# $q$-Cesáro matrix and $q$-statistical convergence 

Hüseyin Aktuğlu*, Şerife Bekar

Eastern Mediterranean University, Faculty of Arts and Sciences, Department of Mathematics, Gazimağusa, Mersin 10, Turkey

## ARTICLE INFO

## Article history:

Received 5 November 2009
Received in revised form 10 May 2010

## Keywords:

Cesáro matrices
Cesáro summability
$q$-integers
Statistical convergence


#### Abstract

It is obvious that a $q$-analog of $C_{\alpha}$, the Cesáro matrix of order $\alpha$, can be defined in different ways. In this paper we introduce a method to find $q$-analogs of $C_{\alpha}$, where $\alpha$ is a positive integer. Using this method, we obtain the most natural $q$-analogs of $C_{\alpha}$. We also prove that the strength of $C_{1}\left(q^{k}\right)$ does not depend on $q$, where $C_{1}\left(q^{k}\right)$ is the most natural $q$-analog of $C_{1}$. Finally, we define a density function and $q$-statistical convergence using $C_{1}\left(q^{k}\right)$.


© 2010 Elsevier B.V. All rights reserved.

## 1. Introduction

Let $A=\left(a_{n k}\right) n, k=0,1,2, \ldots$ be an infinite matrix and let $x=\left(x_{j}\right)_{j \in \mathbb{N}}$ be a sequence of real numbers. The $A$-transform of $x$ is denoted by $A(x)=(A x)_{n}$ and defined as;

$$
(A x)_{n}=\sum_{k=0}^{\infty} a_{n k} x_{k}
$$

provided that the series converges for each $n \in \mathbb{N}^{0}$. The sequence space $c_{A}:=\{x \in w: A x \in c\}$ is called the convergence domain of $A$, where $w$ and $c$ are the spaces of all and convergent sequences respectively. The matrix $A$ is said to be conservative if the convergence of the sequence $x$ implies the convergence of $A(x)$, (or equivalently $c \subset c_{A}$ ). In addition, if $A(x)$ converges to the limit of $x$, for each convergent sequence $x$, then it is called regular. The following Theorem states the well known characterization of conservative matrices and can be found in any standard summability book [1].

Theorem 1. An infinite matrix $A=\left(a_{n k}\right) n, k=0,1,2, \ldots$ is conservative if and only if
(i) $\lim _{n \rightarrow \infty} a_{n k}=\lambda_{k}$, for each $k=0,1, \ldots$
(ii) $\lim _{n \rightarrow \infty} \sum_{k=0}^{\infty} a_{n k}=\lambda$, and
(iii) $\sup _{n} \sum_{k=0}^{\infty}\left|a_{n k}\right| \leq M<\infty$, for some $M>0$.

Here, of course, the limits $\lambda_{k}$ and $\lambda$ are finite. If $\lambda_{k}=0$, for all $k$ and $\lambda=1$ then the above theorem reduces to the well known theorem of Silverman and Toeblitz which provides necessary and sufficient conditions for regularity of the infinite matrix $A=\left(a_{n k}\right) n, k=0,1,2, \ldots$

Let $\alpha$ be a real number with $-\alpha \notin \mathbb{N}$. Then, the regular matrices $C_{\alpha}:=\left(c_{n k}^{\alpha}\right)$ defined by

$$
c_{n k}^{\alpha}= \begin{cases}\frac{\binom{n-k+\alpha-1}{n-k}}{\binom{n+\alpha}{n}} & \text { if } k \leq n, n, k=0,1, \ldots  \tag{1.1}\\ 0 & \text { otherwise }\end{cases}
$$

[^0]and the associated matrix summability methods, are called the Cesáro matrix and Cesáro summability method of order $\alpha$ respectively. The Cesáro mean $\left(t_{n}\right)$ of a real or complex sequence $x=\left(x_{j}\right)$ is defined to be the sequence, $t_{n}=\frac{x_{0}+x_{1}+\cdots+x_{n}}{n+1}$, $n=0,1, \ldots$ and in the case of $\lim _{n \rightarrow \infty} t_{n}=t, x$ is said to be Cesáro summable to $t$. The Cesáro methods have played a central role in connection with the applications of summability theory to different branches of mathematics.

An obvious generalization of $C_{1}$ is the weighted mean (or Riesz method). Let $p=\left(p_{k}\right)$ be a sequence of real numbers with $p_{0}>0, p_{k} \geq 0, k \in \mathbb{N}$ and $P_{n}=\sum_{k=0}^{n} p_{k}$, then the matrix method $R_{p}=\left(r_{n k}\right)$ defined by

$$
r_{n k}=\left\{\begin{array}{ll}
\frac{p_{k}}{P_{n}} & \text { if } k \leq n, \\
0 & \text { otherwise }
\end{array} \quad n, k=0,1, \ldots\right.
$$

is called a weighted mean associated with the sequence $p$. Obviously $C_{1}$ is a weighted mean associated with $e=(1,1, \ldots)$.
On the other hand, the value $[r]_{q}$ denotes the $q$-integer of $r$, which is given by

$$
[r]_{q}= \begin{cases}\frac{1-q^{r}}{1-q}, & q \in \mathbb{R}^{+}-\{1\} \\ r, & q=1\end{cases}
$$

For the last thirty years, studies involving $q$-integers and their applications (for example, $q$-analogs of positive linear operators and their approximation properties) have become active research areas. During the same period a large number of research papers on $q$-analogs of existing theories, involving interesting results, have been published (see [2-4]). The motivation of the present paper is the following question "What kind of results can be achieved by considering $q$-analogs of regular matrices and the existing summability theory?" In this paper we will mainly focus on $q$-analogs of Cesáro matrices of order $\alpha \in \mathbb{N}$ and its properties. The next section of this paper will introduce a method to find $q$-analogs of Cesáro matrices of order $\alpha \in \mathbb{N}$.

## 2. q-Cesáro summability

Let $S:=\left(s_{n k}\right)$ be the summation matrix with $s_{n k}=1$ for $k \leq n$ and $s_{n k}=0$ otherwise and let $I$ be the identity matrix. For any sequence $x=\left(x_{k}\right)$, define

$$
\begin{align*}
& B_{n}^{0} x=I(x)=x_{n}  \tag{2.1}\\
& B_{n}^{1} x=S(x)=\sum_{v=0}^{n} x_{v}=\sum_{v=0}^{n} B_{v}^{0}(x) \tag{2.2}
\end{align*}
$$

and

$$
\begin{equation*}
B_{n}^{\alpha}(x)=S^{\alpha}(x)=\sum_{\nu=0}^{n} B_{v}^{\alpha-1} x \tag{2.3}
\end{equation*}
$$

$\alpha \in \mathbb{N}, \alpha \geq 2$. Recall that the entries $s_{n k}^{\alpha}$ of the matrix $S^{\alpha}$ can be determined in the following way. By (2.3) we have $\sum_{k=0}^{n} s_{n k}^{\alpha} x_{k}=B_{n}^{\alpha}(x)$. But,

$$
(1-z) \sum_{n} B_{n}^{\alpha}(x) z^{n}=\sum_{n}\left(B_{n}^{\alpha}(x)-B_{n-1}^{\alpha}(x)\right) z^{n}=\sum_{n} B_{n}^{\alpha-1}(x) z^{n}
$$

with $B_{-1}^{\alpha}(x)=0$, therefore,

$$
\begin{aligned}
\sum_{n} B_{n}^{\alpha}(x) z^{n} & =\frac{1}{(1-z)^{\alpha}} \sum_{n} B_{n}^{0}(x) z^{n} \\
& =\sum_{n} \sum_{k=0}^{n}\binom{n-k+\alpha-1}{n-k} x_{k} z^{n}
\end{aligned}
$$

By comparing coefficients of $z^{n}$, we have

$$
B_{n}^{\alpha}(x)=\sum_{k=0}^{n}\binom{n-k+\alpha-1}{n-k} x_{k}, \quad \text { with } n, k=0,1, \ldots, k \leq n
$$

or equivalently,

$$
s_{n k}^{\alpha}=\binom{n-k+\alpha-1}{n-k}
$$

On the other hand, the sum of the $n$th row is;

$$
\sum_{k=0}^{n} s_{n k}^{\alpha}=\sum_{k=0}^{n}\binom{n-k+\alpha-1}{n-k}=\binom{n+\alpha}{n}
$$

and the matrix defined by

$$
\begin{equation*}
c_{n k}^{\alpha}:=\frac{1}{\binom{n+\alpha}{n}} s_{n k}^{\alpha} \tag{2.4}
\end{equation*}
$$

gives exactly the Cesáro matrix of order $\alpha \in \mathbb{N}$. Although the above calculations are not new and can be found in standard summability books, they can be modified to obtain $q$-analogs of Cesáro matrices of order $\alpha \in \mathbb{N}$. Before giving more details about this process, we need the following definition.

Definition 2. Let

$$
S_{q}= \begin{cases}a_{n k}(q), & \text { if } k \leq n \\ 0, & \text { otherwise }\end{cases}
$$

be the infinite, lower triangular matrix, satisfying

$$
a_{n k}(1)=1,
$$

then $S_{q}$ is called the $q$-analog of the summation matrix $S$ generated by the sequence $a_{n k}(q)$.
Replacing $S$ by its $q$-analog in the above process, we will obtain a $q$-analog of the Cesáro matrix of order $\alpha \in \mathbb{N}$ (or $q$-Cesáro matrix generated by $a_{n k}(q)$ ). In the following theorem, we introduce a general formula for Cesáro matrix of order one associated with $a_{n k}(q)$.

Theorem 3. The q-analog of the Cesáro matrix of order one associated with $a_{n k}(q)$ is $C_{1}\left(a_{n k}(q)\right)=\left(c_{n k}^{1}\left(a_{n k}(q)\right)\right)$ where

$$
c_{n k}^{1}\left(a_{n k}(q)\right)=\left\{\begin{array}{ll}
a_{n k}(q)\left(\sum_{k=0}^{n} a_{n k}(q)\right)^{-1}, & \text { if } k \leq n  \tag{2.5}\\
0, & \text { otherwise, }
\end{array} \quad n, k=0,1, \ldots .\right.
$$

Proof. Let $S_{q}$ be the $q$-analog of $S$ associated with $a_{n k}(q)$. By applying the above process for $\alpha=1$, Eqs. (2.1) and (2.2) become

$$
\begin{aligned}
& B_{n}^{0} x=I(x)=x_{n} \\
& B_{n}^{1} x=\left(S_{q}(x)\right)_{n}=\sum_{v=0}^{n} a_{n v}(q) x_{v}
\end{aligned}
$$

respectively. The matrix multiplication yields that $S_{q}=\left(s_{n k}^{1}\left(a_{n k}(q)\right)\right)$ where

$$
s_{n k}^{1}\left(a_{n k}(q)\right)=\left\{\begin{array}{ll}
a_{n k}(q) & \text { if } k \leq n \\
0 & \text { otherwise },
\end{array} \quad n, k=0,1, \ldots\right.
$$

Now, the sum of the $n$th row will be $a_{n 0}(q)+a_{n 1}(q)+\cdots+a_{n n}(q)=\sum_{k=0}^{n} a_{n k}(q)$, therefore in a way parallel to (2.4), one can obtain the $q$-Cesáro matrix of order one given in (2.5).
It is obvious that in the case $q=1, C_{1}\left(a_{n k}(q)\right)$ reduces to the ordinary Cesáro matrix $C_{1}$ given in (1.1) for $\alpha=1$.
Remark 4. It should be mentioned that, under the conditions $a_{n k}(q)=a_{k}(q)$, for all $n$, with $a_{0}(q)>0$, and $a_{k}(q) \geq 0, k \in \mathbb{N}$, $C_{1}\left(a_{n k}(q)\right)$ is a Riesz method associated with $a_{k}(q)$.

Remark 5. The $q$-Cesáro matrix associated with $a_{n k}(q)=q^{-k}$ is the $q$-analog of the Cesáro matrix suggested by Bustoz and Gordillo [5].
Of course, there are many ways to define $q$-analogs of Cesáro matrices. In the following theorem, we suggest the most suitable $q$-analog of the Cesáro matrix of order $\alpha \in \mathbb{N}$.

Theorem 6. $C_{1}\left(q^{k}\right)=\left(c_{n k}^{1}\left(q^{k}\right)\right)$ with

$$
c_{n k}^{1}\left(q^{k}\right)=\left\{\begin{array}{ll}
\frac{q^{k}}{[n+1]_{q}} & \text { if } k \leq n  \tag{2.6}\\
0 & \text { otherwise, }
\end{array} \quad n, k=0,1, \ldots\right.
$$

and $C_{2}\left(q^{k}\right)=\left(c_{n k}^{2}\left(q^{k}\right)\right)$ with

$$
c_{n k}^{2}\left(q^{k}\right)=\left\{\begin{array}{ll}
{[n-k+1] q^{2 k}\left(\sum_{k=0}^{n} q^{2 k}[n-k+1]_{q}\right)^{-1}} & \text { if } k \leq n \\
0 & \text { otherwise },
\end{array} \quad n, k=0,1, \ldots\right.
$$

and more generally $C_{\alpha}\left(q^{k}\right)=\left(c_{n k}^{\alpha}\left(q^{k}\right)\right)$ where

$$
c_{n k}^{\alpha}\left(q^{k}\right)=\left\{\begin{array}{ll}
\frac{q^{\alpha k} \sum_{m_{1}=0}^{n-k} q^{m_{1}} \sum_{m_{2}=0}^{m_{1}} q^{m_{2}} \ldots \sum_{m_{\alpha-2}=0}^{m_{\alpha-1}} q^{m_{\alpha-2}}\left[m_{\alpha-2}+1\right]}{\sum_{k=0}^{n}\left(q^{\alpha k} \sum_{m_{1}=0}^{n-k} q^{m_{1}} \sum_{m_{2}=0}^{m_{1}} q^{m_{2}} \ldots \sum_{m_{\alpha-2}=0}^{m_{\alpha-1}} q^{m_{\alpha-2}}\left[m_{\alpha-2}+1\right]\right)} & \text { if } k \leq n \\
0 & \text { otherwise, }
\end{array} \quad n, k=0,1, \ldots\right.
$$

with $\alpha>2, \alpha \in \mathbb{N}$.
Proof. To find $C_{1}\left(q^{k}\right)$ given in (2.6), replace $a_{n k}(q)$ by $q^{k}$ in Theorem 3. For $C_{\alpha}\left(q^{k}\right)$ take $a_{n k}(q)=q^{k}$ and apply the process described above.

Recall that in the ordinary case the sum of the $n$th row of the summation matrix $S$ was $n+1$, and the most natural $q$-analog of $n+1$ is $[n+1]_{q}$. To have the sum $[n+1]_{q}$ on the $n$th row of $S_{q}$ the generating sequence can be selected as $a_{n k}(q)=q^{k}$. Therefore, it seems that the most suitable $q$-analog of the Cesáro matrix $C_{\alpha}$ is $C_{\alpha}\left(q^{n}\right)$.

In the rest of this paper, we will concentrate on the $q$-analog $C_{1}\left(q^{n}\right)$. As a direct consequence of Theorem 1 , one can state the following lemma.

Lemma 7. (i) $C_{1}\left(q^{n}\right)$ is conservative for each $q \in \mathbb{R}$,
(ii) $C_{1}\left(q^{n}\right)$ is regular for each $q \geq 1$.

Remark 8. If $q_{1} \neq q_{2}$, then $C_{1}\left(q_{1}^{n}\right) \neq C_{1}\left(q_{2}^{n}\right)$, moreover if $q_{1}>1$, then $C_{1}\left(q_{1}^{n}\right)$ is regular but $C_{1}\left(q_{2}^{n}\right)$ is not regular for $q_{2}=q_{1}^{-1}$. The following theorem will be used to compare $C_{1}\left(q_{1}^{n}\right)$ by $C_{1}\left(q_{2}^{n}\right)$ and $C_{1}$ by $C_{1}\left(q^{n}\right)$, as summability methods.

Theorem 9 ([1], Theorem 3.2.8, p. 114). Let $R_{p}$ be a regular Riesz method with $p_{k}>0$ for $k=0,1, \ldots$ and let $A=\left(a_{n k}\right)$ be a conservative matrix method. Then, $A$ is stronger than $R_{p}$ if and only if the following conditions hold:
(i) $\lim _{k \rightarrow \infty}\left(\frac{a_{n k}}{p_{k}}\right)=0, n=0,1, \ldots$
(ii) $\sup _{n} \sum_{k} P_{k}\left|\frac{a_{n k}}{p_{k}}-\frac{a_{n(k+1)}}{p_{k+1}}\right|<\infty$.

It is natural to ask how the strength of $C_{1}\left(q^{k}\right)$ changes with $q$. The answer is given in the following theorem.
Theorem 10. $C_{1}\left(q_{1}^{k}\right)$ is equivalent to $C_{1}\left(q_{2}^{k}\right)$, for $1<q_{1}<q_{2}$.
Proof. Assume that $1<q_{1}<q_{2}$. Then,

$$
\begin{aligned}
\sup _{n} \sum_{k=0}^{n}[k+1]_{q_{2}}\left|\frac{q_{1}^{k}}{[n+1]_{q_{1}} q_{2}^{k}}-\frac{q_{1}^{k+1}}{[n+1]_{q_{1}} q_{2}^{k+1}}\right| & \leq \sup _{n} \sum_{k=0}^{n} \frac{[k+1]_{q_{2}}}{q_{2}^{k}}\left|\frac{q_{1}^{k}}{[n+1]_{q_{1}}}-\left(\frac{q_{1}}{q_{2}}\right) \frac{q_{1}^{k}}{[n+1]_{q_{1}}}\right| \\
& \leq \sup _{n} \sum_{k=0}^{n} \frac{[k+1]_{q_{2}}}{q_{2}^{k}}\left(\frac{q_{1}^{k}}{[n+1]_{q_{1}}}\right) \\
& \leq \sup _{n} \sum_{k=0}^{n} \frac{[k+1]_{q_{2}}}{q_{2}^{k}} \leq \sup _{n} \sum_{k=0}^{n}\left(\frac{1}{q_{2}}\right)^{k} \\
& \leq \frac{q_{2}}{q_{2}-1} .
\end{aligned}
$$

Conversely,

$$
\begin{aligned}
\sup _{n} \sum_{k=0}^{n}[k+1]_{q_{1}}\left|\frac{q_{2}^{k}}{[n+1]_{q_{2}} q_{1}^{k}}-\frac{q_{2}^{k+1}}{[n+1]_{q_{2}} q_{1}^{k+1}}\right| & \leq \sup _{n} \sum_{k=0}^{n} \frac{[k+1]_{q_{1}}}{q_{1}^{k}}\left|\frac{q_{2}^{k}}{[n+1]_{q_{2}}}-\frac{q_{2}^{k+1}}{[n+1]_{q_{2}} q_{1}}\right| \\
& \leq \sup _{n} \sum_{k=0}^{n} \frac{[k+1]_{q_{1}}}{q_{1}^{k}}\left|\frac{q_{2}^{k}}{[n+1]_{q_{2}}}-\frac{q_{2}}{q_{1}} \frac{q_{2}^{k}}{[n+1]_{q_{2}}}\right| \\
& \leq \sup _{n} \sum_{k=0}^{n} \frac{[k+1]_{q_{1}}}{q_{1}^{k}}\left(\frac{q_{2}}{q_{1}} \frac{q_{2}^{k}}{[n+1]_{q_{2}}}-\frac{q_{2}^{k}}{[n+1]_{q_{2}}}\right) \\
& \leq \sup _{n} \frac{q_{2}}{q_{1}} \sum_{k=0}^{n} \frac{[k+1]_{q_{1}}}{q_{1}^{k}}\left(\frac{q_{2}^{k}}{[n+1]_{q_{2}}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sup _{n} \frac{q_{2}}{q_{1}} \sum_{k=0}^{n} \frac{[k+1]_{q_{1}}}{q_{1}^{k}} \\
& \leq \sup _{n} \frac{q_{2}}{q_{1}} \frac{q_{1}}{q_{1}-1}=\frac{q_{2}}{q_{1}-1} .
\end{aligned}
$$

The proof is completed using Theorem 9 and the fact that $C_{1}\left(q_{1}^{k}\right)$ and $C_{1}\left(q_{2}^{k}\right)$ are both regular, row finite matrices.
Theorem 11. The summability method $C_{1}$ is stronger than $C_{1}\left(q^{n}\right)$ for $q \geq 1$.
Proof. For $q=1, C_{1}\left(q^{n}\right)$ reduces to $C_{1}$, therefore we may assume that $q>1$. By using Theorem 9 and the fact that $C_{1}$ is a row finite regular method, it is enough to show that

$$
\begin{equation*}
\sup _{n} \frac{1}{n+1}\left(\frac{q-1}{q}\right) \sum_{k=0}^{n} \frac{[k+1]_{q}}{q^{k}}<\infty . \tag{2.7}
\end{equation*}
$$

Using

$$
\frac{[k+1]_{q}}{q^{k}}=\sum_{i=0}^{k} \frac{1}{q^{i}} \leq \frac{q}{q-1}
$$

in (2.7), completes the proof.
Theorem 12. For $q \leq 1, c \subsetneq c_{C_{1}\left(q^{n}\right)}$.
Proof. For any fixed $q \leq 1$, the divergent sequence $x=\left(x_{k}\right)$ with

$$
x_{k}= \begin{cases}\frac{1}{q} & k=0,2, \ldots \\ -\frac{1}{q^{2}} & k=1,3, \ldots\end{cases}
$$

is $C_{1}\left(q^{n}\right)$-summable to 0 .

## 3. $q$-statistical convergence

Freedman and Sember [6] showed that each non-negative regular matrix $A$ can be associated by a density function

$$
\begin{equation*}
\delta_{A}(K)=\lim _{n \rightarrow \infty} \inf \left(A \chi_{K}\right)_{n} \tag{3.1}
\end{equation*}
$$

where $\chi_{K}$ denotes the characteristic function of $K \subset \mathbb{N}$. Replacing $A$ by $C_{1}$ and lim inf by an ordinary limit in (3.1), we obtain the well-known natural density function

$$
\delta(K)=\delta_{C_{1}}(K):=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{\infty} \chi_{K}(k)
$$

provided that a limit exists. A sequence $x:=\left(x_{j}\right)$ is called statistically convergent to $L$ and denoted by $s t-\lim _{n \rightarrow \infty} x_{n}=L$, if for every $\varepsilon>0$,

$$
\delta\left\{n \in \mathbb{N}:\left|x_{n}-L\right| \geq \varepsilon\right\}=0
$$

(see [7]). Using the regularity of $C_{1}^{q}$ for $q \geq 1$, and replacing $A$ by $C_{1}^{q}$ in (2.1), we can define the following density functions $\delta_{C_{1}^{q}}$, between the subsets of natural numbers and the interval $[0,1]$;

$$
\begin{equation*}
\delta_{q}(K)=\delta_{C_{1}^{q}}(K)=\lim _{n \rightarrow \infty} \inf \left(C_{1}^{q} \chi_{K}\right)_{n}, \quad q \geq 1 \tag{3.2}
\end{equation*}
$$

Lemma 13. (i) $\delta_{q}(2 \mathbb{N})=\delta_{q}(2 \mathbb{N}+1)=\frac{1}{[2]}$
(ii) $\delta_{q}(a \mathbb{N}+b)=\frac{1}{[a]}$ where $a$ and $b$ are positive integers.

Proof. Using (3.2)

$$
\delta_{q}(2 \mathbb{N})=\lim _{n \rightarrow \infty} \inf \sum_{k \in 2 \mathbb{N}} \frac{q^{k-1}}{[n]}
$$

where

$$
\sum_{k \in 2 \mathbb{N}} \frac{q^{k-1}}{[n]}= \begin{cases}\sum_{k=1}^{\frac{n}{2}} \frac{q^{2 k-1}}{[n]} & \text { if } n \text { is even } \\ \frac{n-1}{2} \frac{q^{2 k-1}}{[n]} & \text { if } n \text { is odd. }\end{cases}
$$

(i) If $n$ is even, then the $n$th partial sum

$$
\begin{equation*}
s_{n}=\frac{q}{[n]}+\frac{q^{3}}{[n]}+\cdots+\frac{q^{n-1}}{[n]} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
q^{2} s_{n}=\frac{q^{3}}{[n]}+\frac{q^{5}}{[n]}+\cdots+\frac{q^{n+1}}{[n]} . \tag{3.4}
\end{equation*}
$$

Combining (3.3) and (3.4) we have

$$
s_{n}=\frac{q\left(1-q^{n}\right)}{\left(1-q^{2}\right)[n]}
$$

and

$$
\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} \frac{q\left(1-q^{n}\right)}{\left(1-q^{2}\right)[n]}=\frac{q}{1+q} .
$$

If $n$ is odd, then the $n$th partial sum

$$
\begin{equation*}
s_{n}=\frac{q}{[n]}+\frac{q^{3}}{[n]}+\cdots+\frac{q^{n-2}}{[n]} \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
q^{2} s_{n}=\frac{q^{3}}{[n]}+\frac{q^{5}}{[n]}+\cdots+\frac{q^{n}}{[n]} . \tag{3.6}
\end{equation*}
$$

Similarly combining (3.5) and (3.6) yields

$$
\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} \frac{q-q^{n}}{\left(1-q^{2}\right)[n]}=\frac{1}{1+q} .
$$

Since $q \geq 1$, we have $\frac{1}{1+q} \leq \frac{q}{1+q}$ and

$$
\delta_{q}(2 \mathbb{N})=\lim \inf _{n \rightarrow \infty} \sum_{k \in 2 \mathbb{N}} \frac{q^{k-1}}{[n]}=\frac{1}{[2]} .
$$

By using the above technique one can prove that $\delta_{q}(2 \mathbb{N}+1)=\frac{1}{[2]}$.
(ii) Since $\{a \mathbb{N}+j: j=0,1, \ldots, a-1\}$ is a partition for $\mathbb{N}$ and using the method of (i)

$$
\lim _{n \rightarrow \infty}\left(\sum_{k \in \mathbb{A N}+J} \frac{q^{k-1}}{[n]}\right)=\frac{q^{a-1-j}}{[a]}
$$

for fixed $j \in\{0,1, \ldots, a-1\}$, we have

$$
\delta_{q}(a \mathbb{N}+b)=\inf \left\{\frac{q^{a-1-j}}{[a]}: j=0,1, \ldots, a-1 .\right\}=\frac{1}{[a]} .
$$

Finally we will define a new type of convergence which is different from statistical convergence.
Definition 14. A number sequence $x=\left(x_{k}\right)$ is called $q$-statistically convergent to $L$, written $s t^{q}-\lim x=L$, if for every $\varepsilon>0, \delta_{q}\left(K_{\varepsilon}\right)=0$, where $K_{\varepsilon}=\left\{k:\left|x_{k}-L\right| \geq \varepsilon\right\}$.

Example 15. Consider the sequence $x_{k}=(\underbrace{1}_{2^{0}}, \underbrace{0,0}_{2^{1}}, \underbrace{1,1,1,1}_{2^{2}}, \underbrace{0,0,0, \ldots, 0}_{2^{3}}, 1, \ldots$,$) and define the set K=\{k \in \mathbb{N}$ : $\left.x_{k}=1\right\}$ then $\delta(K)$ does not exist (see [8]) therefore $x_{k}$ is not statistically convergent. On the other hand, since $\left[C_{1}^{q} \chi_{K}\right]_{2^{2 n}-1} \rightarrow$ $0, s t_{q}-\lim x_{k}=0$.

## References

[1] J. Boss, P. Cass, Classical and Modern Methods in Summability, Oxford University Press, 2000.
[2] A. Il'inskii, S. Ostrovska, Convergence of generalized Bernstein polynomials, J. Approx. Theory 116 (1) (2002) 100-112.
[3] A. Lupaş, A $q$-analogue of the Bernstein operators, Seminar on Numerical and Statistical Calculus, No. 9, University of Cluj-Napoca, 1987.
[4] G.M. Phillips, On generalized Bernstein polynomials, in: Numerical Analysis, World Sci. Publ., River Edge, NJ, 1996, pp. 263-269.
[5] J. Bustoz, L.F. Gordillo, q-Hausdorff summability, J. Comput. Anal. Appl. 7 (2005) 35-48.
[6] A.R. Freedman, J.J. Sember, Densities and summability, Pacific J. Math. 95 (1981) 293-305.
[7] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951) 241-244.
[8] J.A. Fridy, On stastistical convergence, Analysis 5 (1985) 301-313.


[^0]:    * Corresponding author.

    E-mail addresses: huseyin.aktuglu@emu.edu.tr (H. Aktuğlu), serife.bekar@emu.edu.tr (Ş. Bekar).
    0377-0427/\$ - see front matter © 2010 Elsevier B.V. All rights reserved.
    doi:10.1016/j.cam.2010.08.018

