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We investigate the implications of the entropic force formalism proposed by Verlinde. We show that
an UV/IR relation proposed by Cohen et al., as well as an uncertainty principle proposed by Hogan can
be derived from the entropic force formalism. We show that applying the entropic force formalism to
cosmology, there is an additional term in the Friedmann equation, which can be identified as holographic
dark energy. We also propose an intuitive picture of holographic screen, which can be thought of as an
improvement of Susskind’s holographic screen.
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1. Introduction

The investigation of black hole thermodynamics [1] implicate
that there may be profound connections between gravity and ther-
modynamics. In [2], Jacobson derived the Einstein equation from
the thermodynamics near the horizon. The Einstein equation arises
as an equation of state in the thermodynamical picture. Subse-
quently, this issue have been discussed by many authors. Espe-
cially, Padmanabhan discussed the equipartition rule and some
other thermodynamics of gravity in [3].

Recently, Verlinde [4] conjectured that gravity can be explained
as an entropic force. In thermodynamics, if the number of states
depends on position �x, entropic force F arises as thermodynam-
ical conjugate of �x. In this case, the first law of thermodynamics
can be written as

F�x = T �S. (1)

Inspired by Bekenstein’s entropy bound, Verlinde postulated
that when a test particle moves towards a holographic screen, the
change of entropy on the holographic screen is proportional to the
mass m of the test particle, and the distance �x between the test
particle and the screen:

�S = 2πkB
mc

h̄
�x. (2)

To derive the entropic force hypothesis, Eq. (2) should hold at least
when �x is smaller than or comparable with the Compton wave-
length of the particle.
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The temperature appears in Eq. (1) can be understood in two
ways: one can relate temperature and acceleration using Unruh’s
rule

kB T = 1

2π

h̄a

c
, (3)

or relate temperature, energy and the number of used degrees of
freedom using the equipartition rule

E = 1

2
NkB T . (4)

The role that the above equations play is as follows: Eq. (2) can
be thought of as a basic assumption throughout Verlinde’s work.
Eq. (1) is an equation of force; Eq. (3) is an equation of accelera-
tion, thus an equation of inertia; Eq. (4) encodes the information of
Newtonian gravity. Keeping these in mind, one can use Eq. (2) to-
gether with (1) and (3) to obtain F = ma. Newton’s law of gravity
F = GMm/R2 can be obtained from Eqs. (2), (1) and (4) together
with a formula for N . And using Eqs. (2), (3) and (4), one can
obtain a relation between entropy, used bits and Newtonian po-
tential1:

S

n
= −kB

Φ

2c2
. (5)

Eq. (5) has interesting physical implications. The ratio −Φ/(2c2)

takes value between 0 and 1. The implication is that the number

1 One should note that the temperature T in Eq. (3) and (4) have different mean-
ing. In Eq. (3), the temperature is defined in the bulk. However, in Eq. (4), the
temperature is defined on the holographic screen. To let these two temperatures
equal is an additional assumption in Verlinde’s paper.
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of bits on the holographic screen which are used to dually de-
scribe the object in the bulk can be either equal to or larger than
the entropy of the bulk object. In other words, Newtonian poten-
tial results in a “coarse graining” description of the bulk object on
the holographic screen. This coarse graining is consistent with the
picture of the AdS/CFT correspondence.

The entropic force conjecture of gravity can be applied to var-
ious aspects of gravitational physics. For example, this conjecture
is applied to cosmology in [5,6]. The implication for loop quantum
gravity is discussed in [7].

In this Letter, we would like to discuss implications of Eq. (5).
In Section 2, we show that from the assumption of entropic force,
one can derive two known holographic relations, namely, an UV/IR
relation proposed by Cohen et al. [8], and an uncertainty principle
proposed by Hogan [9].

In Section 3, we discuss the implication of the entropic force
for cosmology, especially dark energy. We find that the entropic
force conjecture leads to Friedmann equation, which is consistent
with the recent studies [5,6]. However, we note that one additional
term in the Friedmann equation arises, which can be identified to
holographic dark energy.2

In Section 4, we visualize the discussion of Section 2 by con-
structing an improved holographic screen. We shall show that the
intuitive holographic screen proposed by Susskind [12] has tension
with Eq. (5), and the entropic force conjecture leads to a solution
to this problem.

For simplicity, we shall use natural units h̄ = c = kB = 1 in the
remainder of the Letter.

2. Holographic relations from entropic force

Since the discovery of holography, UV/IR correspondence has
become an important concept in physics concerning gravity. It is
conjectured that when gravity is considered, the UV and IR cutoffs
of an effective field theory should be related. When an IR cutoff of
an effective field theory is chosen, an UV cutoff arises according to
this IR cutoff. Thus one can write the UV cutoff as a function of
the IR cutoff as

LUV = f (LIR). (6)

To apply Eq. (5), we consider how information on the horizon of
a Schwarzchild black hole is coarse gained on a holographic screen.
We use L to denote the distance between the black hole and the
holographic screen. Thus the amount of coarse graining is

�Ah

�As
= −Φ

2
= L2

p M

2L
, (7)

where L p ≡ √
G is the Planck length. Here we use �Ah and �As to

denote the fundamental area elements on the black hole horizon
and on the holographic screen respectively. By “fundamental”, we
mean the smallest area that can be treated semiclassically. Thus
the fundamental area elements are related to the UV cutoffs of the
theory as

�Ah = f 2(αrh) = f 2(2αL2
p M

)
, �As = f 2(L), (8)

where rh is the Schwarzchild radius. Note that the natural IR cutoff
for the holographic screen is given by the distance L. The IR cutoff

2 Similar topics have also been discussed in [10] and [11]. The differences be-
tween these previous works and the present Letter are as follows: In [10], holo-
graphic dark energy is derived using information theory, which is similar to, but
not the same as Verlinde’s entropic force formalism. In [11], dark energy is derived
from Verlinde’s entropic force formalism. However, there the cosmic horizon is as-
sociated with the scale factor a. Thus the result is not canonical.
for the black hole horizon should be proportional to rh , and we
use a constant factor α to denote the numerical coefficient LIR/rh .

Comparing Eqs. (7) and (8), we have

�Ah

�As
= L2

p M

2L
= f 2(2αL2

p M)

f 2(L)
. (9)

Note that Eq. (9) should be valid for arbitrary L and M . Thus
we have

f (LIR) = √
βLp LIR, α = 1/4, (10)

where β is a dimensionless numerical constant, which canceled
out in Eq. (5), thus remains not determined. Note that β cannot
depend on L or M . Because L and M can vary for different holo-
graphic screens and different black holes, while Eq. (6) should be
a general law. The natural value of β is order one.

Insert Eq. (10) into Eq. (6), we have

LUV = √
βLp LIR. (11)

In terms of the UV/IR cutoffs of energy scales, the above equa-
tion takes the form

Λ2
UV = √

8πβMpΛIR, (12)

where M p ≡ 1/
√

8πG is the reduced Planck mass. This equation
is the equation proposed in Cohen’s et al. paper [8], which is
originally obtained by requiring that the vacuum energy inside a
volume characterized by LIR does not exceed the energy of a black
hole in this volume.

One outstanding application of Cohen’s et al. UV/IR relation is
holographic dark energy [13], which provides a solution of the cos-
mological constant problem and can fit the current data very well.
In the model of holographic dark energy, the energy density of
vacuum energy takes the form

ρΛ = 3c2M2
p R−2

h . (13)

The form of holographic dark energy can be obtained by noticing
the fact that ρΛ ∼ Λ4

UV , and choosing the IR cutoff as the future
event horizon.

Before to proceed, we would like to mention that the UV/IR re-
lation (11) can also be obtained in another way. We consider the
case that a fundamental area element of a black horizon is repre-
sented on two different holographic screens. The distance between
the black hole and these two holographic screens are denoted by
L1 and L2 respectively. The fundamental area element of these two
holographic screens �A1, �A2 satisfy

�A1

�A2
= f 2(L1)

f 2(L2)
= Φ2

Φ1
= L1

L2
, (14)

where Φ1 and Φ2 are Newtonian potentials on the holographic
screen. As L1 and L2 can be chosen arbitrarily, we have LUV =
f (LIR) ∝ √

LIR . This recovers Eq. (11). Note that suppose there are
ni fundamental area elements on holographic screen i (i = 1,2).
Then ni = Ai/�Ai , where Ai is proportional to all the degree of
freedom used to describe the massive object. Here our derivation
also works for a mass not necessarily a black hole.

As another application of Eq. (5), in the remainder of this sec-
tion, we shall derive a uncertainty relation of quantum gravity. We
consider when a light ray travels a distance L, how precisely the
direction that the light ray travels can be determined. To be more
explicit, we assume when a light ray travels a distance L, the direc-
tion of the light ray has an uncertainty �θ ≡ g(L). This uncertainty
is illustrated in Fig. 1.

To determine the function g(L), we consider the same setup in
deriving (14). Two holographic screens are set up with distance L1
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Fig. 1. When a light ray travels a distance L, the perpendicular direction obtains
an uncertainty �X . Equivalently, the direction of the light ray obtains an uncer-
tainty �θ .

and L2 respectively from a gravitational source, which produces a
Schwarzchild type Newtonian potential. The level of fuzziness of a
light ray which travels from the gravitational source to the holo-
graphic screens can be thought of as a measure of coarse graining.
This is because, if the light rays were not fuzzy in the perpendicu-
lar direction, one could use light rays to communicate information
between the gravitational source and the holographic screens to
make correspondence for every bit of information, such that no
coarse graining is necessary. To equal fuzziness and amount of
coarse graining, we have

�A1

�A2
= g2(L1)L2

1

g2(L2)L2
2

= Φ2

Φ1
= L1

L2
. (15)

The above equation holds for general L1 and L2. Thus we have

�θ2 = γ
Lp

L
, (16)

where γ is a dimensionless constant. Eq. (16) recovers the holo-
graphic uncertainty relation proposed by Hogan [9]. This relation
can be also expressed by a uncertainty of distance �X = �θ L in
the direction perpendicular to L. In terms of �X , the uncertainty
principle takes the form

�X2 = γ Lp L. (17)

Originally, Hogan’s uncertainty principle was proposed by mak-
ing use of the diffraction equation of a Planck wavelength light
ray to get the fuzziness. Alternatively, Hogan’s uncertainty prin-
ciple can be also understood as: at Planck scale spacetime foam,
when a light ray travels a distance L p , the uncertainty in the
perpendicular direction is also of order L p . When the light ray
travels a distance L, which has L/L p intervals of Planck distance,
the random walk in the perpendicular direction accumulates to be
�X ∼ L p × √

L/L p = √
LL p . This uncertainty principle can also be

related to the UV/IR relation Eq. (11) by identifying �X to be the
UV cutoff, and L to be the IR cutoff.

Finally, one should note that the derivation in this section is
reversible. If we start from Cohen’s et al. UV/IR relation or start
from Hogan’s uncertainty principle, one can derive Verlinde’s for-
mula (5). And from Eq. (5), one can arrive at Eq. (2), which is the
basic assumption of Verlinde’s paper.

3. Implications for cosmology and holographic dark energy

As discussed in the previous section, Cohen’s et al. UV/IR rela-
tion arises in the framework of entropic force. Following the argu-
ments in [13], this UV/IR relation leads to a model of holographic
dark energy. In this section, we shall show that the previous ar-
gument of dark energy can also be obtained from the analysis of
the future event horizon and a holographic screen describing the
observable universe.

In spite of ordinary matter, our universe also very probably has
a future event horizon. Consider a test particle which lies slightly
Fig. 2. To investigate the role that future event horizon plays in cosmology, we
consider the setup as illustrated in the figure. The point m denotes a test parti-
cle located near the holographic screen.

outside a holographic screen, but “inside” the future event horizon
of the universe. We assume the distance between the test particle
and the future event horizon (seen from an observer in the center
of the observable universe) be much larger than a Planck length,
so that Newtonian approximation is valid. On the other hand, this
distance should be also smaller than the size of the observational
universe (in order that the holographic screen is also of cosmolog-
ical size), so that one can investigate cosmological sequences. We
illustrate this setup in Fig. 2.

The future event horizon of the universe has Gibbons–Hawking
radiation Th ∼ H ∼ 1/Rh , as well as degree of freedom Nh ∼ R2

h/G .
As noticed by Verlinde, the energy of the future event horizon,
which is seen on the holographic screen, takes the form3

Eh ∼ Nh Th ∼ Rh/G. (18)

We denote the energy density of matter components (for ex-
ample, dust and radiation) by ρm . The energy represented on the
holographic screen is

E = 4π R3

3
ρm, (19)

where R is the physical radial coordinate of the test particle.
Following Verlinde’s logic, using Eqs. (1), (2) and (4), we find

that the energy on the holographic screen induces a force on the
test particle toward it, while the event horizon induces another
force pointing outward along R . Considered these facts, the force
experienced by the test particle takes the form4

F ∼ mRh

R2
− 4πGmRρm, (20)

where the temperature T is defined in Eq. (4) by the equipartition
rule. Note that we have also assumed the degree of freedom on the
holographic screen has energy Th . However, this is not a problem
because Th ∼ T in our setup. Note that the term 4πG Rρm cor-
responds to the Newtonian gravity from the matter components.
However, a new term mRh/R2 ≡ Fh arises because of the existence
of the future event horizon. We find an attractive force and a re-
pulsive force, the latter is due to dark energy.

The potential energy for the test particle arising from the effect
of the future event horizon is

3 As a check, one can consider the case of a black hole. Consider a screen which
lies far away from the black hole. We denote the Schwarzchild radius by Rs . The
Hawking temperature of the black hole seen on the holographic screen is T ∼ 1/Rs ,
the degree of freedom of the black hole horizon is N ∼ R2

s /G . Thus seen from the
holographic screen, the black hole has energy EBH ∼ Rs/G , which is indeed the mass
of the black hole.

4 A black hole horizon and a cosmic horizon does not make much difference,
except that for the cosmic horizon, objects exits the horizon from inside to outside.
Thus Verlinde’s entropic derivation on the force should also apply for the cosmic
horizon: as there is an entropy change, there should be a force. This is different
from directly applying Newtonian gravity, where there should be no force outside
the spherical shell from cancelations between different parts of the shell.
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Vh ∼ − Rhm

R
= −c2mR2

2R2
h

, (21)

where c is a numerical constant. Note that at the equal sign, we
have used the fact that from our setup, R ∼ Rh . Thus LHS and RHS
are almost equal.5 Note that the time derivative of R and Rh are
different. However, as one can see from the remainder of this sec-
tion, we shall not take derivative with respective to R or Rh any
more, thus the replacement between Rh and R is allowed here. As
we shall show, this additional gravitational potential for the test
particle can be identified as holographic dark energy.

To see the implication of Eq. (21), we derive the Friedmann
equation. As discussed by Verlinde, the entropic force conjecture
leads to the Newtonian gravity. Applying to cosmology, there are
several methods to derive Friedmann equation. For example, one
can use the Tolman–Komar energy [6], or use some properties of
apparent horizon [5]. Here we shall review a simpler pedagogical
way to derive Friedmann equation from Newtonian gravity:

The total energy of the test particle can be written as E =
mṘ2/2 + V , where

V ≡ Vm + Vh = −4πG

3
mρm R2 − c2mR2

2R2
h

. (22)

Note that the total energy E of the test particle should be a
constant. We write the physical radius R = ar, where a is the scale
factor and r is the comoving coordinate of the particle, which is
by definition a constant. Divide Eq. (22) by mR2/2, we have the
Friedmann equation

3M2
p H2 = ρm + ρk + 3c2M2

p R−2
h , (23)

where ρk ≡ 6M2
p E/(mR2) is the effective energy density for the

spatial curvature of the universe. Thus holographic dark energy
arises as a consequence of force experienced by a test particle near
a cosmological size holographic screen with the presence of future
event horizon.

Finally, we would emphasize that we have obtained the energy
density of holographic dark energy, but by far not the equation of
state. There are two reasons for this. One reason is that here we
have used the Newtonian approximation of gravity. If we have not
started from the conservation of energy, but rather from the equa-
tion F = mR̈ directly, we shall not obtain the correct Friedmann
equation without replacing M → M + 3M ′ [6]. Thus one cannot
confidently take time derivative of Eq. (23) in the framework of
Newtonian gravity. Another reason is that we have made replace-
ments between R and Rh in Eq. (21). This shall not allow us to
further take time derivative to (23).

To obtain the equation of state for holographic dark energy, we
should note that the energy density of holographic dark energy
should only depend on the size of the future event horizon, but
not depend on the scale factor of the universe. A supporting argu-
ment is that in a de Sitter universe, due to the scale invariance of
the de Sitter phase, the energy density of holographic dark energy
should not dependent on the scale factor. This is different with the
term ρk , which is absent in the pure de Sitter phase. Similarly, it
is natural that in a quasi-de Sitter phase, which can describe the
current universe, the energy density of holographic dark energy
should also not depend on the scale factor. Thus the energy den-

5 Note that as we have T ∼ Th and R ∼ Rh , if we slightly change our derivation,
we might have obtained equations for Fh up to a factor Rh/R . But as our result is
derived up to a multiplying numerical factor, the factor Rh/R can be ignored even
when one integrates Fh to obtain Vh . One exception is that if F ∼ m/R , there will
be a logarithm log(Rh/R) in Vh . But again, this logarithm is order one, and does
not change the main result here.
Fig. 3. Susskind’s holographic screen.

sity of holographic dark energy should be ρΛ = 3c2M2
p R−2

h , instead

of something like 3c2M2
p R−1

h R−1, 3c2M2
p R−2, etc.

The above argument can also obtained in an simper way: The
scale factor is not a canonical quantity, namely when we rescale
spatial coordinates r, the scale factor also gets rescaled, thus the
dependence of the dark energy density on the scale factor cannot
be simply a power form.

Now we can take time derivative to the holographic dark en-
ergy density, resulting in

ρ̇Λ = −2ρΛ

(
H − R−1

h

)
. (24)

Eqs. (23) and (24) fully determines the dynamics of holographic
dark energy.

4. Towards an improved holographic screen

In this section, we discuss the tension between Susskind’s holo-
graphic screen [12] and Verlinde’s entropic force conjecture. Based
on this, we propose an improved intuitive picture of holographic
screens.

In [12], Susskind proposed an intuitive picture of holographic
screen. One can think of a holographic screen as a spacelike plane.
The image of a black hole on the screen is defined by the intersec-
tion of the holographic screen with the set of light rays that start
from the stretched horizon of black hole, and end on the screen at
right angle. This picture is illustrated in Fig. 3.

We would like to examine the holographic feature of Susskind’s
screen in Verlinde’s picture. Consider a black hole with fixed en-
tropy S . The bits used on the holographic screen to describe the
black hole can be calculated using Eq. (5) as

n = −2c2

Φ

S

kB
. (25)

As one moves the holographic screen farther away from the black
hole, which corresponds to coarse graining of information, the
Newtonian potential decreases. Thus one need to use more bits
on the holographic screen to describe the black hole. Qualitatively,
this agrees with Susskind’s screen.

However, there is tension between Eq. (5) and Susskind’s screen
when one performs a quantitative analysis. This is because, if one
moves the screen to infinity, corresponding to a vanishing of grav-
itational potential, then from Eq. (5), n diverges. In other words,
the image on the screen will be infinitely large.

On the other hand, the image has finite area from Susskind’s
definition of holographic screen, even if the screen is infinitely
far away. This is because a light ray with impact parameter b >

3
√

3GM will not hit the black hole. Thus when the screen is in-
finitely far away, the radius of the image is 3

√
3GM .6

6 This image includes the “primary screen map” and other images, defined in
[14]. Multiple images are possible here because light rays can orbit the black hole.
Thus the light rays can be classified by number of cycles it goes around the black
hole before hitting the holographic screen. The primary screen map is a one-on-one
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Fig. 4. Improved holographic screens. In the left figure, we illustrate the direct generalization of Susskind’s holographic screen, which is planar. In the right figure, as Verlinde
points out, we use an equipotential surface as a more natural choice of holographic screen.
This inconsistency leads to two possibilities: either Verlinde’s
entropic force hypothesis is not valid, or one need to improve the
picture of holographic screen. The latter possibility is more likely
to be true. This is because Eq. (5) is also supported by AdS/CFT,
which represents a more modern point of view of holography.

Inspired by Hogan’s uncertainty principle with the presence of
gravity, we propose that the image of a fundamental region of
black hole horizon should be presented by the fuzziness of a light
ray travels from the stretched horizon to the holographic screen.
This picture is illustrated in Fig. 4. Note that we could either
construct holographic screens as planes, which are direct improve-
ments of Susskind’s holographic screen, or as spheres, which co-
incides better with Verlinde’s view that equipotential surfaces are
natural holographic screens.

5. Conclusion and discussion

We showed that Verlinde’s entropic force formalism can be
used to derive Cohen’s et al. holographic UV/IR relation and
Hogan’s holographic uncertainty principle. The new derivation pro-
vides an improved theoretical background for these relations.

We showed that a component of dark energy arises from the
entropic force formalism. This dark energy component can be iden-
tified with holographic dark energy. We are able to derive the
energy density of holographic dark energy from the entropic force
formalism. The equation of state for holographic dark energy is
not obtained directly from this derivation. However, we can fix the
equation of state of holographic dark energy by comparing our cur-
rent universe with a pure de Sitter universe. The resulting equation
of state also turns out to be the same as holographic dark energy.

We showed that Susskind’s holographic screen is not consis-
tent with Verlinde’s entropic force formalism. Inspired by Hogan’s
uncertainty principle, we developed an improved intuitive picture
of holographic screens. Despite of the improvement mentioned in
the Letter, one should also keep in mind that holographic screens
are only illustrations of the holographic map in a loose sense. The

map from the black hole horizon to the holographic screen, which is in this case
constructed by light rays that do not orbit the black hole. The primary screen map
is smaller than 3

√
3GM , which is also finite.
precise correspondence of the bulk and the holographic screen re-
quires more understanding of the dynamics of holography.
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