider the sequence xk =

 1
20

, 0, 0
21

, 1, 1, 1, 1  
22

, 0, 0, 0, . . . , 0  
23

, 1, . . . ,

 and define the set K = {k ∈ N :

xk = 1} then δ(K) does not exist (see [8]) therefore xk is not statistically convergent. On the other hand, since

Cq
1χK


22n−1 →

0, stq- lim xk = 0.
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