
*Corresponding author. Tel.: #1-615-322-6660; fax: #1-615-343-0215.
E-mail address: hughes@math.vanderbilt.edu (B. Hughes)
1Supported in part by NSF Grant DMS-9504759.
2Supported in part by NSF Grant DMS-9505024.
3Supported in part by NSF Grant DMS-9504913.

Topology 39 (2000) 873}919

Neighborhoods in strati"ed spaces with two strata

Bruce Hughes!,*,1, Laurence R. Taylor",2, Shmuel Weinberger#,3, Bruce Williams",2

!Department of Mathematics, Vanderbilt University, Nashville, TN 37240, USA
"Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556, USA

#Department of Mathematics, University of Chicago, Chicago, IL 60637, USA

Abstract

We develop a theory of tubular neighborhoods for the lower strata in manifold strati"ed spaces with two
strata. In these topologically strati"ed spaces, manifold approximate "brations and teardrops play the role
that "bre bundles and mapping cylinders play in smoothly strati"ed spaces. Applications include the
classi"cation of neighborhood germs, a multiparameter isotopy extension theorem and an h-cobordism
extension theorem. ( 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The question that motivates this paper is a basic one: suppose that one has a locally #at
topological submanifold of a manifold, what kind of geometric structure describes the neighbor-
hood?
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For smooth manifolds the entirely satisfactory answer is given by the tubular neighborhood
theorem which identi"es neighborhood germs with vector bundles. In the piecewise linear category,
one has the theory of block bundles [31]. For the topological category, the situation is
much messier: essentially one can classify the neighborhoods without really describing them (see
[32]).

The answer that we give is in terms of a variant of the notion of a "ber bundle, the manifold
approximate "bration (MAF). While "ber bundles are maps with identi"cations of the inverse
images of points, MAFs are essentially maps with identi"cations of the inverse images of open balls.
At the level of de"nitions, they are to "ber bundles what cell-like maps are to homeomorphisms.
However, unlike the cell-like case, they cannot always be approximated by bundles (or even block
bundles) and represent a genuinely more general notion. Happily, though, one has a good control
of the theory of MAFs, see [18,19].

A special case of our theorem asserts that the (space of ) (d#n) dimensional locally #at germ
neighborhoods of an n-manifold Mn are (is homotopy equivalent to the space of) MAFs mapping to
M]R, with the inverse images of small balls in M]R homeomorphic to Sd~1]Rn`1. One should
think of a MAF mapping to M]R as having as domain a deleted neighborhood of M and as
consisting of two pieces: the "rst is the projection of generalized tubular neighborhood bundle, and
the second is the radial direction, e.g. something like distance from the submanifold. We call this
structure a &teardrop neighborhood'.

Actually, though, our paper is written in more generality. It gives an analysis of neighborhoods
of the singular stratum of a strati"ed space as in [30] which has only two strata. This means that
our results apply, for instance to quotients of semifree group actions, and leads to new results for
these.

The description of germ neighborhoods is good enough to recover and reprove Quinn's isotopy
and homogeneity theorems, and go rather further: we obtain multiparameter isotopy extension
theorems, which lead to local contractibility of homeomorphism groups for such spaces.

Another important application is to complete (in the two stratum case) the h-cobordism theorem
given in [30]. That paper provides an invariant whose vanishing is necessary and su$cient for
a strati"ed h-cobordism to be a product. We give the realization: any element in the appropriate
Whitehead group can be realized by a strati"ed h-cobordism.

The picture we give of strati"ed spaces, when combined with the analysis of MAFs in [18] and
the stable homeomorphism groups in [38], is more than "ne enough to be used to give an
independent proof of the two stratum case of the strati"ed classi"cation results in [37]. However,
the current approach is more directly geometric, which has at least two important advantages. The
"rst is that the analysis is done here unstably: i.e. without "rst crossing with Euclidean spaces and
then removing them.

The other main advantage is that of canonicity, which is important for the multiparameter
results discussed above, and also plays a key role in relating the splitting results for spaces of MAFs
over Hadamard manifolds proven in [21], and the Novikov rigidity results proven by Ferry and
Weinberger (see [9,10]) for strati"ed spaces with nonpositively curved strata. These seemingly
di!erent results are essentially equivalent after taking a loop space.

Finally, these results form the bottom of an induction that leads to extensions of all of the
theorems and applications mentioned above to general strati"ed spaces with an arbitrary number
of strata (see [15,16]).
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2. De5nitions and the main results

Quinn [30] has proposed a setting for the study of those spaces admitting purely topological
strati"cations as distinct from the smooth strati"cations of Whitney [39], Thom [36], Mather [25]
and others (cf. [11]). In this paper we consider spaces X containing a manifold B such that the pair
(X,B) is a manifold homotopically strati"ed set in the sense of Quinn. We call X a manifold
strati"ed space with two strata. Roughly, this means that XCB is a manifold, B satis"es a tameness
condition in X, and there is a good homotopy model for a normal "bration of B in X.

We begin by recalling the de"nitions relevant to the manifold strati"ed spaces. Most of these
concepts can be found in Quinn [30] and Weinberger [37], but our terminology is not consistent
with either source. Moreover, since we are only dealing with strati"ed spaces with two strata, our
de"nitions are specialized to that case.

Let (X,A) be a pair of spaces so that A-X. Then X is said to have two strata: the lower (or
bottom) stratum A and the top stratum XCA. If (>, B) is another pair, then a map f : (X,A)P(>,B)
is said to be strict, or stratum-preserving, if f (XCA)->CB and f (A)-B. The subspace A of X is said
to be forward tame if there exists a neighborhood N of A in X and a strict map
H : (N]I,A]IXN]M0N)P(X,A) such that H(x, t)"x for all (x, t)3A]I and H(x, 1)"x for all
x3N. In this case, H is called a nearly strict deformation of N into A.

Let Map
4
((X,A),(>,B)) denote the space of strict maps with the compact-open topology. The

homotopy link of A in X is

holink (X,A)"Map
4
(([0, 1], M0N), (X,A)).

Evaluation at 0 de"nes a map q : holink(X,A)PA which should be thought of as a model for
a normal "bration of A in X. A point inverse q~1(x) is the local homotopy link (or local holink) at
x3A. In the case that X is an n-manifold and A is a locally #at submanifold of dimension i, then
Fadell proved that q : holink(X,A)PA is a "bration with homotopy "bre Sn~i~1 and used the
homotopy link as a substitute in the topological category for tubular neighborhoods in the
di!erential category (see [6,28], [17, App. B].)

The pair (X,A) is said to be a homotopically stratixed pair if A is forward tame in X and if
q : holink(X,A)PA is a "bration. If in addition, the "bre of q : holink(X,A)PA is "nitely domin-
ated, then (X,A) is said to be homotopically stratixed with xnitely dominated local holinks. (When we
say that the "bre of q is "nitely dominated and A is not path connected, we mean that each "bre of
q is "nitely dominated.) If the strata A and XCA are manifolds (without boundary), X is a locally
compact separable metric space, and (X,A) is homotopically strati"ed with "nitely dominated local
holinks, then (X,A) is a manifold stratixed pair.

We now de"ne the set of equivalence classes of neighborhoods which is the main object of study
in this paper. Let B be an i-manifold (without boundary) and let n*0 be a "xed integer. A germ of
a stratixed neighborhood of B is an equivalence class represented by a manifold strati"ed pair (X,B)
with dim(XCB)"n. Two such pairs (X, B) and (>,B) are germ equivalent provided that there exist
open neighborhoods; and< of B in X and>, respectively, and a homeomorphism h :;P< such
that hDB"id

B
. In this paper we will classify strati"ed neighborhoods of B up to germ equivalence

(provided n*5). The basic construction which makes this possible is now described.
Let p : XP>]R be a map. The teardrop of p, denoted XX

p
>, is the space with underlying set

the disjoint union XP> and natural topology de"ned in Section 3 below. We are interested in
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those maps p with the property that (XX
p
>,>) is a manifold strati"ed or homotopically strati"ed

pair.
Recall that an approximate xbration is a map with the approximate homotopy lifting property

(see De"nition 4.5) and that a map p :XP> is a manifold approximate xbration if p is an
approximate "bration, p is proper, and X and > are manifolds (without boundary) (see e.g. [18]).
Two maps p : XP> and p@ :X@P> are controlled homeomorphic if there is a homeomorphism
h : cyl(p)Pcyl(p@) between mapping cylinders such that hD>"id

Y
which is level in the sense that

h commutes with the natural projections to [0, 1]. In [18] manifold approximate "brations over
> with total space of dimension greater than four are classi"ed up to controlled homeomorphism.

The main results can now be stated. Let n*5 be a "xed integer and let B be a closed manifold. In
the general setting of manifold strati"ed pairs (X,B), neighborhoods of B in X need not have nice
geometric structure. For example, B need not be locally conelike in X and B may even fail to have
mapping cylinder neighborhoods (locally or globally). However, the "rst theorem says that the
lower stratum in a manifold strati"ed pair has a neighborhood which is the teardrop of a manifold
approximate "bration. The second theorem is just a more complete statement.

Theorem 2.1 (Teardrop Neighborhood Existence). Let (X,B) be a pair such that XCB is a manifold
of dimension n. Then (X,B) is a manifold stratixed pair if and only if B has a neighborhood in X which
is the teardrop of a manifold approximate xbration.

There are two equivalent ways to understand what it means for B to have a neighborhood in
X which is the teardrop of a manifold approximate "bration as in Theorem 2.1:

(i) There exist a neighborhood; of B in X and a manifold approximate "bration p :<PB]R

such that (;,B) is homeomorphic to (<X
p
B,B) rel B.

(ii) There exists an open neighborhood; of B in X and a proper map f :;PB](!R,#R]
such that f~1(B]M#RN)"B, f D:BPB]M#RN is the identity, and f D:;CBPB]R is
a manifold approximate "bration.

That these are equivalent follows from the material in Section 3 (see especially Proposition 3.7).
Theorem 2.1 follows directly from the following theorem.

Theorem 2.2 (Neighborhood Germ Classi"cation). The teardrop construction dexnes a bijection
from the set of controlled homeomorphism classes of manifold approximate xbrations over B]R (with
total space of dimension n) to the set of germs of stratixed neighborhoods of B (with top stratum of
dimension n).

In fact, Theorem 2.2 is just the consequence at the n
0

level of a more general Higher Classi"ca-
tion Theorem which asserts that two simplicial sets are homotopy equivalent (Theorem 2.3 below).
However, a proof of Teardrop Neighborhood Existence (Theorem 2.1) is o!ered in Section 7 which
avoids some of the parametric considerations needed for Theorem 2.3. Before we can de"ne the
simplicial sets appearing in Theorem 2.3 we need sliced versions of some of the de"nitions.

Let * be a space which will play the role of a parameter space. Let (X,A]*) be a pair of spaces
and let n : XP* be a map such that nD : A]*P* is the projection. Then A]* is said to be sliced
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forward tame in X (with respect to n) if there exists a neighborhood N of A]* in X and a nearly
strict deformation H of N into A]* such that H is "bre preserving over * (i.e., nH

t
"n for all t3I).

The sliced homotopy link of A]* in X (with respect to n) is holinkn(X,A]*)"
Mu3Map

s
(([0, 1],M0N),(X,A]*)) D nu (t)"nu (0) for all t3IN. Note that evaluation at 0 still gives

a map q : holinkn (X,A]*)PA]*.
Let n*0 be a "xed integer and let B be a manifold (without boundary). In Section 5 the

simplicial set SNn(B) of strati"ed neighborhoods of B is de"ned. Roughly, its k-simplices are
k-parameter families of manifold strati"ed spaces containing B]*k as the lower stratum using the
notions of sliced forward tameness and the sliced homotopy link. On the other hand, the simplicial
set MAFn(B]R) of manifold approximate "brations over B]R was de"ned in [18] (see also
Section 5). This set has k-simplices consisting of k-parameter families of manifold approximate
"brations over B]R.

Note that if p : MPB]R]*k is a map, then the teardrop construction yields a pair
(MX

p
B]*k,B]*k). De"ne W(p)"(MX

p
B]*k,B]*k). The following result is the simplicial set

version of Theorem 2.2.

Theorem 2.3 (Higher Classi"cation). If B is a closed manifold and n*5, then the teardrop construc-
tion dexnes a homotopy equivalence W : MAFn(B]R)PSNn(B).

To see why Theorem 2.2 follows from Theorem 2.3, recall that n
0
MAFn(B]R) is the set of

controlled homeomorphism classes of manifold approximate "brations over B]R (see [18]). And
it is not di$cult to see that n

0
SNn(B) is the set of germs of strati"ed neighborhoods of B (see

Corollary 5.6).
Fibre bundles have well-de"ned "bres up to homeomorphism. Analogously, manifold approxim-

ate "brations have well-de"ned "bre germs up to controlled homeomorphism (see [18]). Recall
that if p :MPB is a manifold approximate "bration with B connected, dimB"i and
dimM"n*5, then the xbre germ of p is the manifold approximate "bration q"pD :<"
p~1(Ri)PRi where Ri6B is an open embedding (which is orientation preserving if B is oriented).
The theorems above involve manifold approximate "brations p : MPB]R and these have "bre
germs of the form q :<PRi`1. The teardrop construction yields a manifold strati"ed pair
(<X

q
Ri,Ri)-(MX

p
B, B). The local holink of B in MX

p
B is homotopy equivalent to <. For locally

conelike strati"ed pairs (X,B) (see [35]) a neighborhood of B in X is given by the teardrop of
a manifold approximate "bration p : MPB]R with trivial xbre germ; that is, the projection
F]Ri`1PRi`1 for some closed manifold F.

Let MAF (B]R)
q
be the simplicial subset of MAFn (B]R) consisting of manifold approximate

"brations with "bre germ q :<PRi`1. For trivial "bre germ, we write this simplicial set as
MAF (B]R)

FCRi`1. According to [18,19], MAF(B]R)
q
is homotopy equivalent to a simplicial set

of lifts of BPBTOP
i`1

up to BTOP-%7%-(q) where BPBTOP
i`1

is the composition of the
classifying map BPBTOP

i
for the tangent bundle of B with the map BTOP

i
PBTOP

i`1
induced

by euclidean stabilization. The "bre of BTOP-%7%-(q)PBTOP
i`1

is BTOPc(q), the classifying space
of controlled homeomorphisms on q :<PRi`1. According to [20] BTOPc(q)KBTOPb(q), the
classifying space of bounded homeomorphisms. In the case of trivial "bre germ F]Ri`1PRi`1,
this is written as BTOPb(F]Ri`1). For relevant information about the homotopy type of
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BTOPb(F]Ri`1) see [38]. For example, if B]R is parallelizable, then

MAF (B]R)
FCRi`1KMap (B, BTOPb(F]Ri`1))

and this classi"es neighborhood germs in the locally conelike case.
These classi"cation results together with [38] can be used to give an alternative proof of

Weinberger's surgery theoretic stable classi"cation theorem [37] in the case of two strata. In fact,
this alternative proof is outlined in [37, 10.3.A].

In addition, Theorem 2.2 provides the link between the results on approximate "brations proven
in [21] and the tangentiality results of [9,10].

Teardrop neighborhoods can also be used in conjunction with the geometric theory of manifold
approximate "brations [12,13] to study the geometric topology of manifold strati"ed pairs. We
include two examples here, both of which involve extending a structure on the lower stratum to
a neighborhood of the stratum. This is a very important use of manifold approximate "brations
which is similar to the way "bre bundles are used in inductive proofs for smoothly strati"ed spaces.
The following isotopy extension theorem is established in Section 8.

Corollary 2.4 (Parametrized Isotopy Extension). If (X,B) is a manifold stratixed pair, dimX*5,
B is a closed manifold and h : B]*kPB]*k is a k-parameter isotopy (i.e., h is a homeomorphism,
xbre preserving over *k, and hDB]M0N"id

BCM0N), then there exists a k-parameter isotopy
hI : X]*kPX]*k extending h such that hI is the identity on the complement of an arbitrarily small
neighborhood of B.

In the case that B is a locally #at submanifold of X, this theorem is due to Edwards and Kirby
[5]. For locally cone-like strati"ed spaces with an arbitrary number of strata, it is due to
Siebenmann [35]. Finally, Quinn [30] proved this theorem for manifold strati"ed spaces in general
(with an arbitrary number of strata), but only in the case k"1.

Also in Section 8 we prove an h-cobordism extension theorem which can be used to prove
a realization theorem for strati"ed Whitehead torsions (see Remark 8.4(i)).

A xbre-preserving map (f.p) is a map which preserves the "bres of maps to a given parameter
space. The parameter space will usually be a k-simplex or an arbitrary space denoted K. Speci"-
cally, if o :XPK and p :>PK are maps, then a map f : XP> is f.p. (or f.p. over K) if pf"o.

There is a notion of reverse tameness which, in the presence of forward tameness, is often
equivalent to the "nite domination of local holinks condition discussed above. See [30, 2.15] and
[17, 9.15, 9.17, 9.18] paying special attention to the point-set topological conditions appearing in
[17]. Moreover, when strata are manifolds, the notions of forward tameness and reverse tameness
are often equivalent (by PoincareH duality). See [30, 2.14] and [17, 10.13,10.14] paying special
attention to the n

1
conditions appearing in [17].

Hughes and Ranicki's book [17] contains many of the the results of this paper in the special case
of strati"ed pairs with lower stratum a single point. The reader is advised to consult that work for
background, examples and historical remarks. The paper [16] contains generalizations to manifold
strati"ed spaces with more than two strata. The proofs in [16] are often by induction on the
number of strata and rely on the present paper for the beginning of the induction.
More applications to the geometric topology of manifold strati"ed spaces are contained in [16].
See also [15].
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3. The topology of the teardrop

Let p : XP>]R be a map. The teardrop of p, denoted by XX
p
>, is de"ned to be the space with

underlying set the disjoint union XP> and topology given as follows. First, let
c :XX

p
>P>](!R,#R] be de"ned by

c(x)"G
p(x) if x3X,

(x,#R) if x3>.

Then the topology on XX
p
> is the minimal topology such that

(i) X-XX
p
> is an open embedding, and

(ii) c is continuous.

The mapping c is called the collapse mapping for XX
p
>.

Note that a basis for this topology is given by

Mc~1(;) D; is open in >](!R,#R]NXM; D; is open in XN.

There are two minor variations on this construction which we will use. The "rst occurs when; is
an open subset of X and p is only de"ned on ;, p :;P>]R. Then we let XX

p
>"XX(;X

p
>).

The second variation occurs when the range of p is restricted, usually to >][0,#R). We can still
form XX

p
> and the collapse map c : XX

p
>P>][0,#R].

Special cases and variations of the teardrop construction have appeared frequently in the
literature and we now discuss some examples.

3.1. Mapping cylinders

If q : XP> is a map, let p : X](0,1)P>](0,1) denote q]id. Then we de"ne the open mapping
cylinder of q to be the teardrop

(cy> l(q)"(X](0, 1))X
p
>,

where we replace R with (0,1). The mapping cylinder is

cyl(q)"(X][0, 1))X
p
>.

Note that this is not the usual quotient topology on the mapping cylinder (except in special cases),
but is more useful geometrically (see [1,29,30]). The open cone c> (X) of a space X is just the open
mapping cylinder (with the teardrop topology) of the constant map XPMvN with v the vertex of the
cone.

It follows from this example that the teardrop XX
p
> of a map p : XP>][0, 1) is a mapping

cylinder neighborhood of > if there exist a space Z, a map q : ZP>, and a homeomorphism
h : Z][0, 1)PX such that ph"q]id

*0,1)
.

3.2. Joins

The join of two spaces X*> can be viewed as a teardrop as follows. Let
p : X](0, 1)]>P>](0, 1) be de"ned by p(x, t, y)"(y, t). Identify X](0, 1) with c> (X)CMvN. Then
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X*>"(c> (X)]>)X
p
>. Again, this is not the quotient topology, but it is a topology which is often

used.

3.3. Hadamard's teardrop

Let H be an Hadamard manifold of dimension n (i.e., H is a complete, simply connected
Riemannian manifold of nonpositive curvature) with distance function d induced by the metric. Fix
a point x

0
3H and let S denote the unit tangent sphere of H at x

0
. For each xOx

0
in H, let

c
x
: [0,#R)PH be the unique unit speed geodesic such that c

x
(0)"x

0
and c

x
(d(x

0
,x))"x. De"ne

p : HCMx
0
NPS](0,#R) by

p(x)"(c@
x
(0), d(x

0
, x)).

(It follows from standard facts that c@
x
(0) depends continuously on x.) It is easy to see that the

teardrop HX
p
S is homeomorphic to the Eberlein}O'Neill compacti"cation HM "HXH(R) with the

cone topology [4] (in particular, HX
p
S is an n-cell). To see this, let f : [0, 1]P[0,#R] be

a homeomorphism, let B be the unit tangent ball of H at x
0

and let t : BPHX
p
S be de"ned by

t(v)"G
exp( f (EvE ) v) if x N S,

v if x3S.

Then t is a homeomorphism (using the continuity criterion below) and together with [4, Proposi-
tion 2.10] can be used to get a homeomorphism with HM .

Another useful construction is as follows. If q : MPH is a map, then the composition
pq : MCq~1(x

0
)PS](0,#R) yields a teardrop MX

pq
S. If q is proper, this amounts to compac-

tifying M by adding the sphere S+H(R) at in"nity. This special case of the teardrop was used in
[20] for studying manifold approximate "brations over H.

Point-set topology
A pleasant feature of the teardrop topology is that it is easy to decide when a function into

a teardrop is continuous. In fact, the proof of the following lemma follows immediately from the
description of the basis above.

Lemma 3.4 (Continuity criteria). Let f : ZPXX
p
> be a function. Then f is continuous if and only if

(i) f D : f~1(X)PX is continuous, and

(ii) the composition X f
P XX

p
c

P>](!R,#R] is continuous.

If (X,>) is a pair of spaces, we now address the question of the existence of a map
p : XC>P>]R such that the identity from X to (XC>)X

p
> is a homeomorphism. If this is the

case, then (X,>) is said to be the teardrop of p. The answers are in Corollaries 3.11 and 3.12.
If f : XP> is a map and A->, then f is said to be a closed mapping over A if for each y3A and

closed subset K of X such that KW f~1(y)"0, it follows that y N cl( f (K)) (the closure of f (K)).
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Remark 3.5. (i) f : XP> is a closed mapping if and only if f is a closed mapping over >.
(ii) If A-> and f : XP> is a closed mapping over A, then f is a closed mapping over any

B-A.
(iii) If A is closed in > and f : XP> is a closed mapping over A, then f D : f~1(A)PA is a closed

mapping (but not conversely).

Lemma 3.6. If p : XP>]R is a map, then the collapse c :XX
p
>P>](!R,#R] is a closed

mapping over >]M#RN.

Proof. Let y3> and let K be a closed subset of XX
p
> such that y NK (note y"c~1(y,#R)).

Then y3;"(XX
p
>)CK and ; is open. By the de"nition of the teardrop topology, there is an

open subset < of (y,#R) in >](!R,#R] such that y3c~1(<)-;. Then c (K)W<"0, so
(y,#R) N cl(c(K)). h

Proposition 3.7. Let (X,>) be a pair of spaces for which there is a mapping f : XP>](!R,#R]
such that f (y)"(y,#R) for each y3> and f (XC>)->]R. Let

p"f D :XC>P>]R.

Then (X,>) is the teardrop of p if and only if f is a closed mapping over >]M#RN.

Proof. First note that f is the collapse c for the teardrop (XC>)X
p
>. It follows that the identity

XP(XC>)X
p
> is always continuous. To prove the proposition, assume that the identity is

a homeomorphism. By Lemma 3.6, c is a closed mapping over >]M#RN. Since f"c, so is f.
Conversely, assume f is a closed mapping over >]M#RN. Given an open subset ; of X, we

will show that; is open in (XC>)X
p
>. For this, it su$ces to consider y3;W> and show that; is

a neighborhood of y in (XC>)X
p
>. To this end let K"XC; and observe that since

f~1(y,#R)"y N K, it follows that (y,#R) N cl( f (K )). Thus, there is an open subset < of
>](!R,#R] such that (y,#R)3< and <W f (K)"0. Then c~1(<) is open in (XC>)X

p
>

and y3c~1(<)-;. h

Corollary 3.8. A pair (X,>) is a teardrop if and only if there is a map f :XP>](!R,#R] which is
closed over >]M#RN such that f (y)"(y,#R) for each y3> and f(x)3>]R for each x3XC>.

Proposition 3.9. Let (X,>) be a pair of spaces such that X is Hausdorw and > is locally compact.
Suppose there exist a proper retraction r :XP> and a map / :XP(!R,#R] such that
/~1(#R)">. Then f"r]/ :XP>](!R,#R] is a closed mapping over >]M#RN.
Consequently, (X,>) is a teardrop.

Proof. Let y3> and let K be a closed subset of X such that y N K. We need to show that
(y,#R) N cl (f (K)). To this end, let; be open in X such that y3; and;WK"/. Choose an open
subset < of > such that y3<,cl(<)-;W>, and cl(<) is compact. Let K

1
"r~1(cl (<))WK and

K
2
"KCr~1(<). Then K

1
is compact and K"K

1
XK

2
. Since f (K

1
) is compact and

(y,#R) N f (K
1
), it su$ces to show that (y,#R) N cl (f(K

2
)). But (y,#R)3<](!R,#R]

and f (K
2
)W<](!R,#R]"0. That (X,>) is a teardrop follows from Proposition 3.7. h
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Note that such a map / in the hypothesis of Proposition 3.9 would exist whenever X is normal
and > is a closed Gd-subset.

Theorem 3.10. Let> be a closed subset of the metrizable space X. Then (X,>) is a teardrop if and only
if there exists a metric d for X and a retraction r : XP> such that whenever Mx

n
N is a sequence in

X with x
n
PR (i.e., Mx

n
N has no convergent subsequence) and d(x

n
,>)P0, it follows that r (x

n
)PR.

Proof. Suppose "rst the (X,>) is the teardrop of p : XC>P>]R and let c : XP

>](!R,#R] be the collapse. De"ne o :XP[0,#R) to be the composition

X c
P>](!R,#R] 130+

&" (!R,#R] h
P [0,#R)

where h is a homeomorphism. Let D be any metric on X and de"ne d by

d(x,x@)"D(x,x@)#Do(x)!o(x@)D.

It is easy to see that d is indeed a metric and yields the same topology on X as D. De"ne r : XP> to
be the composition

X c
P>](!R,#R] 130+

&" >.

To see that r has the desired property, let Mx
n
N be a sequence in X such that x

n
PR and

d (x
n
,>)P0. Given y3> we will show that there is no subsequence Mx

nk
N with r(x

nk
)Py. To this end let

K"

=
Z
n/1

Mx
n
NCMyN.

Then K is a closed subset of X and yNK. Since c closed over >]M#RN by Lemma 3.6, it follows
that (y,#R) N cl(c(K)). Thus, if Mx

nk
N is a subsequence, Mc (x

nk
)N does not converge to (y,#R).

Since d (x
n
,>)P0, o (x

n
)P0. This implies c(x

n
)P>]M#RN. If r (x

nk
)Py, then we would have

c (x
nk
)P(y,#R), a contradiction.

Conversely, assume r and d are given as above. De"ne / : XP(!R,#R] by

/ (x)"G
1

d (x,>) if x3XC>,

#R if x3>.

Let f"r]/ : XP>](!R,#R]. By Corollary 3.8, it su$ces to show that f is closed over
>]M#RN. To this end let K be closed in X and y3>CK. Suppose (y,#R)3cl (f (K)). Then
there exists a sequence Mx

n
N in K such that f (x

n
)P(y,#R). Then r (x

n
)Py and / (x

n
)P#R.

Thus, d(x
n
,>)P0. If Mx

n
N has a convergent subsequence Mx

nk
N, then x

nk
Py

0
3>WK. Then

r(x
nk
)Py

0
so y"y

0
, a contradiction since y NK. Thus, we must have x

n
PR. So r(x

n
)PR, again

a contradiction. h

Corollary 3.11. If > is a compact subset of the metric space X, then (X,>) is a teardrop if and only if
there exists a retraction r : XP>.
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Corollary 3.12. Let > be a closed subset of the locally compact metric space X. Then (X,>) is
a teardrop if and only if there exists a retraction r :XP>.

Proof. If (X,>) is a teardrop, let r be given by Theorem 3.10. Conversely, if r :XP> is a retraction
then by Proposition 3.9, it su$ces to show that > has a closed neighborhood N in X such that
rD : NP> is proper. To this end, for each y3>, let N

y
be a compact neighborhood of y in X and let

N"ZMr~1(N
y
W>)WN

y
D y3>N. h

We now observe that there are versions of the preceding results which are valid near>. To make
this precise, let (X,>) be a pair of spaces. An open neighborhood ; of > in X is said to be
a teardrop neighborhood if the pair (;,>) is a teardrop; that is, there is a map

p :;C>P>]R

such that the identity from X to (XC>)X
p
> is a homeomorphism. The following results follow

immediately from Corollaries 3.11 and 3.12.

Corollary 3.13. If > is a compact subset of the metric space X, then > has a teardrop neighborhood in
X if and only if > is a neighborhood retract of X.

Corollary 3.14. Let > be a closed subset of the locally compact metric space X. Then> has a teardrop
neighborhood in X if and only if > is a neighborhood retract of X.

Next, we prove a lemma which will be useful in Section 4.

Lemma 3.15. If X and > are metric spaces and p :XP>]R is a map, then the teardrop XX
p
> is

metrizable.

Proof. Let d
X

and d
Y

be metrics for X and >, respectively. De"ne a function
o : (XP>)](XP>)P[0,#R) by

o(a, b)"G
d
X
(a, b) if a, b3X,

d
Y
(a, b) if a, b3>,

0 otherwise.

De"ne a metric d on >](!R,#R] by

d((y
1
, t

1
), (y

2
, t

2
))"maxMd

Y
(y

1
, y

2
), De~t1!e~t2DN,

where e~="0. Note that d generates the standard topology. De"ne the metric D on XX
p
> by

D(a, b)"o(a, b)#d(c(a), c(b)),
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where c : XX
p
>P>](!R,#R] is the usual collapse. One checks that D generates the

teardrop topology. h

Related constructions
Whyburn appears to be the "rst to have considered a construction similar to the teardrop (see

[40,41]). Many other authors (for example, [7,8,24,33]) have since used a construction closely
related to that of Whyburn. One should consult James [22, Section 8] for an alternative treatment.

Controlled maps
Finally, we use the teardrop topology to clarify the notion of a controlled map given in [18,

Section 12]. For notation, if a is any map we will let M(a) denote the mapping cylinder of a with the
standard quotient topology. On the other hand, cyl(a) will denote the mapping cylinder with the
teardrop topology as in Section 3.1. Suppose f

t
:X

1
PX

2
, 0)t(1, is a family of maps such that

the induced map f :X
1
][0,1)PX

2
is continuous. Let p : X

1
P> and q : X

2
P> be given maps.

Proposition 3.16. The following are equivalent :
(i) f

t
is a controlled map from p to q i.e., fK : X

1
][0, 1]P> given by

fK (x, t)"G
q f

t
(x) if t(1

p(x) if t"1

is continuous.
(ii) fI : M(p)Pcyl(q) given by

G
fI ([x, t])"( f

t
(x), t) if t(1

fI ([y])"y if y3>

is continuous.

Proof. (i) implies (ii) : De"ne f
H
: X

1
][0,1]Pcyl (q) by

f
H
(x, t)"G

( f
t
(x), t) if t(1

p (x) if t"1.

Since fK is continuous, so is cf
H

: X
1
][0, 1]P>][0, 1]. Lemma 3.4 then implies f

H
is continuous.

Let n : (X
1
][0, 1])P>PM( p) be the quotient map. Then fI is continuous if n fI is. But

nfI D X
1
][0, 1]"f

H
and nfI D> is the inclusion.

(ii) implies (i) : Note that fK is the composition

X
1
][0, 1] n

P M( p) f
I

P cyl ( q ) c
P >][0, 1] 130+

&" >. h
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4. The teardrop of an approximate 5bration

In this section we study the teardrop of an approximate "bration p : XP>]R and establish two
important properties. First, if X and > are metric spaces, then the teardrop (XX

p
>,>) is

a homotopically strati"ed pair (Theorem 4.7). Second, if p is a manifold approximate "bration, then
(XX

p
>,>) is a manifold strati"ed pair (Corollary 4.11). This second result is part of Theorem 2.1

and does not require the assumption that the dimension be greater than 4. The main technical tool
is Theorem 4.2 which characterizes a homotopically strati"ed pair in terms of a certain lifting
property. There are two other useful results. One (Proposition 4.4) shows that the property of being
a homotopically strati"ed pair depends only on a neighborhood of the lower stratum. The other
(Proposition 4.8) characterizes (up to "bre homotopy equivalence) the homotopy link as the the
Hurewicz "bration associated to the induced map XP>.

We begin with the de"nition of the lifting property which characterizes homotopically strati"ed
pairs. Let (X,>) be a pair such that> is a neighborhood retract of X. Given an open neighborhood
; of > in X and a retraction r :;P>, consider the following spaces :

=
1
(r)"M(x,u)3>]Map (I,>) Dx"u (1)N,

=
2
(r)"M(x,u)3(;C>)]Map (I,>) D r(x)"u(1)N

and

=(r)"=
1
(r)X=

2
(r)"M(x,u)3;]Map (I,>)Dr (x)"u (1)N.

Mapping spaces are always given the compact-open topology. Note that the map w (r) :=(r)P>
de"ned by w (r) (x,u)"u (0) is the associated Hurewicz "bration of r, and w(r)D :=

2
(r)P> is the

associated Hurewicz "bration of rD :;C>P>.

De5nition 4.1. The pair (X,>) has the =(r)-lifting property (with respect to U) if there exists a
map

a :=(r)PMap(I,X)

such that

(1) a (x, u) (0)"u (0) for all (x,u)3=(r),
(2) a (x, u)(1)"x for all (x, u)3=(r),
(3) if (x,u)3=

1
(r), then a (x, u)"u, and

(4) if (x,u)3=
2
(r), then a (x, u)3Map

4
((I, 0),(X,>))"holink(X,>).

Theorem 4.2. If X is a metric space and >-X, then the following are equivalent :

(i) (X,>) is homotopically stratixed,
(ii) > is a neighborhood retract of X and for every suzciently small neighborhood ; of > and

retraction r :;P>, (X,>) has the =(r)-lifting property with respect to ;,
(iii) there exist a neighborhood; of> and a retraction r :;P> such that (X,>) has the=(r)-lifting

property with respect to ;.
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Proof. (i) implies (ii): Since (X,>) is homotopically strati"ed, hence forward tame, there exists
a neighborhood N of > and a nearly strict deformation

H : (N]I,>]IXN]M0N)P(X,>).

In particular,> is a neighborhood retract of X. Let; be any neighborhood of > such that;-N
and let r :;P> be any retraction. We will show that (X,>) has the =(r)-lifting property with
respect to ;. De"ne a map b :=(r)PMap(I,>) by the formula

b(x,u) (t)"G
rH(x, 2t) if 0)t)1

2
,

u(2!2t) if 1
2
)t)1.

De"ne f :=
2
(r)Pholink (X,>) by f (x,u) (t)"H (x, t) for t3I, and de"ne

F :=
2
(r)]IP>

by F(x,u, t)"b(x,u)(t) for t3I. Note that we have a lifting problem

(Recall that q is evaluation at 0). Since part of our hypothesis is that q is a "bration, we have
a solution FI . We will use FI to de"ne a, but to make sure that a certain extension to =(r)
is continuous on =

1
(r), we "rst need a lemma whose proof is postponed until later in this

section.

Lemma 4.3. There exists a map c :=
2
(r)]IP[0, 1] such that

(1) c(x,u, 0)"1 for all (x,u)3=
2
(r),

(2) diamMFI (x, u, t)(s) D 0)s)c(x,u, t)N)2 diamMFI (x,u, 0)(s) D s3IN for all (x, u, t)3=
2
(r)]I,

(3) c(x,u, t)"0 if and only if t"1, for all (x,u)3=
2
(r).

Assuming the lemma we complete the proof that (i) implies (ii) in Theorem 4.2. De"ne

a :=
2
(r)Pholink(X,>) by a(x,u)(t)"FI (x,u,1!t)(c(x,u, 1!t)).

Then a extends to a map a :=(r)PMap(I,X) by setting a(x,u)"u for (x, u)3=
1
(r). It is

straightforward to verify that a is continuous and satis"es the condition of the =(r)-lifting
property.

(ii) implies (iii) is obvious.
(iii) implies (i): Let a :=(r)PMap(I,X) satisfy the de"nition of the=(r)-lifting property where

r :;P> is some retraction of a neighborhood of>. For each x3; let u
x
denote the constant path
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at r(x). De"ne H :;]IPX by

H(x, t)"a(x,u
x
)(t).

Then H is a nearly strict deformation of ; into >, so > is forward tame in X. To see that
q : holink(X,>)P> is a "bration, consider a lifting problem

We may assume that Z is metric. Using a partition of unity one can construct a map e : ZP(0, 1]
such that for every z3Z and 0)t)e(z), we have f (z)(t)3;. De"ne a map u :Z]IPMap(I,>) by

u(z, t)(s)"G
F(z, t!2ts) if 0)s)1/2,

r (f (z)(e (z)(2ts!t))) if 1/2)s)1.

Note that u(z, 0)(s)"F(z, 0)"f (z)(0) for all z3Z and s3I. Now de"ne

d : Z]IPMap(I,X) by d(z, t)"a ( f (z)(e(z)t),u(z, t))

and note that

(1) d(z, 0)(s)"F(z, 0),
(2) d(z, t)(1)"f (z)(e (z) t),
(3) d(z, t)(0)"F(z, t).
Finally, de"ne a solution FI : Z]IPholink (X,>) of the lifting problem by

FI (z, t)(s)"G
d(z, t)(s/e(z)t) if 0)s(e(z)t,

f (z)(s) if e(z)t)s)1. h

Proof of Lemma 4.3. First note that MFI (x,u, 0)(s) D s3IN"MH(x, s) D s3IN for each (x, u)3=
2
(r).

Now for x3;C>, let c(x)"diamMH(x, s) D s3IN. Note that 0(c(x). For each (x,u, t)3=
2
(r)]I, let

d(x,u, t)"lubMs3I DdiamMFI (x, u, t)(s@) D 0)s@)sN)c(x)N.

Note that 0(d(x,u, t))1. For each (x, u, t)3=
2
(r)]I, let <(x,u, t) be a neighborhood of (x,u, t)

such that whenever (x@,u@, t@)3<(x,u, t), then

(1) diamMFI (x@,u@, t@)(s) D 0)s)d(x,u, t)N(3c(x)/2, and
(2) c(x))4c(x@)/3.

Let M<aN be a locally "nite re"nement of M<(x,u, t)N and let M/aN be a partition of unity subordinate
to M<aN. For each a choose (x,u, t) such that <a-<(x,u, t) and set da"d(x,u, t). De"ne
c( :=

2
(r)]IPI by c("+da/a. Clearly c( satis"es item (2) of the lemma, but we need to modify c( to

achieve the other conditions. Using the paracompactness of=
2
(r), choose a neighborhood < of
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=
2
(r)]M0N in =

2
(r)]I such that if (x,u, t)3<, then

diamMFI (x,u, t)(s) D s3IN)2c (x).

Let t :=
2
(r)]IPI be a map such that t"1 on=

2
(r)]M0N, t"0 o! of <, and t'0 on <.

Finally set

c (x,u, t)"(1!t)[(1!t (x, u, t)) c( (x,u, t)#t(x,u, t)]. h

Proposition 4.4. If X is a metric space and >-X, then the following are equivalent:

(i) (X,>) is a homotopically stratixed pair,
(ii) for every neighborhood ; of > in X, (;,>) is a homotopically stratixed pair,
(iii) there exists a neighborhood ; of > in X such that (;,>) is a homotopically stratixed pair.

Proof. (i) implies (ii): Let ; be a neighborhood of > in X. Forward tameness implies there exist
a neighborhood N of> in X such that N-; and a nearly strict deformation of N to> in;which
gives a retraction r :NP>. The proof of Theorem 4.2(i) implies (ii) shows that if N is a su$ciently
small neighborhood of > in ;, then (;,>) has the=(r)-lifting property with respect to N so that
Theorem 4.2 may be invoked.

(ii) implies (iii) is obvious.
(iii) implies (i): By Theorem 4.2 we know that (;,>) has the=(r)-lifting property for some r with

respect to some N. It follows that (X,>) has the =(r)-lifting property and Theorem 4.2 may be
invoked once again. h

We now recall the de"nition of approximate "brations as given in [18]. See [18, Section 12] for
an explanation of how this de"nition relates to others in the literature.

De5nition 4.5. A map p : EPB is an approximate xbration if for every commuting diagram

there is a controlled map FI : Z][0, 1]][0, 1)PE from F to p such that FI (x, 0, u)"f (x) for all
(x, u)3Z][0, 1). To say FI is a controlled map from F to p means the function
G : Z][0, 1]][0, 1]PB de"ned by

G(z, t, u)"G
pFI (z, t, u) if u(1,

F(z, t) if u"1

is continuous.
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Lemma 4.6 (Open-ended homotopies). Suppose that p :EPB is an approximate xbration and that
the following lifting problem is given:

Then there exists a controlled lift FI , i.e., a map FI : Z][0, 1)][0, 1)PE such that

(i) FI (z, 0, u)"f (z) for all u3[0, 1), and
(ii) the function G : Z][0, 1)][0, 1]PB dexned by

G(z, t, u)"G
pFI (z, t, u) if u(1,

F(z, t) if u"1

is continuous.

Proof. Let n :EPB be the Hurewicz "bration associated to p : EPB and let i :EPE be the
inclusion. According to [18, 12.5] there is a controlled map R :E][0, 1)PE from n to p and
a controlled homotopy H : E][0, 1]][0, 1)PE from id

e
to Ri. This means that the function

RM :E][0, 1]PB de"ned by

RM (x, t)"G
pR(x, t) if t(1,

n(x) if t"1

is continuous, that H satis"es H(x, 0, t)"x and H(x, 1, t)"R(i(x), t) for all (X, t)3E][0, 1), and
that the function HM : E][0, 1]][0, 1]PB de"ned by

HM (x, s, t)"G
pH(x, s, t) if t(1,

p(x) if t"1

is continuous. Given a lifting problem of the form
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there is an induced problem

Since n is a "bration, this second problem has an exact solution FK :Z][0, 1)PE. De"ne
F@ : Z][0, 1)][0, 1)PE by F@(z, s, t)"R(FK (z, s), t). Then a controlled solution FI : Z][0, 1)]
[0, 1)PE to the "rst problem can be de"ned by

FI (z, s, t)"G
H( f(z), s

1~t
, t) if 0)s)1!t,

F@(z, s~1~t
t

, t) if 1!t)s)1.

One checks that the function G de"ned in the statement is continuous. h

Theorem 4.7. If X and > are metric spaces and p : XP>]R is an approximate xbration, then the
teardrop (XX

p
>,>) is a homotopically stratixed pair.

Proof. There exists a retraction r : XX
p
>P> given by the composition

XX
p
> c
P>](!R,#R] 130+

&" >.

Since XX
p
> is metric by Lemma 3.15, it su$ces by Theorem 4.2 to show that (XX

p
>,>) has the

=(r)-lifting property. We will "rst de"ne a on=
2
(r) and then extend it to all of=(r). To this end

de"ne

F :=
2
(r)][0, 1)P>]R by F(x,u, t)"Au(1!t),

s
1!tB

where s is de"ned by p(x)"(r(x), s)3>]R. De"ne f :=
2
(r)PX by f (x,u)"x. Then we have

a lifting problem

to which we can apply Lemma 4.6 and get a controlled lift

FI :=
2
(r)][0, 1)][0, 1)PX.

Let G :=
2
(r)][0, 1)][0, 1]P>]R be the map de"ned in Lemma 4.6. Using the paracompact-

ness of =
2
(r)][0, 1), there exists a map c :=

2
(r)][0, 1)P[0, 1) such that if (x,u)3=

2
(r) and

1!1/i)t)1!1/(i#1), then

diamG(Mx,u, tN][c(x,u, t), 1])(1/i.
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Then de"ne FK :=
2
(r)][0,1]PXX

p
> by

FK (x, u, t)"G
FI (x,u, c (x,u, t)) if 0)t(1,

u(0) if t"1.

And de"ne a :=
2
(r)Pholink(XX

p
>,>) by

a(x,u)(t)"FK (x,u, 1!t).

Then a extends continuously to a :=(r)PMap(I,XX
p
>) by setting a(x,u)"u for (x,u)3

=
1
(r). h

Proposition 4.8. If X and > are metric spaces and p :XP>]R is an approximate xbration, then
q : holink(XX

p
>,>)P> is xbre homotopy equivalent to the Hurewicz xbration associated to the

composition

X p
P>]R130+

P >.

Proof. Let r : XX
p
>P> be the retraction XX

p
> c
P>](!R,#R]130+P>. Let

n"w(r) D :=
2
(r)P> which is the Hurewicz "bration associated to r D : XP>. We must show that

n is "bre homotopy equivalent to q : holink(XX
p
>,>)P>. It follows from the proof of Theorem

4.7 that (XX
p
>,>) has the =(r)-lifting property. Let a :=(r)PMap(I,XX

p
>) be a map as in

De"nition 4.1. De"ne f :=
2
(r)Pholink(XX

p
>,>) to be the restriction of a so that f(x,u)"a(x,u).

We will show that f is a "bre homotopy equivalence with "bre homotopy inverse
g : holink(XX

p
>,>)P=

2
(r) de"ned by g(u)"(u(1), ru). We will de"ne a "bre homotopy

G : gfKid
W2(r)

as follows. If u3Map(I,>) and s3I, de"ne u`
s

: IP> by u`
s
(t)"u((1!s)t#s).

De"ne a homotopy E :=
2
(r)]IPMap(I,>) by

E(x,u, s)(t)"G
u(t) if 0)t)s,

ra(x,u`
s

)( t~s
1~s

) if s)t(1,

r(x) if t"1.

Then let G((x, u), s)"(x,E(x,u, s)). We will now de"ne a "bre homotopy F : id
)0-*/,(XX

pY,Y)
Kfg as

follows. If u3holink(XX
p
>,>) and s3I, de"ne u

s
: IPXX

p
> by u

s
(t)"u(ts). Then de"ne F by

F(u, s)(t)"G
u(0) if t"0,

a(u(s), ru
s
) t
s

if 0(t)s,

u(t) if s)t)1. h

Lemma 4.9 (Folklore). If p : XP> is a proper approximate xbration between ANRs (locally compact,
separable metric), then the homotopy xbre of p is xnitely dominated.

Proof. Fix a basepoint y
0
3>. The homotopy "bre of p is

="M(x,u)3X]>I D u(0)"p(x),u(1)"y
0
N.
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Let ; be an open neighborhood of y
0

which contracts to y
0

in >; that is, there exists a homotopy
H :;]IP> such that H

0
"inclusion :;P>, H

1
(;)"My

0
N and H

t
(y

0
)"y

0
for all t3I. Let

< be a compact neighborhood of y
0

such that H(<]I)-;. It is well-known that for every open
cover U of X there is a locally "nite simplicial complex which U-dominates X (see e.g. [27]). This
fact together with the compactness of p~1(<) implies that there exist a locally "nite simplicial
complex ¸, maps f :¸PX, g : XP¸, and a homotopy J : id

X
Kfg such that

J(p~1(<)]I)-p~1(;). Note that g(p~1(<))-f~1(p~1(;)) and use the compactness of p~1(<)
again to "nd a "nite subcomplex K of ¸ (in some "ne triangulation) such that g(p~1(<))-K and
f (K)-p~1(;). We will show that K dominates=. Consider the lifting problem

where G((x, u), t)"u(t) and g(x,u)"x. Since p is an approximate "bration there is an approxim-
ate solution GI :=]IPX. Assume that pGI is so close to G that the image of GI

1
is in p~1(<) and

that there is a homotopy F : pGI KG rel=]M0N. Using the homotopy extension theorem we can
insist that FD=]M1N]I is given by F((x,u), 1, s)"H(pGI

1
(x,u), s). It follows that there is

a homotopy A : =]I]IP> such that

(1) A((x,u), 0, s)"u(0),
(2) A((x,u)1, s)"H(pfgGI

1
(x,u), s),

(3) A((x,u), t, 1)"u(t),

(4)
A((x,u)t, 0)"G

pGI ((x,u), 2t), 0)t)1
2
,

pJ(GI
1
(x,u), 2t!1), 1

2
)t)1.

De"ne d :KP= and u : =PK by d(x)" (f(x),H(pf (x), ) )) and u(x,u)"g(GI
1
(x,u)). The

homotopy A can be used to construct a homotopy duKid
W

. h

Corollary 4.10. If X and > are ANRs (locally compact, separable metric) and p : XP>]R is
a proper approximate xbration, then the (homotopy) xbre of q : holink(XX

p
>,>)P> is xnitely

dominated. Moreover, (XX
p
>,>) is a homotopically stratixed locally compact, separable metric pair

with xnitely dominated local holinks.

Proof. It follows from Lemma 3.15 that XX
p
> is metrizable. Since X and > are separable,

so is XX
p
>. Since p is proper, it follows easily that the teardrop collapse c : XX

p
>P

>](!R,#R] is also proper. In particular, XX
p
> is locally compact. By Theorem 4.7,

(XX
p
>,>) is homotopically strati"ed. It follows from Proposition 4.8 that the homotopy "bre of

holink(XX
p
>,>)P> is homotopy equivalent to the homotopy "bre of p which is "nitely domin-

ated by Lemma 4.9. Thus, (XX
p
>,>) has "nitely dominated local holinks. h
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Corollary 4.11. If B is a closed manifold and p : MPB]R is a manifold approximate xbration, then
the teardrop (MX

p
B,B) is a manifold stratixed pair.

Proof. This follows immediately from Corollary 4.10. h

5. Spaces of strati5ed neighborhoods and manifold approximate 5brations

This section contains the details of the de"nitions of the simplicial set MAFn(B]R) of manifold
approximate "brations and the simplicial set SNn(B) of strati"ed neighborhoods. Facts are
established which are needed to de"ne the simplicial map W : MAFn(B]R)PSNn(B).

De5nition 5.1. Suppose A]K is a closed subset of X and n : XPK is a map such that
nD : A]KPK is the projection.

(1) The pair (X,A]K) is a sliced homotopically stratixed pair (with respect to n) if
(i) A]K is sliced forward tame in X with respect to n.
(ii) the evaluation q : holinkn(X,A]K)PA]K is a "bration.
(iii) (Local triviality near A]K) there exist an open neighborhood= of A]K in X and a space

; containing A such that for each t3K there exist an open neighborhood< of t in K and a f.p.
open embedding h : ;]<PX such that hD : A]<PX is the inclusion and
h(;]<)"=Wn~1(<). That is, nD : =PK is a "bre bundle projection containing
A]KPK as a subbundle. In this case= is said to be a locally trivial neighborhood of A]K
in X. If <"K, then= is said to be a trivial neighborhood of A]K in X.

(2) The pair (X,A]K) has xnitely dominated local holinks (with respect to n ) if the "bre of
q : holinkn(X, A]K)PA]K is "nitely dominated.

(3) The pair (X,A]K) is a sliced manifold stratixed pair (with respect to n) if it is a sliced
homotopically strati"ed pair with "nitely dominated local holinks, X is a locally compact
separable metric space, A is a manifold, and for each t3K n~1(t)CA]MtN is a manifold.

Note that if K is contractible, then the local triviality condition near A]K implies that A]K has
a trivial neighborhood in X.

Proposition 5.2. Suppose A]K is a closed subset of a metric space X and n : XPK is a map such
that nD : A]KPK is the projection.

(i) If N is a neighborhood of A]K in X, then the inclusion holinkn(N,A]K)Pholinkn(X,A]K)
is a xbre homotopy equivalence from q : holinkn(N,A]K)PA]K to q : holinkn(X,A]K)P
A]K.

(ii) If N is a neighborhood of A]K in X, then q : holinkn(X,A]K)PA]K is a xbration if and
only if q : holinkn(N,A]K)PA]K is.

(iii) If K is compact, the following are equivalent :
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(a) (X,A]K) is a sliced homotopically stratixed pair,
(b) for every neighborhood N of A]K in X, (N,A]K) is a homotopically stratixed pair,
(c) there exists a neighborhood N of A]K in X such that (N,A]K) is a homotopically stratixed

pair.
(iv) If N is a neighborhood of A]K in X, then (X, A]K) has xnitely dominated local holinks if and

only if (N,A]K) does.
(v) If K is compact and N is open an open neighborhood of A]K in X and (X,A]K) is a sliced

manifold stratixed pair, then so is (N,A]K).

Proof. (i) (cf. [17,1.12]) For each u3holinkn(X,A]K) choose a number tu3(0, 1] such that
u([0, tu])-int(N). Let ;(u) be an open neighborhood of u in holinkn(X,A]K) such that
a([0, tu])-int(N) for all a3;(u). Since holinkn(X,A]K) is a metric space, there is a locally "nite
re"nement M;

i
N for the cover M;(u) D u3holinkn(X,A]K)N of holinkn(X, A]K) and a partition of

unity M/
i
N subordinate to M;

i
N. For each i choose u

i
3holinkn(X,A]K) such that ;

i
-;(u

i
) and

let t
i
"tui

. For each u3holinkn(X,A]K) let mu"maxMt
i
D /

i
(u)O0N. Note that u([0,mu])-

int(N) and +
i
/

i
(u)t

i
)mu for all u. De"ne a homotopy R : holinkn(X,A]K)]IP

holinkn(X,A]K) by

R(u, t)(s)"G
u(s) if 0)s)+

i
/

i
(u)t

i
,

u((1!t)s#t+
i
/

i
(u)t

i
) if +

i
(u)t

i
)s)1.

Then R is a "bre deformation with R
0
"id,

R
1
(holinkn(X,A]K))-holinkn(N,A]K)

and R
t
(holinkn(N,A]K))-holinkn(N,A]K) for each t. The result follows immediately. Note also

that if o : holinkn(X,A]K)P(0,1] is de"ned by o(u)"+
i
/
i
(u)t

i
, then o is continuous and

R
t
(u)(s)"u(s) for all 0)t)1 and 0)s)o(u).
(ii) Let R and o be given as in the proof of (i). Suppose "rst that q : holink(N,A]K)PA]K is

a "bration. Then a homotopy lifting problem

for holinkn(X,A]K)PA]K induces a problem
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for holinkn(N,A]K)PA]K which has a solution G : Z]IPholinkn(N,A]K). For each
u3holinkn(X,A]K) de"ne

qu : [0,o(u)]][0, 1]P[0, 1]][0,o(u)] by qu(s, t)"At!
ts

o(u)
, sB.

Then a solution FI : Z]IPholinkn(X,A]K) of the original problem can be de"ned by

FI (z, t)(s)"G
GK (z, q

f(z)
(s, t)) if 0)s)o ( f (z))

f (z)(s) if o(f(z)))s)1

where GK is the adjoint of G.
Conversely, suppose q : holink(X,A]K)PA]K is a "bration and N is a neighborhood of

A]K in X. To show that holinkn(N,A]K)PA]K is a "bration, we may use the converse just
proven to assume that N is open in X. Let

be a homotopy lifting problem which by inclusion is also a problem for

holinkn(X,A]K)PA]K.

Thus, there is a solution G : Z]IPholinkn(X, A]K) to this second problem. Let ; be an open
neighborhood of Z]M0N in Z]I such that G(;)-holinkn(N,A]K). Since it su$ces to solve an
universal problem, we may assume that Z is a metric space. Thus, there is a map p : Z]IPI such
that p~1(0)"Z]M0N and p~1(1)"(Z]I)C;. Then FI : Z]IPholinkn(N,A]K) de"ned by
FI (z, t)"R(G(z, t),p(z, t)) is a solution of the original problem.

(iii) (a) implies (b) : If N is a neighborhood of A]K in X, then (N,A]K) obviously satis"es the
sliced forward tameness condition. From the fact that K is compact, it follows that (N,A]K)
satis"es local triviality near A]K. The holink "bration condition follows from (ii).

(b) implies (c) is obvious.
(c) implies (a) : The sliced forward tameness and local triviality conditions obviously hold for

(X,A]K) if they hold for (N,A]K). The holink "bration condition follows from (ii).
(iv) follows directly from (i).
(v) follows (iii) and (iv). h

Lemma 5.3. Suppose A]K is a closed subset of a space X and n : XPK is a map such that
nD : A]KPK is the projection. Let f : K@PK be a map and form the pull-back diagram
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(i) There is an induced pullback diagram

(ii) If (X,A]K) is a sliced homotopically stratixed pair, then so is (X@,A]K@).
(iii) If (X,A]K) has xnitely dominated local holinks, then so does (X@,A]K).
(iv) If (X,A]K) is a sliced manifold stratixed pair, then so is (X@,A]K@).

Proof. (i) and (ii) are elementary. The other parts follow immediately. h

For the remainder of this section, B is an i-dimensional manifold without boundary together
with a "xed embedding B-l

2
(of small capacity; e.g., we could take B to be inside of a "nite-

dimensional subspace RL of l
2
) and let n*5 be a "xed integer.

De5nition 5.4. The space of stratixed neighborhoods of B is the simplicial set SNn(B) whose
k-simplices are subsets X of l

2
]*k of small capacity (see [18]) such that if n : XP*k is the

restriction of the projection l
2
]*kP*k, then (X,B]*k) is a sliced manifold strati"ed pair with

respect to n with dim(n~1(t))"n for each t3*k.
We will denote a typical k-simplex of SNn(B) by n : (X,B]*k)P*k or, sometimes, just by

n : XP*k and consider the embeddings B]*k-X and X-l
2
]*k understood. If n : XP*k is

a k-simplex of SNn(B), let LX"n~1(L*k) and let Ln"nD : LXPL*k, Thus Ln : LXPL*k is
a union of k#1 (k!1)-simplices of SNn(B).

The following result characterizes the homotopy relation in SNn(B). For notation, "x a base
vertex of SNn(B); that is, a manifold strati"ed pair (>,B) with constant map>P*0. For each k*0
the degenerate k-simplex on (>,B) is the pair (>]*k,B]*k) with projection >]*kP*k.

Proposition 5.5. Let B be a closed manifold. Suppose n : XP*k and n@ : X@P*k are two simplices of
SNn(B) such that Ln"Ln@ : LX"LX@">]L*kPL*k is the projection. The following are equiva-
lent :

(i) n : XP*k and n@ : X@P*k are homotopic rel L.
(ii) There exists a sliced manifold stratixed pair (=,B]*k]I) with map n8 : =P*k]I such that
(1) n8 D"n : n8 ~1(*k]M0N)"XP*k]M0N"*k,
(2) n8 D"n@ : n8 ~1(*k]M1N)"X@P*k]M1N"*k, and
(3) n8 D"Ln]id

I
"Ln@]id

I
"proj : LX]I"LX@]I">]L*k]IPL*k]I.

(iii) There exist an open neighborhood ; of B]*k in X and a f.p. open embedding h : ;PX@ such
that hD : (B]*k)X(;WLX)P(B]*k)X(;WLX@) is the identity.

Proof. (i) implies (ii) : Let n( : =K P*k`1 be a homotopy rel L from n : XP*k to n : X@P*k in
SNn(B). Thus, n("n over L

k`1
*k`1, n("n@ over L

0
*k`1 and n( D"proj : >]L

i
*k`1PL

i
*k`1 for

0(i(k#1. Consider the standard PL map o : *k]IP*k`1 such that o~1(L*k`1)"L(*k]I)
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and o restricts to homeomorphisms *k]M0NPL
k`1

*k`1 and *k]M1NPL
0
*k`1. Form the pull-

back diagram

It follows from Lemma 5.3(iv) that (=,B]*k]I) is a sliced manifold strati"ed pair with map n8 .
(ii) implies (iii) : Let < be an open neighborhood of B]*k]I in= such that n8 D : <P*k]I is

a (trivial) "bre bundle projection containing B]*k]IP*k]I as a subbundle. Choose an open
neighborhood ; of B]*k]M0N in <Wn8 ~1(*k]M0N)"X such that

[;Wn8 ~1(L*k]M0N)]]I-<Wn8 ~1(L*k]I)-LX]I"LX@]I.

Let J"(*k]M0N)X(L*k]I)-*k]I and choose a homeomorphism a : J]IP*k]I such that
aD : J]M0NPJ is the identity. Since n8 D : <P*k]I is trivial, there exists a homeomorphism
g : [n8 ~1(J)W<]]IP< such that

commutes, gDB]J]I equals id
B
]a : B]J]IPB]*k]I-<, and gD : [n8 ~1(J)W<]]

M0NPn8 ~1(J)W< is the identity. De"ne h : ;Pn8 ~1(*k]M1N)"X@ by setting h(x)"g(x, 1) for all
x3;.

(iii) implies (i) : Let N be a compact neighborhood of B]*k in X such that N-;. By the small
capacity assumption, there exists a f.p. isotopy H

t
: l

2
]*kPl

2
]*k, 0)t)1, such that

H
0
"idl

2
, H

t
D(B]*k)Xl

2
]L*k is the identity for each t3I, and H

1
D N"hDN : NPX@-l

2
]*k.

Let

="(LX]I)X(X]M0N)X(X@]M1N)XM(H
t
(x), t) Dx3int(N), t3IN.

Proposition 5.2 implies that (N]I,B]*k]I) is a sliced homotopically strati"ed pair with "nitely
dominated local holinks, which in turn implies that (=,B]*k]I) is a sliced manifold strati"ed
pair. Now= induces a sliced manifold strati"ed pair (=K , B]*k`1) such that= is the pullback of
=K along the map o : *k]IP*k`1 of (i), and (=K , B]*k`1) is the desired homotopy from X to X@
rel L. h

The next result follows from Proposition 5.5 by setting k"0.

Corollary 5.6. Let B be a closed manifold. Two vertices (X,B),(X@,B) are in the same component of
SNn(B) if and only if they are germ equivalent; that is, there exist an open neighborhood; of B in X and
an open embedding h : ;PX@ such that hD : BPX@ is the inclusion.
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In order for homotopy theory to work well on the space of strati"ed neighborhoods, we need the
following observation.

Proposition 5.7. SNn(B) satisxes the Kan condition.

Proof. Suppose there is a collection of k#1 k-simplices (X
j
, B]L

j
*k`1) of SNn(B),

j"0, 1,2, i!1, i#1,2,k#1, which satisfy the compatibility condition (see [26, p. 2]). For
X"XX

j
there is a natural map XPB]w

i
*k`1 where w

i
*k`1 is the union of all k-dimensional

faces of *k`1 save L
i
*k`1. It is elementary to verify that (X,B]w

i
*k`1) is a sliced manifold

strati"ed pair. A possible exception is in the veri"cation of the holink "bration condition, but that
condition follows from [18, 16.2]. Pulling back along a retraction *k`1Pw

i
*k`1 gives (by Lemma

5.3) a sliced manifold strati"ed pair (XI ,B]*k`1) which is the required (k#1)-simplex of
SNn(B). h

Now recall the following de"nition from [18].

De5nition 5.8. The space of manifold approximate xbrations over B]R is the simplicial
set MAFn(B]R) whose k-simplices are subsets M of l

2
]B]R]*k of small capacity such

that

(i) the restriction of projection MP*k is a "bre bundle projection with "bres n-dimensional
manifolds without boundary. Let M

t
denote the "bre over t3*k.

(ii) the restriction of projection p : MPB]R]*k has the property that p
t
"pD : M

t
P

B]R]MtN is a manifold approximate "bration for each t3*k.

We will denote a typical k-simplex of MAFn(B]R) by p : MPB]R]*k and consider the
embeddings B]*k-X and X-l

2
]*k understood.

De5nition of W : MAFn(B3R)PSNn(B). It will be convenient to "x a teardrop of B in l
2

which
contains all the teardrops constructed form MAFn(B]R). To this end let

k : l
2
]B]RPB]R

denote projection and let

¹(B)"(l
2
]B]R)XkB

be the teardrop of k. It follows from Lemma 4.3 that ¹(B) is metrizable. Since B is separable, ¹(B) is
also separable. Hence, ¹(B) embeds in l

2
and we "x an embedding¹(B)-l

2
of small capacity such

that B-¹(B)Ll
2

is the original "xed embedding B-l
2
.
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We now de"ne the simplicial map W : MAFn(B]R)PSNn(B). Given a k-simplex
M-l

2
]B]R]*k of MAFn(B]R), we get a commuting diagram

Thus, MX
p
(B]*k)-(l

2
]B]R]*k)XkC*$*k

(B]*k)"¹(B)]*k-l
2
]*k. It will be shown be-

low that (MX
p
(B]*k),B]*k) is a k-simplex of SNn(B), and so we set W(M)"

(MX
p
(B]*k),B]*k).

Proof that W(M) is a k-simplex of SNn(B). It is clear from the construction that MX
p
(B]*k) is

a subset of l
2
]*k of small capacity. Since each p

t
: M

t
PB]R]MtN is a manifold approximate

"bration, it follows from Corollary 4.11 that (M
t
X

pt
B]MtN,B]MtN) is a manifold strati"ed pair for

each t3*k. Therefore, the sliced forward tameness, holink "bration and "nitely dominated local
holinks conditions follow from Claim 5.9 and Lemmas 5.10 and 5.11 below. To verify the local
triviality condition let U be the open cover of B]R consisting of all sets of the form

BAx,
1

DyD#1B]Ay!
1

DyD#1
, y#

1
DyD#1B

where (x, y)3B]R and B(x, r) denotes the ball about x in B of radius r. The point is that the
diameters of members of U are small near B]M#RN and there is a maximum diameter. By [13]
there is a homeomorphism H : M]*kPM]*k such that H is "bre preserving over *k, H

0
"id,

and pH is U]*k-close to p
0
]id*k. The local triviality condition follows from the following claim

and the fact that (MX
p0
B)]*k"(M]*k)X

p0C*$*k
(B]*k).

Claim 5.9. The map h : (M]*k)X
p0C*$*k

(B]*k)P(M]*k)X
p
(B]*k), dexned by hD : M]

*kPM]*k is H and hD : B]*kPB]*k is the identity, is a homeomorphism.

Proof. We show that the map

g : (M]*k)X
p0C*$*k

(B]*k) h
P(M]*k)X

p
(B]*k) c

PB](!R,#R]]*k

is continuous with c the teardrop collapse for p. For this it su$ces to show that if
(x

n
, t

n
)3M]*k, (b, t)3B]*k and (x

n
, t

n
)P(b, t) in (M]*k)X

p0C*$
(B]*k), then g(x

n
, t

n
)P(b,#

R,t) in B](!R,#R]]*k. Let c@ : (M]*k)X
p0C*$

(B]*k)PB](!R,#R]]*k be the
collapse. Since c@ is continuous, c@(x

n
, t

n
)P(b,#R, t) and so (p

0
(x

n
), t

n
)P(b,#R, t). Given e'0

there exists an integer K such that if ;3U meets B][K,#R), then diam;(e. There exists
a positive integer M such that if n*M, then p

0
(x

n
)3B][K,#R) and (p

0
(x

n
), t

n
) is e-close to

(b,#R,t). Now suppose n*M and consider g(x
n
,t
n
). Note that g(x

n
,t
n
)"pH(x

n
, t

n
). There exists

;3U such that pH(x
n
, t

n
) and (p

0
(x

n
), t

n
) are both in ;]*k; i.e., p

tn
H

tn
(x

n
), p

0
(x

n
)3U. Since

p
0
(x

n
)3B][K,#R),diam;(e. Thus, pH(x

n
, t

n
) and (p

0
(x

n
),t

n
) are e-close measured in
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B]R]*k. Since (p
0
(x

n
), t

n
) is e-close to (b,#R,t), we have shown that g(x

n
, t

n
) is e@-close to

(b,#R, t) where e@'0 is small if e is. Thus, g is continuous. This shows h is continuous by Lemma
3.4. Since p is also U]*k-close to (p

0
]*k)H~1, a similar proof shows that h~1 is continuous. h

We "nish this section with the two lemmas mentioned above.

Lemma 5.10. Suppose B is forward tame in X.

(i) If > is any space, then B]> is sliced forward tame in X]> with respect to projection
X]>P>.

(ii) If n : EP> is a map of spaces and h : X]>PE is a homeomorphism such that nh is projection,
then h(B]>) is sliced forward tame in E with respect to n.

Proof. (i) is obvious, and (ii) follows from (i) by using a sliced nearly strict deformation in X]>
conjugated with h. h

Lemma 5.11. Suppose B-X and holink(X,B)PB is a xbration.

(i) If > is any space, then holink
p2
(X]>,B]>)PB]> is a xbration where p

2
is second

coordinate projection.
(ii) If n : EP> is a map of spaces and h ; X]>PE is a homeomorphism such that nh is projection,

then holinkn(E, h(B]>))Ph(B]>) is a xbration.

Proof. For (i) note that we have the following commuting diagram where l(u)"(u@, p
2
u(0)) and u@

is [0,1] u
P X]> 130+

&" X :

For (ii) note that we have the following commuting diagram where j is the homeomorphism
de"ned by j(u)"h " u :
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6. Homotopy near the lower stratum

The main theorems of this paper on Teardrop Neighborhood Existence (2.1) and Neighborhood
Germ Classi"cation (2.2) and (2.3) have two aspects in their proofs : homotopy theoretic and
manifold theoretic. This is already evident in Section 4 if one compares Theorem 4.7, which says
that the teardrop of an approximate "bration is a homotopically strati"ed pair, with Corollary 4.11
which says that the teardrop of a manifold approximate "bration is a manifold strati"ed pair. This
section contains the homotopy theoretic part of the remaining aspects of this paper's main
existence and classi"cation theorems. The main result here, Theorem 6.8, produces from
a homotopically strati"ed pair (X,A) with "nitely dominated local holinks, a U-"bration over
A](0,#R) for arbitrarily small open coversU of A](0,#R) (outside the setting of manifolds this
is not quite the same notion as an approximate "bration). The proof involves showing that the
mapping cylinder of the holink evaluation is a good homotopy model for a neighborhood germ of
A in X. The idea of a good homotopy model is made precise with the notion of a &strong
U-homotopy equivalence near A' in De"nition 6.1.

There are three main steps to the proof of Theorem 6.8 corresponding to the three main
hypotheses : holink evaluation is a "bration, forward tameness and "nitely dominated local
holinks. The "rst step is Proposition 6.3 which shows how being modelled on the mapping cylinder
of a "bration yieldsU-"brations (we apply this to the holink evaluation "bration). The second step,
Proposition 6.5, shows that forward tameness is enough to get started in showing that the mapping
cylinder of holink evaluation is a good model for a neighborhood of A in X. Finally, the third step,
Proposition 6.7, adds the "nitely dominated local holinks condition to produce the strong
U-homotopy equivalence near A. Of course, all of this must be done sliced (or "bre preserving) over
*k in order to obtain the Higher Classi"cation Theorem 2.3.

We begin with the following de"nition of strong homotopy equivalences near A.

De5nition 6.1. Suppose X
1

and X
2

are spaces containing A]*k with maps n
i
: X

i
P*k such that

n
i
D : A]*kP*k is projection for i"1, 2. Suppose p : X

2
PA](!R,#R]]*k is a map

which is "bre preserving over *k and such that p~1(A]M#RN]*k)"A]*k and
pD : A]*kPA]M#RN]*k is the identity. Suppose U is an open cover of A]R]*k. A strong
f.p. U-homotopy equivalence near A]*k

(f, g,X@
1
, X@

2
) : X

1
PX

2

is de"ned by maps

f : X@
1
PX

2
, g :X@

2
PX

1

such that
(i) X@

1
a closed neighborhood of A]*k in X

1
and X@

2
"p~1(A][t

2
,#R]]*k) for some t

2
3R,

(ii) the maps

f : (X@
1
, A]*k)P(X

2
, A]*k),

g : (X@
2
, A]*k)P(X

1
,A]*k)

B. Hughes et al. / Topology 39 (2000) 873}919 901



are "bre preserving over *k, strict and the identity on A]*k, together with homotopies

F : gf DKinclusion : f~1(X@
2
)PX

1
,

G : fgDKinclusion : g~1(X@
1
)PX

2

such that
(iii) F,G are "bre preserving over *k, rel A]*k, and strict as homotopies between pairs

( f~1(X@
2
), A]*k)]IP(X

1
, A]*k) and (g~1(X@

1
),A]*k)]IP(X

2
, A]*k),

(iv) for every x3f~1(X@
2
)C(A]*k) with MxN]I-F~1(X@

1
) there exists ;3U such that

pfF(MxN]I)-;,
(v) for every x3g~1(X@

1
)C(A]*k) there exists ;3U such that pG(MxN]I)-;.

Sliced homotopy lifting properties are just the parametric versions of ordinary lifting properties.
These are used to de"ne sliced U-"brations, sliced approximate "brations and sliced manifold
approximate "brations (see [12]). We include the following de"nition for completeness.

De5nition 6.2. Suppose p :EPA]* is a map (with * playing the role of the parameter space),
<-A]* and U is an open cover of A]*. Then P is a sliced U-xbration over < if for every
commuting diagram of maps which are f.p. over *

with Im(F)-<, there exists an f.p. (over *) map FI : Z]*]IPE such that FI
0
"f and pFI is

U-close to F. If <"A]*, then p is a sliced U-xbration. If p is a sliced U-"bration for every open
cover U, then p is a sliced approximate xbration. If EP* is a "bre bundle projection with manifold
"bres (without boundary), A is a manifold (without boundary) and p is a proper sliced approximate
"bration, then p is said to be a sliced manifold approximate xbration.

A map p : EPA is proper over a subspace<-A if for every compact subspace K-<, p~1(K) is
compact. We do not insist that proper maps be onto.

The following result shows that it is signi"cant to be strongly f.p. U-homotopy equivalent to the
mapping cylinder of a "bration near the base of the mapping cylinder.

Proposition 6.3. Suppose q : EPA]*k is a xbration and Q : cy> l(q)PA](!R,#R]]*k is the
teardrop collapse. Suppose X is a locally compact separable metric space containing A]*k with a map
n : XP*k such that nD : A]*kP*k is projection and U is an open cover of A]R]*k. Suppose
( f, g,X@

1
, X@

2
) : XPcy> l(q) is a strong f.p. U-homotopy equivalence near A]*k and

Q f :X@
1
PA](!R,#R]]*k is proper. Then there exists an open neighborhood < of

A]M#RN]*k in A](!R,#R]]*k such that Q f : X@
1
PA](!R,#R]]*k is a sliced

st2(U)-xbration over (A]R]*k)W<.
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Proof. If X@
2
"Q~1(A][t

2
,#R]]*k) choose an open neighborhood < of A]M#RN]*k in

A](!R,#R]]*k such that
(i) <-A][t

2
,#R]]*k,

(ii) Q~1(<)-g~1(X@
1
) (this is possible since Q is a closed map over A]*k),

(iii) (Q f )~1(<)-f~1(X@
2
) (this is possible since Q f is proper, hence a closed map), and

(iv) (Q f )~1(<)]I-F~1(X@
1
) (this is possible since Qf is proper and F is the identity on

A]*k]I).
A sliced homotopy lifting problem

with Im(D)-(A]R]*k)W< yields another lifting problem

Since cy> l(q)C(A]*k)"E]R and QD"q]idR is a "bration, this second problem has an exact
solution DI 1 : Z]*k]IPE]R (so that DI 1DZ]*k]M0N"fd and (q]idR)DI 1"D). By choice of <,
Im(DI 1)-X@

2
and Im(gDI 1)-X@

1
. De"ne DI 2"gDI 1 :Z]*k]IPX@

1
and note that Q fDI 2"Q f gDI 1

is U-close to QDI 1"D. Except for the fact that DI 2DZ]*k]M0N need not equal d, DI 2 would be an
approximate solution to the original problem. However, DI 2DZ]*k]M0N"gDI 1D"g f d and g f d is
(Q f )~1(U)-homotopic to d. Thus a standard argument using paracompactness allows a modi"ca-
tion of DI 2 to get a st2(U)-solution DI :Z]*k]IPX@

1
(see [17, Proposition 16.3]). h

Notation 6.4. For the remainder of this section suppose A]*k-X and n : XP*k is a map such
that nD : A]*kP*k is the projection and q : holinkn(X,A]*k)PA]*k is the evaluation. The open
mapping cylinder of q is identi"ed with the teardrop

cy> l(q)"(holinkn(X,A]*k)]R)X
qC*$

(A]*k),

where q]id : holinkn(X,A]*k)]RPA]R]*k. Let Q : cy> l(q)PA](!R,#R]]*k be the
teardrop collapse.

The genesis of the ideas in the next two results is in [13, 4.7] and [30, 2.4]. See especially [17,
9.13,9.14].

Proposition 6.5. Suppose X is a locally compact separable metric space, A is compact and A]*k is
sliced forward tame in X with respect to n. Then there exist a compact neighborhood > of A]*k in
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X and maps

f :>Pcy> l(q), g : cy> l(q)P>

together with homotopies

F : igfKi :>PX, G : fgKid : cy> l(q)Pcy> l(q)

with i :>PX the inclusion such that

(i) f, g,F, G are relA]*k,
(ii) f, g,F, G are f.p. over *k,
(iii) f, g,F, G are strict maps or homotopies between the pairs (X,A]*k) and (cy> l(q),A]*k),
(iv) for every N*0 there exists M*0 such that

(Q fg)~1(A](!R, N]]*k)-Q~1(A](!R,M]]*k),

(v) for every N*0 there exists M*0 such that

G(Q~1(A][M,#R]]*k)]I)-Q~1(A][N,#R]]*k).

Proof. (cf. Hughes and Ranicki [17, 9.13]). Let d be a metric for X and let > be a compact
neighborhood of A]*k in X for which there exists a nearly strict deformation
H : (>]I,A]*k]IX>]M0N)P(X,A]*k) of > into A]*k which is f.p. over *k. It is easy to
modify H so that it has the additional property that if N"1, 2, 3,2 and x3H(>][0, 1/N]), then
d(x,A))1/N. Let HK :>C(A]*k)Pholinkn(X,A]*k) be the adjoint of H. Choose a compact
neighborhood >@ of A]*k in X such that >@-> and HK (>@)-holinkn(>,A]*k). Use i also to
denote the inclusion i :>@PX. From Proposition 5.2(i), it induces a "bre homotopy equivalence
i
H

: holinkn(>@,A]*k)Pholinkn(X,A]*k). Let R : holinkn(X,A]*k)]IPholinkn(X,A]*k) be
the "bre deformation explicitly de"ned in 5.2. Thus, there is a "bre homotopy inverse
j : holinkn(X,A]*k)Pholinkn(>@,A]*k) for i

H
de"ned by j"R

1
. From the de"nition of R, we

have R(u, t)(u)"u(s) for some s. De"ne p : XP(0,#R] by p(x)"1/d(x,A). De"ne f :>Pcy> l(q)
by

f(x)"G
(HK (x), p(x))3holinkn(X,A]*k)](0,#R) if x3>C(A]*k),

x if x3A]*k.

Let p
Y{

: holinkn(>@,A]*k)P>@ and p`
Y

: holinkn(>, A]*k)]RP> be the evaluations
p
Y{
(u)"u(1) and

p`
Y
(u, t)"G

u(1) if t)0,

u(1/(1#t)) if t*0.

De"ne g : cy> l(q)P> so that on holinkn(X,A]*k)]R-cy> l(q), g is the composition

holinkn(X,A]*k)]R jC*$R

&&" holinkn(>@,A]*k)]RpY{C*$R

&&"

>@]RHK C*$R

&" holinkn(>, A]*k)]R p
`
Y

&" >
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and on A]*k-cy> l(q), g is the identity. De"ne the homotopy F :>]IPX by

F(x, t)"G
(HK [(R

1~t
(HK (x)))(1)])(d(x,A)`t

d(x,A)`1
) if x3>C(A]*k),

x if x3A]*k.

De"ne

c : holinkn(X,A]*k)](0, 1]Pholinkn(X,A]*k)

by c(u, t)"HK [HK (xu)(t)] where xu"j(u)(1)3>@. De"ne G@ : holinkn(X,A]*k)]R]IP
holinkn(X,A]*k)]R by

G@(u, t, s)"G
(c(u, 1

1`t
), (1!s)p[HK (xu)( 1

1`t
)]#st) if s*t,

(c(u, 1), (1!s)p[HK (xu)(1)]#st) if s*t.

Note that G@
0
"fgD : holinkn(X,A]*k)]RPholinkn(X,A]*k)]R and that G@ extends via the

indentity on A]*k to G@ : cy> l(q)]IPcy> l(q). We claim that there exists a homotopy

GA : holinkn(X,A]*k)]R]IPholinkn(X,A]*k)]R

such that

GA
0
(u, t)"G

c(u, 1
1`t

) if t*0,

cu, 1) if t)0.

To this end note that by contracting (0,1] to M1N there is de"ned a homotopy cKc@ with

c@(u, t)"HK [HK (wu)(1)]"HK (xu)"HK (p
Y{
( j(u)).

And it is not di$cult to see that HK p
Y{

: holinkn(>@,A]*k)Pholinkn(>,A]*k) is homotopic to the
inclusion i

H
. Since j is a homotopy inverse for i

H
, the homotopy GA exists as claimed. We can now

de"ne the homotopy

G : holinkn(X,A]*k)]R]IPholinkn(X,A]*k)]R

by

(u, t, s)CG
G@(u, t, 2s) if 0)s)1/2,

(GA(u, t, 2s!1), t) if 1/2)s)1

and extending G via the identity on A]*k to get

G : cy> l(q)]IPcy> l(q).

For the veri"cation of the properties, see [17, 9.13]. h

Lemma 6.6. Let p : EPB be a xbration with B a weakly locally contractible compact metric space. If
the xbre of p is xnitely dominated, then there exist a compact subspace K-E and a f.p. homotopy
D : E]IPE such that D

0
(E)-K and D

1
"id

E
.
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Proof. Each x3B has an open neighborhood;
x
such that the inclusion;

x
6B is null-homotopic.

It follows that there is a "bre homotopy equivalence f
x
: p~1(;

x
)Pp~1(x)];

x
over ;

x
. Let

g
x
: p~1(x)];

x
Pp~1(;

x
) be a "bre homotopy inverse and Hx : p~1(;

x
)]IPp~1(;

x
) a f.p.

homotopy such that Hx
0
"g

x
f
x

and Hx
1
"id

p
~1(Ux)

. Since p~1(x) is "nitely dominated there exist
a compact subspace K

x
-p~1(x) and a homotopy Dx : p~1(x)]IPp~1(x) such that

Dx
0
(p~1(x))-K

x
and Dx

1
"id

p
~1(x)

. Let DK x"Dx]id
Ux

: p~1(x)];
x
]IPp~1(x)];

x
. Let o

x
: BPI

be a map such that o~1
x

(0)-;
x
is a neighborhood of x and BC;

x
-o~1

x
(1). De"ne a f.p. homotopy

Gx : E]IPE by

Gx(y, t)"G
g
x
DK x( f

x
(y), (1!t)2o

x
(y)#t) if 0)o

x
(y))1/2,

Hx(y, t(2o
x
(y)!1)#(1!t)) if 1/2)o

x
(y))1.

De"ne a f.p. homotopy Fx : E]IPE by

Fx(y, t)"G
Hx(y, t) if 0)o

x
(y))1/2,

Hx(y, (1!t)(2o
x
(y)!1)#t) if 1/2)o

x
(y))1.

Then Fx
0
"Gx

1
and Fx

1
"id

E
. De"ne a f.p. homotopy DI x : E]IPE by

DI x(y, t)"G
Gx(y, 2t) if 0)t)1/2,

Fx(y, 2t!1) if 1/2)t)1.

Then DI x
0
"Gx

0
and DI x

1
"id

E
. The compact subspace C

x
"g

x
(K

x
]p~1(o~1

x
(0))) of E is such that

DI x
0
(o~1

x
(0))-C

x
. Let Mx

1
,2, x

k
N be a "nite subset of B such that B"6k

i/1
o~1
xi

(0). De"ne
D : E]IPE by

D
t
"DI xk

t
"2"DI x1

t
.

Then D
1
"id

E
and

D
0
(E)-[DI xk

0
"2"DI x2

0
(C

x1
)]X[DI xk

0
"2 "DI x3

0
(C

x2
)]X2X[DI xk

0
(C

xk~1
)]X[C

xk
]

which is compact as required. h

Proposition 6.7. Suppose X is a locally compact separable metric space, A is weakly locally contract-
ible, compact space, A]*k is sliced forward tame in X with respect to n, and (X,A]*k) has xnitely
dominated local holinks. For every open cover U of A]R]*k, there exists a strong f.p. U-homotopy
equivalence near A]*k ( fM , g6 , X@

1
,X@

2
) : XPcy> l(q).

Proof. (cf. [17, 9.14].) Let>, f, g,F, G be as in Proposition 6.5. By Lemma 6.6 there exist a compact
subspace K-holinkn(X,A]*k) and a f.p. homotopy D : holinkn(X,A]*k)]IP
holinkn(X,A]*k) such that D

0
(holinkn(X, A]*k))-K and D

1
"id. De"ne DK : cy> l(q)]IPcy> l(q)

by

DK
s
"G

D
s
]idR on holinkn(X, A]*k)]R,

id on A]*k.
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De"ne g@ : cy> l(q)P> by g@"gDK
0
. De"ne F@ :>]IPX by

F@
s
"G

igDK
2s

f if 0)s)1/2,

F
2s~1

if 1/2)s)1.

Note that F@ : ig@fKi. De"ne G@ : cy> l(q)]IPcy> l(q) by

G@
s
"G

G
2s

DK
0

if 0)s)1/2,

DK
2s~1

if 1/2)s)1.

Note that G@ : fg@Kid. As in [17, 19.4] it is possible to choose a homeomorphism c :RPR with
c"id on (!R, 0] inducing a homeomorphism c6 : cy> l(q)Pcy> l(q) such that fM"c6 f is the desired
equivalence with inverse g6 "c6 ~1g@. (Q plays the role of p in De"nition 6.1.) h

Theorem 6.8. Suppose X is a locally compact separable metric space, (X,A]*k) is a sliced homotopi-
cally stratixed pair with xnitely dominated local holinks, A is a compact ANR and
p : XPA](!R,#R]]*k is a f.p. proper map with pD : A]*k"p~1(A]M#RN]*k)P
A]M#RN]*k the identity. Then for every open cover U of A]R]*k, there exist a compact
neighborhood N of A]*k in X and a f.p. strict homotopy pDNKp@ :NPA](!R,#R]]
*krelA]*k such that p@ is a sliced U-xbration over A](0,#R)]*k and (p@)~1(A](0,#R)]*k)
is open in X.

Proof. Given the open cover U choose an open cover V such that st2(V) re"nes U. According to
Proposition 6.7 there exists a strong f.p. V-homotopy equivalence near A]*k

(fM , g6 , X@
1
, X@

2
) : XPcy> l(q) such that X@

1
is compact. Let pA"QfM : X@

1
PA](!R,#R]]*k. Since

(X,A]*k) is sliced forward tame there exist a compact neighborhood N of A]*k in X and a f.p.
nearly strict deformation r of N into A]*k with N-X@

1
and r : N]IPX@

1
. We show that there

exists a f.p. strict homotopy H : pDNKpADN rel A]*k as follows. Let n
1
: A]

(!R,#R]]*kPA]*k and n
2
: A](!R,#R]]*kP(!R,#R] denote the projec-

tions. De"ne H : N]IPA](!R,#R]]*k by

n
1
H(x, t)"G

pr(x, 2t) if 0)t)1/2,

pAr(x, 2!2t) if 1/2)t)1

and n
2
H(x, t)"(1!t)n

2
p(x)#tn

2
pA(x). According to Proposition 6.3 there exists an m'0 such

that pA is a sliced U-"bration over (A](m,#R)]*k). We may assume that
(pA)~1(A](m,#R)]*k)-N. We conclude the proof by de"ning an isotopy G : A]
(!R,#R]]*k]IPA](!R,#R]]*k by G(x, s, t, u)"(x, s!um, t) and setting p@"G

1
pA.

Since G
0
"id, A](0,#R]]*k"G

1
(A](m,#R)]*k) and G

1
is an isometry, it follows that

G
u
pA : pAKp@, 0)u)1, and p@ is the desired map. h

7. Higher classi5cation of strati5ed neighborhoods

Throughout this section B will denote a "xed closed manifold. We will prove Theorem 2.3, the
main result of this paper, which classi"es families of neighborhoods of B in strati"ed pairs with B as
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the lower stratum. This higher classi"cation is given in terms of families of manifold approximate
"brations over B]R. In fact, Theorem 2.3 asserts that the teardrop construction de"nes
a homotopy equivalence between the moduli space of manifold approximate "brations over B]R

and the moduli space of strati"ed neighborhoods of B. There are two aspects of the
proof : existence and uniqueness. Existence essentially means that the simplicial map between
moduli spaces is surjective on homotopy groups, whereas uniqueness means that the map is
injective on homotopy groups. The actual proof combines both aspects by verifying that the map is
&relatively surjective' on homotopy groups. However, the two aspects are evident in the lead-up to
the proof.

The existence problem involves showing that a family (parametrized by *k) of strati"ed neigh-
borhoods of B is given by the teardrop of a family of manifold approximate "brations over B]R.
The precise statement is Proposition 7.2. It is proved by "rst appealing to Theorem 6.8 which
establishes that such a family of neighborhoods is given by the teardrop of a family of U-"brations
over B]R where U is an arbitrarily small open cover of B]R. Then we use sucking phenomena
for manifold approximate "brations, which says that if U is su$ciently "ne then a U-"bration
deforms to a manifold approximate "bration. Sucking phenomena for approximate "brations were
"rst discovered by Chapman [2,3], but the family version which we require appears in [13]. The
technical version of sucking which we require is stated in Proposition 7.1. We point out below that
Proposition 7.2 together with the material from Section 4 su$ces to give a proof of Theorem 2.1
(Teardrop Neighborhood Existence) even though it also follows from Theorem 2.3.

Just as the existence aspect is based on a fundamental phenomenon of manifold approximate
"brations, the uniqueness aspect is based on another such phenomenon of manifold approximate
"brations : two families of close manifold approximate "brations can be connected by a close
family of manifold approximate "brations (parametrized by *k). In other words, the moduli space
of manifold approximate "brations is locally k-connected for each k*0. This phenomenon was
observed in [13]. Lemma 7.3 contains an elementary argument which shows how we get into
a situation of having two close families of manifold approximate "brations. Proposition 7.4 is the
technical version of the local connectivity result which we require and Proposition 7.5 sets the stage
for how it is used in the proof of the classi"cation theorem.

We begin by quoting the version of the sucking phenomena which we will use.

Proposition 7.1 (Sucking). Let n*5 and k*0. For every open cover U of B]R]*k there exists an
open cover V of B]R]*k such that if M is an n-manifold (without boundary), N-M]*k is a closed
subset, j : NPB]R]*k is a f.p. proper map such that j is a sliced V-xbration over
B](0,#R)]*k, and j~1(B](0,#R)]*k) is an open subspace of M]*k, then j is f.p. properly
U-homotopic rel j~1(B](!R, 0]]*k) to a map j@ :NPB]R]*k with j@ a sliced approximate
xbration over B](1,#R)]*k.

Proof. See [13,18, Section 13]. h

In the next result we combine the homotopy information of the previous section (Theorem 6.8)
with the sucking result (Proposition 7.1) to prove the existence of manifold approximate "bration
teardrop structure for manifold strati"ed neighborhoods.
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Proposition 7.2. If n*5 and n : (X,B]*k)P*k is a k-simplex of SNn(B), then there exists a compact
neighborhood NK of B]*k in X and a f.p. proper strict map

p( : (NK ,B]*k)P(B](!R,#R]]*k,B]M#RN]*k) relB]*k

such that p( is a sliced approximate xbration over B](1,#R)]*k.

Proof. Choose an open cover U of B]R]*k such that

lubMdiam(;) D;3U,;W(B][m,#R)]*kO0NP0 as mPR.

Let V be an open cover of B]R]*k given by Proposition 7.1 which depends on U. Since B]*k is
sliced forward tame in X, it follows that there exist a compact neighborhood N

0
of B]*k in X and

a f.p. retraction r : N
0
PB]*k. We may assume that N

0
is contained in a trivial neighborhood of

B]*k (in the sense of De"nition 5.1). Let N"int(N
0
) and choose a proper map

u : NP(!R,#R] such that u~1(#R)"B]*k. De"ne p@ :NPB](!R,#R]]*k by
p@(x)"(proj

B
r(x), u(x), proj*kr(x)). Note that p@ is a f.p. proper strict map and rel B]*k. Since

(X,B]*k) is a sliced manifold strati"ed pair, so is (N,B]*k) (Proposition 5.2). Theorem 6.8
implies that there exist a compact neighborhood NK of B]*k in N and a f.p. proper strict homotopy

p@DNK KpA : NK PB](!R,#R]]*k relB]*k

such that pA is a sliced V-"bration over B](0,#R)]*k and (pA)~1(B](0,#R)]*k) is open in
N (and hence open in X). Now Proposition 7.1 and the choice of V imply that there exists a f.p.
proper U-homotopy

pADNK C(B]*k)KpA@ : NK C(B]*k)PB]R]*k

such that pA@ is a sliced approximate "bration over B](1,#R)]*k. (We are in a product
situation as required by Proposition 7.1 because N

0
was chosen to be in a trivial neighborhood.)

The de"ning property of the open cover U implies that the map pA@ extends via the identity on
B]*k to a map

p( : NK PB](!R,#R]]*k. h

As mentioned in Section 2 we can now give a proof of Theorem 2.1 (on the existence of teardrop
neighborhoods) which avoids some of the machinery required for the proof of Theorem 2.3.

Proof of Theorem 2.1 (Teardrop Neighborhood Existence). If (X,B) is a manifold strati"ed pair
with dim(XCB)"n*5, then (X,B) is a vertex of SNn(B). It follows from Proposition 7.2 that B has
a neighborhood in X which is the teardrop of a manifold approximate "bration. The converse
follows from Corollary 4.11. h

We are now ready to begin the uniqueness aspects of the main result. The "rst lemma shows how
to modify two teardrop collapse maps so that they become close near the lower stratum.

Lemma 7.3. Suppose B, K are compact metric spaces, X is a locally compact metric space containing
B]K with a map n : XPK such that nD :B]KPK is projection. Suppose
p, q : (X,B]K)P(B](!R,#R]]K,B]M#RN]K) are two xbre preserving (with respect to
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n) strict maps which are the identity on B]K and proper over B](0,#R)]K. For every open cover
V of B]R]K there exists a f.p. strict isotopy H : B](!R,#R]]K]IPB]
(!R,#R]]K]I rel (B](!R, 0]]K)X(B]M#RN]K) such that p@"H

1
p and q@"H

1
q

are V-close over B](1,#R)]K (meaning if x3(p@)~1(B](1,#R)]K)X(q@)~1
(B](1,#R)]K), then there exists <3V such that p@(x), q@(x)3<).

Proof. Assume B]K has a "xed metric, R has the standard metric and B]R]K has the product
metric. For each n"!1, 0, 1, 2,2 let e

n
'0 be a Lebesque number for the open cover

M<W(B][n,n#1]]K)D<3VN of B][n, n#1]]K. We may assume that e
~1

(e
0
(e

1
(2 .

Using the properness of p,q (over B](0,#R)]K) and the fact that p,q are the identity on B]K,
construct (by induction) a sequence 0(t

~1
(t

0
(t

1
(2 such that t

n
PR as nPR, p, q are

(e
n
/3)-close over B][t

n
,#R]]K, and if x3p~1(B][t

n
, t

n`1
]]K)Xq~1(B][t

n
,t
n`1

]]K), then
p(x), q(x)3B][t

n~1
, t

n`2
]]K for each n"0, 1, 2,2 . Also construct a sequence

0"y
0
(y

1
(y

2
(2 re"ning M0, 1, 2,2N such that y

n
*n and if n)y

k
)n#1, then

y
k`1

!y
k
(e

n`1
/3. De"ne a homeomorphism h@ : (!R,#R]P(!R,#R] so that for each

n"0, 1, 2,2 h@(t
n
)"y

n
, h@ is linear on [t

n
, t

n`1
] and is the identity on (!R,0]. De"ne

h"id
B
]h@]id

K
: B](!R,#R]]KPB](!R,#R]]K. The natural isotopy

id
(~=,`=+

Kh@ induces an isotopy H : id
BC(~=,`=+CK

Kh"H
1

and one checks that p@"H
1
p and

q@"H
1
q satisfy the conclusions. h

The next result formulates the version of local connectivity for families of manifold approximate
"brations which we require. Then Proposition 7.5 applies it in the situation which will arise in the
proof of the main result.

Proposition 7.4. Suppose that n*5 and K is a compact polyhedron. For every open cover U of
B]R]K there exists an open cover V of B]R]K such that if n : MPK is a xbre bundle projection
with n-manifold xbres (without boundary), N-M is a closed subset, p

1
, p

2
: NPB]R]K are two

f.p. proper maps which are V-close over B](0,#R)]K and sliced approximate xbrations over
B](0,#R)]K, and p~1

i
(B](0,#R)]K) is open in M for i"1,2, then there exists a f.p. proper

U-homotopy F : p
1
Kp

2
such that F

s
:NPB]R]K is a sliced approximate xbration over

B](1,#R)]K for each 0)s)1.

Proof. This just involves minor modi"cations in the arguments of [13] used to prove that spaces of
manifold approximate "brations are locally k-connected for each k*0. h

Proposition 7.5. Suppose K is a compact polyhedron and n : (>,B]K)PB]K is a sliced manifold
stratixed pair with dim n~1(u)"n*5 for u3K for which there is a f.p. proper strict map

p : (>,B]K)P(B](!R,#R]]K,B]M#RN]K) relB]K

which is a sliced manifold approximate xbration over B]R]K. Suppose t3R and >K is an open
neighborhood of B]K in Y for which there is a f.p. proper strict map

p( : (>K , B]K)P(B](t,#R]]K,B]M#RN]K) relB]K
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which is a sliced manifold approximate xbration over B](t,#R)]K. Then there exist t
2
't,

a compact neighborhood X of B]K in Y with X->K and a f.p. strict homotopy

F : pDXKp( DX :XPB](!R,#R]]K relB]K

which is proper over B](t
2
,#R]]K and such that F

s
:XPB](!R,#R]]K is a sliced

manifold approximate xbration over B](t
2
,#R)]K for each 0)s)1.

Proof. Choose an open cover U of B]R]K such that

lubMdiam(;) D;3U,;W(B][m,#R)]*kO0NP0 as mPR.

Let V be the open cover of B]R]K given by Proposition 7.4 which depends on U. Let= be
a locally trivial neighborhood of B]K in> (in the sense of De"nition 5.1) and assume that=->K .
Choose t

0
*t such that

p~1(B][t
0
,#R]]K)Xp( ~1(B][t

0
,#R]]K)-=.

Let

X"p~1(B][t
0
,#R]]K)Wp( ~1(B][t

0
,#R]]K).

Choose t
1
't

0
such that

p~1(B][t
1
,#R]]K)Xp( ~1(B](t

1
,#R]]K)-X

and note that pD, p( D : XPB](t
0
,#R]]K are proper over B](t

1
,#R]]K and sliced approx-

imate "brations over B](t
1
,#R)]K. Let t

2
"t

1
#1. Lemma 7.3 can be applied to yield a f.p.

strict isotopy

H : B](!R,#R]]K]IPB](!R,#R]]K]I

rel(B](!R, t
1
]]K)X(B]M#RN]K)

such that p@"H
1
pDX and q@"H

1
p( DX are V-close over B](t

2
,#R]]K. Because H is

relB](!R, t
1
]]K, p@ and q@ are sliced approximate "brations over B](t

1
,#R]]K. Proposi-

tion 7.4 can be applied to yield a f.p. U-homotopy F : p@DKq@D : XC(B]K)PB]R]K such that
F
s
: XC(B]K)PB]R]K is a sliced approximate "bration over B](t

2
,#R)]K for each

0)s)1. The choice of the open cover U implies that F extends via the identity
B]KPB]M#RN]K to a homotopy (also denoted F) F : p@Kq@ : XPB]
(!R,#R]]K. h

We need one more lemma before proving the main result.

Lemma 7.6. If n*5 and t3R, then the restriction o :MAFn(B]R)PMAFn(B](t,#R)) is
a homotopy equivalence.

Proof. First observe that the techniques of [18, Section 3] show that o is in fact a simplicial map.
There are a couple of approaches to proving that o is a homotopy equivalence. One is to use
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geometric techniques as presented in [18, Section 4] in proving uniqueness of "bre germs. The
other is to use the Manifold Approximate Fibration Classi"cation Theorem [18,19] and observe
that restriction induces a homotopy equivalence of the classifying spaces. h

Let n*5. We prove the main theorem by showing that W :MAFn(B]R)PSNn(B) (as construc-
ted in Section 5) is a homotopy equivalence. Since both these simplicial sets satisfy the Kan
condition, it su$ces to show that W induces an isomorphism on homotopy groups (including n

0
).

To accomplish this suppose that we are given the following set-up.
Data 7.7. Suppose k*0.

(1) Let n : (X,B]*k)P*k be a k-simplex of SNn(B).
(2) Let p : MPB]R]L*k be a union of (k#1) (k!1)-simplices of MAFn(B]R).
(3) Suppose for each i"0,2,k, the (k!1)-simplex nD : (n~1(L

i
*k),B]L

i
*k)PL

i
*k of SNn(B) is the

image under W of the (k!1)-simplex pD : p~1(B]R]L
i
*k)PB]R]L

i
*k of MAFn(B]R) so

that M"n~1(L*k)C(B]L*k).

Note that if k"0, then only item (1) is meaningful.

Theorem 7.8. Given Data 7.7, there is a k-simplex p8 : MI PB]R]*k of MAFn(B]R) which equals
p over B]R]L*k and whose image under W is homotopic in SNn(B) to n rel L.
Hence, W :MAFn(B]R)PSNn(B) induces an isomorphism on homotopy groups and is a homotopy
equivalence.

Proof. According to Proposition 7.2, there exists a compact neighborhood NK of B]*k in X and
a f.p. proper strict map

p( : (NK ,B]*k)P(B](!R,#R]]*k,B]M#RN]*k) relB]*k

such that p( is a sliced approximate "bration over B](1,#R)]*k. Choose t*1 such that
p( ~1(B](t,#R]]*k) is open in X. Let >"LX"n~1(L*k) which by assumption is the teardrop
MX

p
(B]L*k). Extend p : MPB]R]L*k via the identity B]L*kPB]M#RN]L*k to

p
`

:>PB]B](!R,#R]]L*k which is continuous since it is the teardrop collapse. Let
>K "p( ~1(B](t,#R]]L*k). Since >K is open in >, it follows that p( D :>K PB](t,#R]]L*k is
a sliced manifold approximate "bration over B](t,#R)]L*k. It follows from Proposition 7.5
applied with K"L*k that there exist t

2
't, a compact neighborhood >I of B]L*k in > with

>I ->K , and a f.p. strict homotopy

F : p
`
D>I Kp( D>I :>I PB](!R,#R]]L*k

which is proper over B](t
2
,#R]]L*k and such that F

s
:>I PB](!R,#R]]L*k is

a sliced manifold approximate "bration over B](t
2
,#R)]L*k for each 0)s)1. Consider F as

a map F :>I ]IPB](!R,#R]]L*k]I. Choose t
3
*t

2
such that F~1(B](t

3
,#R]]

L*k]I) is open in >]I and let ="F~1(B](t
3
,#R)]L*k]I). Since the composition

= F
P B](t

3
,#R) 130+

&" L*k]I
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is a submersion and FD :=PB](t
3
,#R)]L*k]I is a sliced (over L*k]I) manifold approxim-

ate "bration, it follows from [14, Lemma 4.1] that =PL*k]I is a "bre bundle projection. Let
=

0
"p~1(B](t

3
,#R)]L*k) and =

1
"p( ~1(B](t

3
,#R)]L*k). It follows that FD= may be

thought of as a homotopy in MAF(B](t
3
,#R)) from pD :=

0
PB](t

3
,#R)]L*k to

p( D :=
1
PB](t

3
,#R)]L*k.

Now consider the open subspace XK "p( ~1(B](t
3
,#R]]*k) of X and let MK "

XK C(B]*k)"p( ~1(B](t
3
,#R)]*k). Since p( D : XK PB](t

3
,#R]]*k is a sliced manifold ap-

proximate "bration over B](t
3
,#R)]*k, it follows using [14, Lemma 4.1] again that

p( : MK PB](t
3
,#R)]*k is a k-simplex of MAF(B](t

3
,#R)). Its boundary is

p( D"F
1
D :=

1
PB](t

3
,#R)]L*k.

Let o :MAF(B]R)PMAF(B](t
3
,#R)) be the simplicial map induced by restriction. It is

a homotopy equivalence by Lemma 7.6. De"ne a simplicial map W@ : MAF(B](t
3
,#R))PSN(B)

induced by the teardrop construction in analogy to the map W : MAF(B]R)PSN(B). In fact, if
q : QPB]R]*k is a k-simplex of MAF(B]R), then W@o(q)"q~1(B](t

3
,#R)]*k)X

q
(B]*k)

is an open subspace of W(q)"QX
q
(B]*k) and the mapping cylinder of the inclusion induces

a homotopy in SN(B) from W@o(q) to W(q) (see Section 5). In this way we construct a homotopy

C>¸: W@oKW :MAF(B]R)PSN(B).

Use the homotopy FD= and a collar of L*k in *k to enlarge the k-simplex
p( D : MK PB](t

3
,#R)]*k of MAF(B](t

3
,#R)) to a k-simplex pH : MHPB](t

3
,#R)]*k of

MAF(B](t
3
,#R)) so that LpH is o(p). Note that F is a homotopy in MAF(B](t

3
,#R)) from

o(p)"F
0
D=

0
to L(p( DMK )"F

1
D=

1
. Note that since W@(p( D MK ) is an open subspace of X, the mapping

cylinder construction induces a homotopy C>¸: W@(p( D MK )KX in SN(B). Note also that since each
F~1(B](t

3
,#R]]L*k]MsN) is an open subspace op LX, the mapping cylinder construction

induces an extension of the homotopy C>¸: W@(p( DMK )KX to a homotopy C>¸: W@(pH)KX.
The situation now is that we have a k-simplex pH of MAF(B](t

3
,#R)) such that o(p)"LpH

and the mapping cylinder construction induces a homotopy C>¸ : W@(pH)KX. Since
o : MAF(B]R)PMAF(B](t

3
,#R)) is a homotopy equivalence, there exists a k-simplex p8 of

MAF(B]R) such that Lp8 "p and a homotopy G : o(p8 )KpH rel Lo(p8 )"LpH. Thus W@(G) is
a homotopy in SN(B) from t@o(p8 ) to W@(pH) rel L. This homotopy taken together with the homotopy
C>¸: W@(pH)KX, yields a homotopy H: W@o(p8 )KX in SN(B) which restricts to
C>¸: LW@o(p8 )KLX. On the other hand, we have already observed that there is a homotopy
C>¸: W@o(p8 )KW(p8 ). The concatenation W(p8 )KW@o(p8 )KX, together with the fact that the
two homotopies restrict to inverses on the boundary, implies that there exists a homotopy
W(p8 )KX rel L. h

8. Extensions of isotopies and h-cobordisms

In this section we combine the geometry of teardrop neighborhoods with manifold approximate
"bration theory in order to prove parametrized isotopy extension and h-cobordism extension
theorems for manifold strati"ed pairs.
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Extending isotopies

Proof of Corollary 2.4 (Parametrized Isotopy Extension). Let (X,B) be a manifold strati"ed pair
with dimX*5 and B a closed manifold. Suppose h : B]*kPB]*k is a k-parameter isotopy (in
particular, hDB]M0N"id

BCM0N). We are required to "nd a k-parameter isotopy hI :X]*kPX]*k

extending h which is supported in a given neighborhood of B. Since B has a teardrop neighborhood
in X (Theorem 2.1) there exist an open neighborhood ; of B in X (which we can take to be
contained in the given neighborhood of B) and a proper map f :;PB](!R,#R] such that
fD :BPB]M#RN is the identity and fD :;CBPB]B]R is a manifold approximate "bration.
We consider *k embedded as a convex subspace of Rk with the origin the zeroth vertex (basepoint)
of *k. De"ne a k-parameter isotopy g :B]R]*kPB]R]*k by letting g

t
: B]RPB]R, t3*k,

be given by

g
t
(x, s)"G

(h
t
(x), s) if s*0,

(h
(1`s)t

(x), s) if !1)s)0,

(x, s) if s)!1.

Let U be an open cover of B]R whose mesh goes to 0 near B]M#RN; i.e, if <3U and
<W(B][N,#R)O0 then diam<(1

N
for N"1, 2, 3,2 (cf. the de"nition of W in Section 5). By

the Approximate Isotopy Covering Theorem for manifold approximate "brations (see [17, 17.4]
for information on how this follows from [13]) there exists a k-parameter isotopy
g8 : (;CB)]*kP(;CB)]*k such that for each t3*k

(1) f g8
t
is U-close to g

t
f D(;CB), and

(2) g8
t
Df~1(B](!R,!2])" the inclusion.

Finally, de"ne hI
t
: XPX, t3*k, by

hI
t
"G

h
t

on B,

g8
t

on ;CB,

id
XCU

on XC;. h

Stratixed h-cobordisms
Throughout the rest of this section we let (X,B) be a "xed manifold strati"ed pair with B a closed

manifold with dimB*5. We now de"ne strati"ed h-cobordisms. The de"nition is a bit more
complicated than in [30] because we have not allowed manifold strata to have boundaries.

De5nition 8.1. A stratixed h-cobordism (=I ; L
0
=I , L

1
=I ) consists of a homotopically strati"ed pair

(=I ,=) with "nitely dominated local holinks such that
(i) =I is a locally compact separable metric space,
(ii) = is a compact manifold with boundary L="L

0
=XL

1
=,

(iii) there are disjoint closed subspaces L
0
=I , L

1
=I -=I satisfying :

(a)L
i
=I W="L

i
= for i"0,1,

(b)=I C= is a manifold with boundary (L
0
=I CL

0
=)X(L

1
=I CL

1
=),

(c) L
i
=I is a stratum preserving proper strong deformation retract of =I for i"0, 1.
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The strati"ed h-cobordism (=I ; L
0
=I , L

1
=I ) is said to extend the h-cobordism (=; L

0
=, L

1
=) and is

a stratixed h-cobordism on (X,B) if (X,B)"(L
0
=I , L

0
=). Note that (=I C=; L

0
=I CL

0
=, L

1
=I CL

1
=)

is a proper h-cobordism on L
0
=I CL

0
=.

The following result is not needed in the rest of this section, but is included to show that strati"ed
h-cobordisms keep one inside the category of manifold strati"ed pairs.

Proposition 8.2. If (=I ; L
0
=I , L

1
=I ) is a stratixed h-cobordism extending the h-cobordism

(=; L
0
=, L

1
=), then (L

i
=I , L

i
=) is a manifold stratixed pair for i"0,1.

Proof. By de"nition (=I ,=) is a homotopically strati"ed pair with "nitely dominated local holinks.
Of course, L

i
= and L

i
=I CL

i
= are manifolds. The forward tameness of L

i
= in L

i
=I follows from the

facts that= is forward tame in=I and L
i
=I is a stratum preserving retract of=I . Moreover, since

q : holink(=I ,=)P= is a "bration with "nitely dominated "bre and a stratum preserving strong
deformation of =I to L

i
=I induces a strong deformation retraction of holink(=I ,=) to

holink(L=I ,L
i
=) which, when restricted to q~1(L

i
=) is "bre preserving over L

i
=, it follows that

holink(L
i
=I , L

i
=)PL

i
= is a "bration with "nitely dominated "bre. h

We now "x some notation which will be used throughout the rest of this section.

Notation 8.3. Since B has a teardrop neighborhood in X (Theorem 2.1) there exist an open
neighborhood ; of B in X and a proper map f :;PB](!R,#R] such that
fD :BPB]M#RN is the identity and fD :;CBPB]R is a manifold approximate "bration.

De5nition 8.4. An h-cobordism on X rel B consists of :
(i) a proper h-cobordism (<; L

0
<, L

1
<) on L

0
<"XCB (in particular, L

i
< is a proper strong

deformation retract of < for i"0, 1),
(ii) a map of triads

g : (N; L
0
N, L

1
N)P(B]R][0, 1];B]R]M0N,B]R]M1N)

where :

(a) N is an open subset of < and is a neighborhood of the end of < determined by B (i.e., for
a proper retraction r :<PXCB there exists a neighborhood ;@ of B in X such that
r~1(;@CB)-N),

(b) L
i
N"NWL

i
< for i"0,1,

(c) g is a proper approximate "bration,
(d) L

0
N";,

(e) gDL
0
N"f.

Here is some explanation for this de"nition.
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Remark 8.5. (1) The teardrop <X
g
(B][0,1]) contains X"L

0
<X

g@
B]M0N so that the triad

(<X
g
B][0, 1];X, L

1
<X

g@
B)

is a strati"ed h-cobordism on (X,B) extending the trivial h-cobordism on B. The fact that the
properties of De"nition 8.1 are indeed satis"ed is a special case of Theorem 8.6 below. This is why
(<; L

0
<,L

1
<) is called an h-cobordism on X rel B : because < can be compactifed (if X is compact)

by adding B][0, 1] to obtain a strati"ed h-cobordism on (X,B) which is trivial on B.
(2) Suppose (=I ; L

0
=I , L

1
=I ) is any strati"ed h-cobordism on (X,B) extending (=;L

0
=, L

1
=). It

follows that (=I C=;L
0
=I CL

0
=, L

1
=I CL

1
=) is an h-cobordism on X rel B. As noted above, this is

obviously a proper h-cobordisms on XCB. A proof of the other properties in De"nition 8.4 requires
the advanced teardrop technology from [15,16] (because=I has more than two strata). Likewise,
using this advanced teardrop technology we will be able to reformulate De"nition 8.4 to be more
along the lines of De"nition 8.1. It is because [16] has not yet appeared that we are taking the
current approach.

(3) A simple example of an h-cobordism on X rel B is the trivial one ((XCB)]
[0,1];XCB]M0N,XCB]M1N). For the open set N-(XCB)][0, 1] in De"nition 8.4(ii) we take
(;CB)][0, 1]. Thus, the Teardrop Neighborhood Existence Theorem 2.1 is required to show that
the trivial h-cobordism is an example. Theorem 8.6 below, when applied to this trivial h-cobordism,
is nevertheless non-trivial. This special case (stated as Corollary 8.7) best illustrates the power of the
techniques of the current paper without making motivational appeal to advanced teardrop
technology.

The next result shows how teardrop technology can be used to extend an h-cobordism on B to
a teardrop neighborhood of B in X. Moreover, the extension can be chosen so that on the
complement of B, it is any given h-cobordism on X rel B. The key fact that makes teardrop
technology applicable to this problem is that h-cobordisms on B become trivial h-cobordisms on
B]R after crossing with R.

Theorem 8.6. Let (X,B) be a manifold stratixed pair with B a closed manifold, dimB*5. If
(<; L

0
<,L

1
<) is an h-cobordism on X rel B and (=; L

0
=, L

1
=) is an h-cobordism on B, then there

exists a stratixed h-cobordism (=I ; L
0
=I , L

1
=I ) extending (=;L

0
=,L

1
=) such that

(=I C=; L
0
=I CL

0
=, L

1
=I CL

1
=)"(<; L

0
<, L

1
<).

Proof. As is well-known (=; L
0
=, L

1
=)]R is a trivial h-cobordism; i.e., there exists a homeomor-

phism h :=]RPB]R][0, 1] such that hD : L
0
=]R"B]RPB]R]M0N is the identity. Let

N-< and g : NPB]R][0, 1] be as in De"nition 8.4. De"ne fI :NP=]R to be the composi-
tion

fI : N g
P B]R][0,1] h

~1

P=]R.

Form the teardrop=I "<X
fI
=. The pair (=I ,=) is homotopically strati"ed with "nitely domin-

ated local holinks and =I is a locally compact separable metric space by Corollary 4.10. Let
L
i
=I "L

i
<X

g@
B]MiN for i"0, 1 which clearly are disjoint closed subsets of =I , and L

0
=I "X.
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Note that=I C="< is a manifold with boundary L
0
<XL

1
< as required. In order to show that

L
i
=I is a stratum preserving strong deformation retract of=I for i"0, 1, one can use the fact that

L
i
< is a strong deformation retract of < together with the homotopy extension theorem, to show

that it su$ces to de"ne stratum preserving strong deformation retractions on NX
fI
=. We

concentrate on the i"0 case since the i"1 case is similar. Since L
0
=6= is a homotopy

equivalence, there exists a strong deformation retraction r :=]IP= of = to L
0
= (thus,

r
0
"id

W
, r

1
(=)-L

0
= and r

t
DL

0
= equals the inclusion for t3I). Since fI :NP=]R is an

approximate "bration, there exists a homotopy r8 :N]IPN such that

(1) r8
0
"id

N
,

(2) r8
t
DL

0
N" inclusion for each t3I,

(3) r8
1
(N)-L

0
N,

(4) if (x, s)3fI~1(=][k,#R))-N and k"1, 2, 3,2, then for each t3I

d( fI r8 (x, s, t),r( fI (x, s), t))(1/k.

(This comes from approximately lifting the homotopy r with very good control near=]M#RN.
To get condition (3), "rst get a homotopy as above that pulls N close to L

0
N, in fact, so close that an

additional push along a collar will not destroy the estimates in condition (4).) De"ne
R : NX

fI
=]IP=I by requiring RD=]I"r and RDN]I"r8 . The continuity of R follows from

Lemma 3.4. h

Corollary 8.7 (h-cobordism extension). If (=; L
0
=,L

1
=) is an h-cobordism with L

0
="B, then

there exists a stratixed h-cobordism (=I ; L
0
=I , L

1
=I ) with L

0
=I "B extending =.

Proof. This follows immediately from Theorem 8.6. h

Remark 8.8. (i) Quinn [30, 1.8] gives an h-cobordism theorem for strati"ed spaces. He shows that if
a suitable torsion vanishes the h-cobordism is a product, but does not prove there is a realization
theorem for torsions (cf. [30, p. 498]). The realization for Wh501(X relB) (the set of equivalence
classes of h-cobordisms on X rel B) is a natural extension of the realization of elements of
Siebenmann's proper Whitehead group Whp(=) for a noncompact manifold= with a tame end
[34]. Indeed the latter is the special case of the former obtained by one point compactifying= (see
the picture on p. 132 of [37]). What is missing from [30] then is the proof that
Wh501(X)PWh501(X relB)]Wh(B) is surjective (where Wh501(X) is the set of equivalence classes of
strati"ed h-cobordisms on X). Theorem 8.6 completes the missing step. Connolly and Vajiac have
recently obtained related results.

(ii) We suspect that there is a "bration of h-cobordism spaces whose "bration sequence at
n
0

contains this discusion. We hope to return to this, as well as a discussion of strati"ed
h-cobordisms on manifold strati"ed spaces with more than two strata, in a later paper.

(iii) Jones [23] proved a concordance extension theorem for locally #at submanifolds of
topological manifolds of dimension greater than four. His proof uses manifold approximate
"bration techniques which also work for a manifold strati"ed pair (X,B) with dim X*5 such that
B has a mapping cylinder neighborhood in X. It seems likely that his techniques extend to arbitrary
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(high dimensional) manifold strati"ed pairs. At any rate, his work is further evidence for a moduli
space interpretation of the results of this section.
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