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Abstract
Several viruses with different replication mechanisms contribute to oncogenesis by both direct and indirect mechanisms in

immunosuppressed subjects after solid organ transplantation, after allogeneic stem cell transplantation, or with human immunodeficiency

virus (HIV) infection. Epstein–Barr virus (EBV), human papillomavirus (HPV), Kaposi sarcoma herpesvirus (KSHV), human T-cell

lymphotropic virus type 1 (HTLV-1) and Merkel cell polyoma virus (MCV) are the main viruses associated with the development of

cancer in immunosuppressed patients. Besides being a main cause of immunodeficiency, HIV1 has a direct pro-oncogenic effect. In this

review, we provide an update on the association between the condition of acquired immunodeficiency and cancer risk, specifically

addressing the contributions to oncogenesis of HPV, MCV, KSHV, HTLV-1, and EBV.
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Introduction
A large number of viruses have oncogenic potential in animals,
but for only some of them has a clear association with the

development of tumours in humans been demonstrated. It has
been proposed that these viruses can contribute to carcino-

genesis in humans by direct and/or indirect mechanisms: in one
case, the virus is able to induce the expression of specific
oncogenic protein(s) that then play a direct role in cell trans-

formation; alternatively, the transformation is associated indi-
rectly with the virus-induced chronic infection and

inflammation. However, in several circumstances, it is not
possible to precisely define whether the cancer development is

the result of a direct or an indirect mechanism (e.g. in the case
of hepatitis B virus (HBV), hepatitis C virus (HCV), or human T-

cell lymphotropic virus type 1 (HTLV-I)) [1], and, more
importantly, it is difficult to distinguish between the ‘pro-
oncogenic’ immune/inflammatory mechanisms and the benign
Clinical Microbiology and Infection © 2015 European Society of C
‘anti-oncogenic’ mechanism of immunity [2]. Indeed, it is known

that several viruses with different replication mechanisms
contribute to oncogenesis in immunosuppressed subjects, both

directly and indirectly. Among them, the main viruses are as
follows: Epstein–Barr virus (EBV), HBV, HCV, human papillo-

mavirus (HPV), Kaposi sarcoma herpesvirus (KSHV), HTLV-1,
and Merkel cell polyoma virus (MCV). Besides being a main
cause of immunodeficiency, human immunodeficiency virus

(HIV) type 1 has a direct pro-oncogenic effect. In the limited
space allowed for this minireview, we try to provide an update

on the association between the condition of acquired immu-
nodeficiency and cancer risk, specifically addressing the con-

tributions to oncogenesis of HPV, MCV, human herpesvirus-8
(HHV-8)/KSHV, HTLV-1, and EBV (Table 1); HBV and HCV are

addressed in a different article in this themed section.
EBV
In 1997, EBV was the first virus recognized to be a human

carcinogen by the International Agency for Cancer Research
(IARC) [3]; according to unadjusted estimates, approximately

3.7 million individuals developed EBV-associated cancers [4]. In
2009, the IARC confirmed this classification, given that
Clin Microbiol Infect 2015; 21: 975–983
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TABLE 1. Human viruses in immunodeficiency-associated cancer (see text for details); primary immunodeficiencies were not

considered

Settings Association with viral infections (virus) Level of evidence

Transplantation Post-transplant lymphoproliferative disease
Diffuse large B-cell lymphoma (EBV)

Strong

Kaposi sarcoma (HHV-8) Strong
Non-melanoma skin cancer (HPV) Strong
Non-melanoma skin cancer (MCV) Moderate

AIDS AIDS-related lymphoma:
Burkitt lymphoma (EBV) Strong
Diffuse large B-cell lymphoma (EBV) Strong
Hodgkin lymphoma (EBV) Moderate
Primary effusion lymphoma (HHV-8+/EBV±) Strong
Multicentric Castleman disease Strong

Adult T-cell leukaemia/lymphoma HTLV-1 Strong
Cervical cancer HPV Strong
Anal cancer HPV Strong
Oropharyngeal cancer HPV Moderate

EBV, Epstein–Barr virus; HHV-8, human herpesvirus-8; HPV, human papillomavirus; HTLV-1, human T-cell lymphotropic virus type 1; MCV, Merkel cell polyoma virus.
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sufficient evidence for a causative role of EBV in nasopharyngeal

cancer, endemic Burkitt’s lymphoma (BL), immunosuppression-
related non-Hodgkin lymphoma (NHL), extranodal natural
killer/T-cell lymphoma (nasal type) and a subset of Hodgkin

lymphoma (HL) was found [5].
In individuals with HIV, the incidence of NHL declined from

approximately 100-fold to ten-fold higher than in the normal
population during the antiretroviral therapy (ART) era [5,6].

The most frequent subtypes of NHL are BL and diffuse large B-
cell lymphoma, and they may be either systemic or extranodal,

like primary central nervous system lymphoma (reviewed in
Pinzone et al. [7]). The incidence of NHL is approximately ten-

fold higher in patients with more severe immunodeficiency than
in patients with early stages of HIV infection [8]. Risk factors for
HIV-associated lymphoma, other than the immunodeficiency,

comprise biological markers of B-cell activation such as CD23,
CD27, CD30, or CXCL13 [9], and prolonged periods of high-

level HIV viraemia [10].
The post-transplant lymphoproliferative disorders (PTLDs)

are lymphoid or plasmocytic life-threatening proliferations
arising in the context of profound immunosuppression

induced after solid organ or allogeneic stem cell trans-
plantation (SCT). The incidence of PTLD is approximately
eight-fold higher than in the general population [11,12]. It is

particularly higher in children than in adults after solid organ
transplantation, ranging from 1% to 20%, mainly after com-

bined heart and lung transplantation; after SCT, the incidence
ranges between 0.5% and 17% (reviewed in Quinlan et al. [13]

and Nourse et al. [14]). The incidence of PTLD is bimodally
distributed, with early (up to the first year after trans-

plantation) and late peaks; risk factors and the frequency of
EBV association differ between early and late PTLD, suggesting

different mechanisms of lymphomagenesis [13]. Risk factors
for PTLD include T-cell depletion, the use of antithymocyte
globulin, acute and chronic graft-versus-host disease, patient
Clinical Microbiology and Infection © 2015 European Society of Clinical Microbiology and Infect
age of >50 years, and the EBV serostatus of the donor (D) and

recipient (R), D+/R– individuals being at higher risk [14,15].
HL, mainly the mixed cellularity and lymphocyte-depleted
subtypes, is approximately ten-fold more frequent in in-

dividuals with HIV infection than in the general population
[16]. The frequency of HL in the ART era has only slightly

decreased [6]; however, a recent cohort study showed a slow
but steady decline (approximately 20% per year of ART) of the

incidence of HL in individuals with HIV infection after pro-
longed use of ART [17]. In transplant recipients, the incidence

of HL is increased up to four-fold [11,12]. Risk factors for
post-transplant HL are male gender, young age, and EBV

seronegativity at the time of transplantation [18].
During latent infection in B-cells, the pattern of EBV gene

expression might be heterogeneous, and three patterns of la-

tency (I, II, and III) are known (reviewed in Cesarman [19]). Se-
vere immunosuppression and dependence on EBV (the degree to

which lymphoma cells depend on EBV correlates directly with
the number of viral genes expressed within the tumor cells)

which give rise to cancers are associated with higher latency
patterns [20]. Latency pattern III involves the expression of nu-

clear proteins (EBV nuclear antigen (EBNA)-1, EBNA-2, EBNA-
3A, EBNA-3B, EBNA-3C, and EBNA-LP), non-structural mem-
brane proteins (latent membrane protein (LMP)-1, LMP-2A, and

LMP-2B), and untranslated RNAs (EBV-encoded small RNA
(EBER)-1 and EBER-2). The infected B-cells, with latency pattern

III, are susceptible to immune-mediated killing by EBV-specific
cytotoxic T-lymphocytes (CTLs). After transplantation in the

absence of CTLs, latency pattern III leads to the virus-driven
transformation of EBV-infected B-cells, causing a polyclonal or

oligoclonal lymphoproliferative disorder that can progress to
monoclonal lymphoma with increased levels of circulating EBV

DNA (reviewed in Nourse et al. [14]). PTLD is highly amenable
to immunotherapy with ex vivo generation of autologous or
allogeneic EBV-specific CTLs.
ious Diseases. Published by Elsevier Ltd. All rights reserved, CMI, 21, 975–983
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In AIDS-associated NHL, viral gene expression is variable,

but the transforming EBV protein LMP, which has a crucial role
in the transformation of B-cells, is frequently expressed

(reviewed in Cesarman [19]). In AIDS/BL, EBV is found in
30–60% of cases, and adopts latency pattern I, expressing only

EBNA-1 and EBER [19]. In HL, the malignant B-cell adopts la-
tency pattern II, called the default programme, and expresses
the transforming LMP-1 protein, as well as EBNA-1 and LMP-2

(reviewed in Cesarman [19]). Very recently, Arvey et al. [21],
by using total RNA-sequencing technology (transcriptome

sequencing) and the PathSeq analysis pipeline, found no virus
other than EBV in patients with AIDS-related lymphomas

treated with ART. Furthermore, a highly heterogeneous
pattern of viral transcription was found, with many cancer

samples showing the restricted type I viral latency, suggesting
that EBV latency proteins are under high immunosurveillance
[21].

EBV leads to the extensive methylation of both the host
genome and the viral genome, and these changes facilitate

cellular functions that promote viral persistence and propaga-
tion [22].

Recent evidence indicates that EBV is able to shape the
microenvironment, making it more amenable to cell trans-

formation. EBV regulates the production of soluble factors
promoting the growth and/or the survival of lymphoid cells, and

acts on a variety of mechanisms favouring escape from anti-
cancer immune responses. In addition, EBV-infected B-lym-
phocytes actively secrete exosomes, which may contribute to

the development and progression of tumour [23].
HHV-8/KSHV
The IARC classified HHV-8 as a group I carcinogen [16], based

on data obtained from many cohort and case–control studies
that showed a sufficient association between HHV-8 and

Kaposi’s sarcoma (KS) and primary effusion lymphoma (PEL);
HHV-8 has been also associated with multicentric Castleman’s

disease (MCD), but with less evidence than for KS and PEL [16].
Most of this evidence has been obtained from studies per-

formed on patients with long-term immunodeficiency, such as
individuals with HIV infection and patients receiving solid organ
transplants [11].

The occurrence of KS, a multicentric angioproliferative
spindle cell tumour arising from HHV-8-infected endothelial

cells, is increased up to 2000-fold in individuals with HIV
infection, and it is related to the severity of the HIV-induced

immunodeficiency, being 10–50-fold higher in patients with
severe immunodeficiency than in those with HIV infection in

the early stages [6]. The incidence of KS in patients with HIV
Clinical Microbiology and Infection © 2015 European Society of Clinical Microbiology
receiving highly active ART has dramatically decreased

(approximately 30% per year between 1996 and 2000, and 8%
per year after 2000 [6]), but remains higher than in the general

population [6]. Currently, KS can be diagnosed in individuals
who are unaware of having HIV infection, in patients who have

not yet received ART, and in patients during the first 6 months
of ART (immune reconstitution) [24]. Iatrogenic KS occurs in
patients treated with immunosuppressive drugs, such as

cyclosporine, azathioprine, corticosteroids, and rituximab,
most of whom are recipients of solid organ transplants [25].

The use of sirolimus, a mammalian target of rapomycin (mTOR)
inhibitor, has been associated with regression of KS, suggesting

a possible oncogenic effect of other immunosuppressive drugs
[26]. The risk of KS in organ transplant recipients is increased

up to 200-fold as compared with to general population [12]. In
contrast, the occurrence of KS or other HHV-8-related ma-
lignancies such as PEL or MCD is exceptional in allogeneic SCT

patients, and the reasons for this are still elusive [27]. Post-
transplantation KS is usually induced by HHV-8 reactivation,

and a few cases are derived from primary HHV-8 infection
acquired from the donor organ (reviewed in Lebbe et al. [28]),

with a higher risk of developing KS within the first 2 years after
transplantation [28].

Two other forms of KS have been described: classic KS,
which usually occurs in elderly people living in the Mediterra-

nean area, and endemic KS, HIV unrelated, which affects people
from sub-Saharan Africa. Detection of replicating HHV-8 in
peripheral blood has been shown to be a stronger predictor of

KS development [29]; however, cases of high and persistent
HHV-8 replication in the absence of KS or any other HHV-8-

associated neoplastic diseases have rarely been reported in
SCT patients [30].

PEL is a rare, aggressive form of B-cell lymphoma, repre-
senting 1–4% of all AIDS-related lymphomas [31]. PEL occurs

mainly in HIV-infected individuals, and it is occasionally diag-
nosed after solid organ transplantation (reviewed in Powles
et al. [33]). PEL is composed of malignant, latently infected B-

cells that affect pericardial, peritoneal and pleural body cavities
(reviewed in Bhutani et al. [31] and Christenson et al. [32]). PEL

is a monoclonal population of B-cells, and each tumour cell
contains a high HHV-8 copy number, from 50 to 100 genomes

per cell [31,32]. HHV-8 is universally associated with PEL, and
in 70–80% of cases the lymphoma cells have coexisting latent

infection with EBV, which adopts non-transforming EBV latency
pattern I [31,32].

MCD is a disease of lymph nodes, and the plasmablastic
variant has been associated with HHV-8 infection. HHV-8-
associated MCD is usually observed in the setting of HIV

infection, and rarely in non-HIV-infected immunocompromised
patients (Bhutani et al. [31]). In contrast to KS, HHV-8-
and Infectious Diseases. Published by Elsevier Ltd. All rights reserved, CMI, 21, 975–983
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associated MCD appears to be more frequent in the ART era

[33], suggesting that, in MCD, altered immune responses and
high levels of proinflammatory cytokines could represent

relatively preserved immune functions. HHV-8 is observed in
almost HIV-positive MCD cases, whereas HHV-8 is observed in

<40% of HIV-negative cases. Concomitant KS is detectable in
up to 70% of patients [31]. MCD is characterized by an
abnormal, polyclonal IgMλ proliferation, and rare cases of

monoclonal B-cell expansion have been observed. In HHV-8-
positive MCD, expression of the viral interleukin (IL)-6 cyto-

kine probably exacerbates inflammation and disease progres-
sion. Recently, a KSHV inflammatory cytokine syndrome,

characterized by inflammatory symptoms, elevated cellular and
viral cytokine levels, and high HHV-8 load, has been reported

[31].
HHV-8 infects cells of the endothelial lineage, monocytes,

and B-cells [33,34]. A characteristic of this virus is the

expression of viral homologues of human regulatory proteins
such as IL-6, BCL-2, and cyclin D (reviewed in Gramolelli and

Schulz [34]). The HHV-8 genome encodes many proteins,
several of which have immunological and angiogenic properties

[34]. HHV-8 genome circularizes to form a closed extra-
chromosomal episome, which maintains its replication during

host cell division. Recently, chromatin assembly, epigenetic
modifications and factors acting on chromatin structures have

been recognized to interact with the latent state cycle and
mediate HHV-8 pathogenesis [35]; it is not known whether
epigenetic modifications correlate with cancer development.

HHV-8 latent transcripts, such as latency-associated nuclear
antigen, viral cyclin, viral FLIP, and virus-encoded microRNA,

drive cell proliferation and prevent apoptosis, and are mainly
expressed in B-cells and in neoplastic KS spindle cells [19,34].

HHV-8 lytic proteins, such as viral G-protein-coupled receptor,
K1 and viral-encoded cytokines (IL-6 and chemokines), further

contribute to the development of angioproliferative and in-
flammatory KS lesions [19,34,36]. HHV-8 lytic genes include
those encoding viral IL-6, viral BCL-2, viral macrophage in-

flammatory protein (MIP), viral-G-protein coupled receptor,
and viral interferon regulatory factor [19,34,36]. Lytic infection

occurs in <3% of KS cells, and is more frequent in MCD
[19,34,35].
HTLV-1
HTLV-1 is an oncogenic retrovirus that has spread to many
parts of the world, particularly in the tropics and subtropics

(reviewed in Verdonck et al. [37], Ishitsuka and Tamura [38],
and Gessain and Cassar [39]). It has been shown that, in some

areas in Japan, sub-Saharan Africa, the Caribbean, and South
Clinical Microbiology and Infection © 2015 European Society of Clinical Microbiology and Infect
America, >1% of the general population is infected with HTLV-

1. The most recent estimate of the prevalence of HTLV-1 is
5–20 million persons worldwide [37–39]. In endemic areas,

HTLV-1 is transmitted from mother to child (20% transmission
rate) through prolonged breast-feeding, and also depending on

HTLV-1 load. Transfusion of blood products containing HTLV-
1 is the most efficient mode of transmission (15–60% risk of
infection). However, other routes of spread of the virus, such

as unprotected sex, intravenous drug use, and solid organ
transplantation, have been reported [39,40].

HTLV-1 does not cause any disease in >90% of the carriers,
but establishes latent infection in lymphocytes, which leads to

lifelong persistence in the host. In approximately 10% of
infected patients, HTLV-1 is associated with severe diseases,

such as neoplastic diseases (adult T-cell leukaemia/lymphoma
(ATL)), inflammatory syndromes (HTLV-1-associated myelop-
athy/tropical spastic paraparesis), and opportunistic infections

(e.g. Strongyloides stercoralis hyperinfection) [37–39].
HTLV-1 integrates into host DNA, but it is not clear

whether it integrates into CD4+ or haematopoietic stem cells;
subsequently, HTLV-1 establishes a persistent infection, usually

characterized by a high proviral load (even >5% of peripheral
blood mononuclear cells are infected), despite a chronic and

strong activated cellular immune response (CD8+ cytotoxic T-
lymphocytes) (reviewed in Matsuoka and Jeang [40] and Cook

et al. [41]). The HTLV-I genome encodes structural proteins,
i.e. Gag, Pol, Pro, and Env, and complex regulatory proteins,
such as Tax, Rex, HBZ, p12, p21, p13, and p30, encoded in the

pX region of the genome. The oncogenic function of Tax lies in
its ability to induce viral replication to increase genetic insta-

bility, to activate nuclear factor-κB and Akt signalling, and
cyclin-dependent kinases, and to silence p53 function (reviewed

in Verdonck et al. [37], Ishitsuka and Tamura [38], Cook et al.
[41], and Ghezeldasht et al. [42]). Furthermore, Tax has a

relevant role in the early phase of oncogenesis of ATL,
immortalizing T-lymphocytes in vitro [43] and inducing mesen-
chymal tumours in transgenic mice [44], whereas HTLV-1 basic

Zip factor plays a central role during all phases of oncogenesis
of ATL, being involved in viral replication and T-cell prolifera-

tion [45]. HTLV-1 DNA provirus is clonally integrated into the
DNA of ATL cells, and issues regarding the control of HTLV-1-

infected T-cell clones in vivo are not yet resolved: antigen
specificity, epigenetic modifications and genomic site of inte-

gration of the HTLV-1 provirus are believed to be relevant
(reviewed in Bangham et al. [46]).

ATL is a malignancy of mature T-lymphocytes, with a het-
erogeneous clinical course. A peripheral T-cell lymphoma-
unspecified with similar genomic alterations to lymphoma

ATL has been reported, being characterized by the expression
of CC chemochine receptor 4 (CXCR4), which is a
ious Diseases. Published by Elsevier Ltd. All rights reserved, CMI, 21, 975–983
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characteristics of ATL cells [47]. HTLV-1 has been associated

with ATL, but not with other haematological malignancies such
as acute lymphatic leukaemia, chronic lymphatic leukaemia, and

chronic myeloid leukaemia [48]. Risk factors for the develop-
ment of ATL in HTLV-1 carriers are high proviral load,

advanced age, receipt of breast-feeding, family history of ATL,
and having human leukocyte antigen alleles A26, B4002, B4006,
and B4801 (reviewed in Verdonck et al. [37], Ishitsuka and

Tamura [38], Gessain and Cassar [39], and Iwanaga et al. [49]).
Whether ATL is more frequent in the immunosuppressed

than in the immunocompetent population has not been evalu-
ated systematically. The effect of immunosuppression on the

natural history of HTLV-1 is not well defined, as cases of ATL
have been reported sporadically after transplantation [50–54].

The occurrence of post-transplant ATL suggests that HTLV-1-
infected transplant (liver and renal) recipients who receive
long-term immunosuppressive treatment may develop rapidly

and aggressive forms of ATL, even if the overall survival is
similar between HTLV-1-positive and HTLV-1-negative trans-

plant recipients [50,51,53]. Given the importance of deter-
mining the safety of organ transplantation in HTLV-1-positive

recipients, it is recommended to perform regular monitoring to
diagnose ATL early [54].
HPV and cancers in immunosuppressed hosts
HPV is a small double-stranded DNA virus that infects epithelial
tissues. Mucosal HPV genotypes are classified into low-risk

types causing benign lesions, and high-risk types associated
with anogenital squamous cell carcinoma (SCC) [55]; 12 high-

risk HPVs are classified as type 1 carcinogens by the IARC
[5]. Individuals with a depressed immune system are at an
increased risk of developing HPV-associated malignancies in the

anogenital and head and neck regions [56].
Cutaneous HPV genotypes progress into skin SCCs essen-

tially in individuals with genetic defects, including those of the
syndrome known as epidermodysplasia verruciformis (EV);

HPV5 and HPV8 were classified by the IARC as possibly
carcinogenic (type 2B) in EV patients [5]. Individuals with other

primary immunodeficiencies and chronically immunosup-
pressed patients also frequently develop precancerous actinic
keratoses and skin SCC [57].

HPV-associated cervical cancer
Mucosal HPV infection and associated diseases are more

common and more likely to persist in HIV-positive than in HIV-
negative individuals [58] and in transplanted patients [11]. The

risk of anogenital SCC caused by high-risk HPVs is substantial,
owing to the impact of cell-mediated immunity on HPV
Clinical Microbiology and Infection © 2015 European Society of Clinical Microbiology
infection clearance and on tumour surveillance. Since 1993,

SCC of the cervix has been considered to be an AIDS-defining
cancer according to the CDC classification, owing to the

frequent occurrence, estimated to be five times greater [59],
among female AIDS patients. At the beginning of the ART era,

when the incidence rates of the other AIDS-defining cancers
(KS and NHL) were decreasing, owing to the better control of
HIV replication and immune reconstitution, the incidence of

cervical cancer was not influenced or even increased [59,60].
More recently, large cohort studies have shown a limited but

constant trend for cervical cancer reduction among HIV-
positive women, either treated or untreated [61–63]. Never-

theless, high-risk HPV positivity rates, persistence of infections,
progression to high-grade lesions and cervical cancer risk are

still elevated in HIV-positive women. Reasons for this are the
common sexual risk factors for HIV and HPV transmission, the
fact that HPV increases the efficiency of HIV sexual acquisition,

and the impact of immunosuppression on HPV persistence. A
complementary explanation for the elevated prevalence of HPV

disease in immunosuppressed patients came from studies in
animal models [58,64,65]. Given the ability of HPV DNA to

persist in the long term in the absence of disease, mucosal
immune dysfunction may cause latent HPV reactivation at local

sites, despite general immune reconstitution in the patient
[64,65]. Findings in HIV-positive patients [66], in older women

[67] and in transplant patients [68] are in keeping with this
hypothesis. In transplant patients with a lower rate of at-risk
sexual behaviours, increased rates of HPV infection and high-

grade lesions were recently reported [68], in contrast to pre-
vious studies.

Therefore, even in the absence of clinically evident lesions
and of novel infections, undetected persistence and reactivation

of past high-risk HPV infections would represent an additional
risk in immunosuppressed women. Nonetheless, the direct

effect of immunosuppression on invasive cancer risk is still
debated [69–71]. Recent studies have suggested that there is
no increased risk of SCC in HIV-positive women when

adherence to the strict cervical cancer screening programmes
is complete [72]. Accordingly, there is a need for improved

awareness of the importance of cervical cancer screening,
which is still partial in HIV-positive women [72], and probably

even lower in female transplant patients.

HPV-associated anal cancer
HPV infection has also been strongly associated with the risk for

SCC of the anal canal, which is relatively low in the general
population but is substantially elevated for HIV-infected pa-

tients, especially men who have sex with men [73]. Anal car-
cinoma has been included in the non-AIDS-defining cancers,

which cumulatively still represent a leading cause of death
and Infectious Diseases. Published by Elsevier Ltd. All rights reserved, CMI, 21, 975–983
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among virologically suppressed individuals with high CD4+ cell

counts [74]. After initially increasing at the beginning of the
ART era, anal cancer rates remained steady, with no trend for a

decline in the recent period [62,75,76].
Anal HPV infection is common among HIV-positive in-

dividuals, and reaches prevalence rates as high as 90–95% in
HIV-positive men who have sex with men [77]. Most precan-
cerous HPV-associated anal lesions are asymptomatic but have

a clear potential to progress to SCC; anal cancer precursors
should be detected by digital anorectal examination and high-

resolution anoscopy, during controlled follow-up visits [77].
Early ART initiation may reduce non-AIDS-defining cancer risk

by reducing HIV replication, improving immune function, and
limiting chronic inflammation [78,79]; moreover, a direct anti-

neoplastic effect of certain nucleoside and non-nucleoside in-
hibitors of HIV reverse transcriptase and protease inhibitors (in
particular nelfinavir) has been suggested [80]. On the other

hand, particular ART regimens containing protease inhibitors
have been associated with increased cancer risk, as they affect

the cytochrome P450 enzyme system [81].

HPV-associated oropharyngeal cancer
Immunosuppression probably plays a role during the carcino-
genesis process of the head and neck region, but its contribu-
tion is less clear, owing to the heterogeneous origins of these

tumours. HPV has been recognized to be the cause of 40–80%
of oropharyngeal SCCs, whose incidence has significantly

increased in the last decade [56]. HPV-positive SCCs arise
mostly in the tonsils and the base of the tongue, and have a

different clinical, histological and molecular profile, and a
significantly better prognosis [56]. HPV-positive oropharyngeal

SCC is caused by oral HPV16 infection in 85% of cases, in
contrast to the 60% found in cervical cancer. In HIV-positive

individuals, the standardized incidence ratio for invasive
oropharyngeal SCC was 1.6 (95% CI 1.2–2.1), the lowest value
among all HPV-associated SCCs [59,61] (Table 1). The high

burden of oral infections in HIV-positive individuals [82] sug-
gests that oral subclinical HPV infections, especially those with

high viral loads [83], cause an excess risk of precancerous
changes in the oropharynx.

HPV-associated skin tumours
A role for HPV in human skin carcinogenesis was suggested
earlier than for HPV in cervical cancer, because of the obser-

vation of verrucous lesions in EV patients developing in cuta-
neous SCC [84]. Cutaneous HPV types, most of which are

included in the beta genus, are widely present in the skin of
normal individuals, induce skin warts more frequently in

immunosuppressed patients, and cause severe generalized
verrucosis in certain primary immunodeficiencies [85], resulting
Clinical Microbiology and Infection © 2015 European Society of Clinical Microbiology and Infect
in a 50–100-fold increased risk of developing skin cancer [86].

Different transforming mechanisms are employed by beta HPV
than by mucosal high-risk HPV (reviewed in Howley and Pfister

[86]): UV radiation and impairment of immune surveillance are
essential cofactors; beta HPV E6 and E7 are less efficient than

alpha HPV E6 and E7 in exerting tumour-promoting activities;
beta HPV E6 is able to inhibit tumour-suppressive Notch
pathway signalling; and HPV DNA is not necessary in the final

stages of tumour development and, when present, is generally
not integrated.

The fundamental role of the immune response in beta HPV
carcinogenesis has to be further emphasized in the light of

recent reports. Mutations in the genes called EVER1 and EVER2
are the major genetic defects in EV patients [87], conferring

increased susceptibility to infection with beta HPVs. Initially
found only in keratinocytes, in which they control zinc levels,
EVER1 and EVER2 proteins seem to be involved in exogenous

DNA sensing and the response to different viruses in immune
cells [88].

In the rare autosomal dominant immunodeficiency named
warts, hypogammaglobulinaemia, infections, and myelokathexis

(WHIM), HPV-related disease is the predominant recurrent
disease [89]. WHIM syndrome is caused by dominant hetero-

zygous mutations in the chemokine receptor CXCR4 that
impair desensitization to ligand stimulation, thus causing

CXCR4 upregulation, ultimately resulting in myeloid hyper-
cellularity and neutropenia [89]. HPV16 and HPV18 upregulate
CXCR4 and its ligand CXCL12, in order to immortalize kera-

tinocytes [90], and this could partly explain the elevated HPV
infection and lesion progression rates in WHIM.

As seen in iatrogenic KS, immunosuppressive therapy with
calcineurin inhibitors (e.g. cyclosporine A and tacrolimus) is

associated with post-transplant oncogenicity. Calcineurin in-
hibitors directly promote keratinocyte transformation and

skin carcinogenesis via inhibitory effects on tumour-
suppressive genes that permit upregulation of proin-
flammatory and mitogenic pathways [91]. Greater use of

mTOR inhibitors in post-transplant immunosuppression pro-
tocols could help to reduce the risk of cutaneous SCC

development [91].
Merkel cell carcinoma
Merkel cell carcinoma (MCC) is one of the most aggressive skin

cancers; although relatively infrequent in the general population,
it is the second most common cause of skin cancer death after

melanoma [92]. A novel polyomavirus, named MCV, was identi-
fied in 2008 [93] as being clonally integrated into MCC cells.

Further studies indicated that most MCCs are associated with a
ious Diseases. Published by Elsevier Ltd. All rights reserved, CMI, 21, 975–983
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deleted MCV genome, causing virus replication to be incompe-

tent; MCV was recently classified as a 2A carcinogen [94].
Immunosuppression increases the risk of MCC, and appears to be

associatedwith a worse prognosis [95]. For the first time among a
large, population-based cohort, the occurrence of MCC was

recently evaluated among US transplant recipients [96]. The main
finding of the study was the sharply elevated risk resulting from
long-term immunosuppressive regimens, mainly cyclosporine/

azathioprine, but also mTOR inhibitors [96], that, conversely,
decreased the risk of HPV-associated cutaneous SCC [91].

Although less elevated than in iatrogenic immune suppres-
sion, the risk of developing MCC and of having a worse clinical

course is also elevated in patients with HIV/AIDS [95].
In these patients, MCC tumours do not arise only in the

typical sun-exposed areas, indicating that UV exposure may not
be an essential cofactor [95]. Moreover, in HIV-positive in-
dividuals, MCV DNA has been detected on the skin, on the oral

and anogenital mucosa, and in plucked eyebrow hairs, and
significantly higher cutaneous MCV DNA loads were found in

those with severe immunosuppression [97].

Final considerations
This review has dealt with viruses that, directly or indirectly,
are associated with cancer development in humans. The whole
article is premised on the certainty that acquired immunode-

ficiency in humans is associated with increased cancer risk, thus
indirectly validating the indication that virus-associated cancer

immunosurveillance does exist.
Continuous epidemiological surveillance is therefore neces-

sary to monitor the rates of infectious causes of cancer among
immunosuppressed individuals, and to better understand the

impact of specific medications (e.g. early ART initiation or
adjuvant therapies) on the excess risk in this population.

It is our firm opinion that, for the above reasons, the role of
preventive measures (i.e. screening programmes and/or vacci-
nation) in reducing cancer risk and of virological characteriza-

tion in determining specific therapies deserve further
investigation.
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