DISCRETE MATHEMATICS

A note on packing of three forests

Jean-François Saclé ${ }^{\text {a }}$, Mariusz Woźniak ${ }^{\text {b,* }}$
${ }^{a}$ L.R.I., U.A. 410 C.N.R.S., Bât. 490, Université de Paris-Sud, 91405 Orsay Cedex, France
${ }^{\mathrm{b}}$ Instytut Matematyki A G H, Al. Mickiewicza 30, 30-059 Kraków, Poland

Received 20 January 1995; revised 26 October 1995

Abstract

We present the complete result concerning the packing (i.e. the edge-disjoint placement) of three forests into the complete graph K_{n}

1. Terminology

We shall use standard graph theory notation. A finite, undirected graph G consists of a vertex set $V(G)$ and edge set $E(G)$. All graphs will be assumed to have neither loops nor multiple edges. If we sort the degrees of the vertices of G in non-decreasing order, $d_{1} \leqslant d_{2} \leqslant \cdots \leqslant d_{n}$, we denote the maximum degree d_{n} by $\Delta(G)$, the minimum d_{1} by $\delta(G)$ and d_{2} by $\delta^{\prime}(G)$. We denote by $G \backslash e$ any graph obtained by removing one edge from G.

For graphs G and H we denote by $G \cup H$ the vertex disjoint union of graphs G and H and $k G$ stands for the vertex disjoint union of k copies of G. Suppose G_{1}, \ldots, G_{k} are graphs of order n. We say that there is a packing of G_{1}, \ldots, G_{k} (into the complete graph K_{n}) if there exist injections $\alpha_{i}: V\left(G_{i}\right) \rightarrow V\left(K_{n}\right), i=1, \ldots, k$, such that $\alpha_{i}^{*}\left(E\left(G_{i}\right) \cap \alpha_{j}^{*}(E(G))=\emptyset\right.$ for $i \neq j$, where the map $\alpha_{i}^{*}: E\left(G_{i}\right) \rightarrow E\left(K_{n}\right)$ is the one induced by α_{i}. From now on, we shall name packing the couple of functions $\left(\alpha: \bigcup V\left(G_{i}\right) \rightarrow V\left(K_{n}\right), \alpha^{*}: \bigcup E\left(G_{i}\right) \rightarrow E\left(K_{n}\right)\right)$ induced by the $\alpha_{i}, \alpha_{i}^{*}$, and for the sake of brevity, we shall denote the couple by its first element α. We shall also use the notation $\alpha\left(G_{i}\right)$ instead of $\left(\alpha\left(V\left(G_{i}\right)\right), \alpha^{*}\left(E\left(G_{i}\right)\right)\right)$.

A packing of k copies of a graph G will be called a k-placement of G. A packing of two copies of G (i.e. a 2-placement) is an embedding of G (in its complement \bar{G}). So, an embedding of a graph G is a permutation σ on $V(G)$ such that if an edge $x y$ belongs to $E(G)$ then $\sigma(x) \sigma(y)$ does not belong to $E(G)$.

[^0]The main references of this paper and of other packing problems are the last chapter of Bollobás's book [1], the 4th chapter of Yap's book [12] and the survey paper [13].

We shall need some additional definitions in order to formulate the results. Recall that S_{n}, P_{n}, respectively, denote the star, the path on n vertices. Let S_{n}^{\prime} be the graph obtained by subdividing one of the edges of S_{n-1}. By analogy, denote by $S_{n}^{\prime \prime}$ the tree obtained by replacing one of the edges of S_{n-2} by a path of length 3 and by $S_{n}^{\prime \prime \prime}$ the tree obtained by replacing one of the edges of S_{n-3} by a path of length 4 .

In a graph G a vertex of degree one will be called an end-vertex or a pendant vertex. A pendant vertex in a tree is also called a leaf. An edge incident with an end-vertex is an end-edge or a pendant edge. If the tree is not P_{2}, the other extremity of a pendant edge is not an end-vertex, and we shall call it a knot of the tree.

The number of independent end-edges in a tree plays an important role in packing problems. Each non-star tree of order $\geqslant 4$ has at least two knots. The trees having exactly two knots are called star-path-stars. More precisely, the star-path-stars are the trees obtained from a path $a_{0} a_{1} \ldots a_{r}, r \geqslant 1$, by adding $q \geqslant 1$ edges $a_{r} y_{i}, 1 \leqslant i \leqslant q$, incident to one extremity of the path, and $p \geqslant \min \{q, 2\}$ other edges $a_{0} z_{j}, 1 \leqslant j \leqslant p$, incident to the other extremity (with, obviously, $p+q+r=n-1$). We use for such a tree if $q \geqslant 2$ the notation $S_{n}^{r}(p, q)$, omitting the parameters p and q in the cases $n=6,7$ where there is only one possibility (so $S_{6}^{1}=S_{6}^{1}(2,2)$ and $S_{7}^{1}=S_{7}^{1}(3,2)$). In the case when $q=1$ this tree is called also a comet and we shall note it $S_{n}^{(r)}$ (and especially S^{\prime} for $r=1, S^{\prime \prime}$ for $r=2$ and $S^{\prime \prime \prime}$ for $r=3$). The vertices a_{0} and a_{r} will be called the knots of the star-path-star, a_{0} being the great knot and a_{r} the small one. In the case of a comet, we often shall say the knot for the vertex a_{0} exclusively, but for the sake of generalization, it will remain possible to say that a_{r} is the other knot (note that its end-neighbor is the effective extremity of the path of the comet). Observe that $S_{6}^{\prime \prime \prime}$ is simply P_{6}, the path of order 6 .

The trees $S_{n}^{1}(p, q)$ are called also double stars.
For $n \geqslant 6$ we denote by X_{n} the tree on n vertices obtained from the star S_{n-2} by replacing two edges, each by a path of length 2 .

By Y_{7} we denote the tree on seven vertices obtained from the star S_{4} by introducing three new vertices on three edges of S_{4}.

Remark. In the notation concerning members of the families of graphs such as trees or forests, the subscript does not denote, in general, the order of the graph.

2. Results

The following theorem was proved by Burns and Schuster in [2].
Theorem 1. Let $G=(V, E)$ be a graph of order n. If $|E(G)| \leqslant n-2$, then G can be embedded in its complement.

This result has been improved in many ways. For instance, Sauer and Spencer proved in [8] the following improvement of Theorem 1.

Theorem 2. Let G and H be two graphs of order n. If $|E(G)| \leqslant n-2$ and $|E(H)| \leqslant n-2$, then G and H are packable.

The example of the star S_{n} shows that neither Theorem 1 nor Theorem 2 can be improved by raising the size of G even in the case when G is a tree. However, in this case we have

Theorem 3. Let T be a tree of order $n, T \neq S_{n}$. Then T is contained in its own complement.

Theorem 3 was first proved by Straight (unpublished, cf. [4]). It is improved by the following theorem (cf. [4]).

Theorem 4. Any two trees of order n, neither of which is a star, can be packed into K_{n}.

The first theorem concerning packing of three trees was probably proved in connection with the following well-known conjecture stated by Gyárfás in [3], which remains open.

Conjecture 5. Let T_{i} denote a tree of order i. The sequence of trees $T_{2}, T_{3}, \ldots, T_{n}$ can be packed into K_{n}.

The above conjecture is sometimes called the Tree Packing Conjecture (TPC). Note that if we add up the sizes of the trees, we obtain the size of the complete graph K_{n}.

Hobbs et al. [5] proved that

Theorem 6. Any three trees of orders $n_{1}<n_{2}<n_{3} \leqslant n$, respectively, can be packed into K_{n}.

Inspired by the above theorem, a similar result has been obtained in [10].

Theorem 7. Any three trees of order $n-1$ can be packed into K_{n}.

The following conjecture of Bollobás and Eldridge [1] is related to Theorems 6 and 7.

Conjecture 8. Let G_{1}, \ldots, G_{k} be k graphs of order n. If $\left|E\left(G_{i}\right)\right| \leqslant n-k, i=1, \ldots, k$, then G_{1}, \ldots, G_{k} are packable into k_{n}.

The following theorem extends Theorem 1 [11].

Theorem 9. Let $G=(V, E)$ be a graph of order $n, G \neq K_{3} \cup 2 K_{1}, G \neq K_{4} \cup 4 K_{1}$. If $|E(G)| \leqslant n-2$, then there exists a 3-placement of G.

Motivated by this result, Wang and Sauer considered the 3-placement of a tree.
Observe now that if there is a 3-placement of a tree T in K_{n} then we have obviously $3(n-1) \leqslant\binom{ n}{2}$ which implies that $n \geqslant 6$. Moreover, since the vertex $v \in V(T)$ such that $d(v)=\Delta(T)$ must be placed with two other vertices of degree at least one, we must assume that $\Delta(T) \leqslant n-3$.

However, these trivial necessary conditions are not sufficient as it is shown by the example of $S_{6}^{\prime \prime}$. This fact was observed by Huang and Rosa in [6].

Wang and Sauer [9] proved the following.
Theorem 10. Let T be a tree of order $n, n \geqslant 6, T \neq S_{n}, T \neq S_{n}^{\prime}$ and $T \neq S_{6}^{\prime \prime}$. Then there exists a 3-placement of T.

The general theorem about the packing of three trees of maximal size was given by Mahéo and the authors in [7].

Theorem 11. If n is an integer with $n \geqslant 6$, one can pack any triple of trees $\mathscr{T}=\left(T_{1}, T_{2}, T_{3}\right)$ of order n and maximum degree at most $n-3$ into K_{n}, except for the following (up to a permutation):

- For any n, the triples $\left(S_{n}^{\prime \prime}, S_{n}^{1}(a, b), T_{n}\right)$ where T_{n} is one of the trees $S_{n}^{1}(p, q)$, $S_{n}^{2}(p, q), S_{n}^{3}(p, q), S_{n}^{\prime \prime}, S_{n}^{\prime \prime \prime}$.
- For any odd $n=2 p+3$, the triple $\left(S_{n}^{\prime \prime}, S_{n}^{2}(p, p), S_{n}^{2}(p, p)\right)$.
- For $n=6$, the triples $\left(S_{6}^{\prime \prime}, S_{6}^{\prime \prime}, S_{6}^{\prime \prime}\right),\left(P_{6}, X_{6}, S_{6}^{1}\right),\left(P_{6}, S_{6}^{1}, S_{6}^{1}\right),\left(X_{6}, X_{6}, S_{6}^{1}\right)$, and $\left(X_{6}, S_{6}^{1}, S_{6}^{1}\right)$.
- For $n=7$, the triple $\left(Y_{7}, S_{7}^{1}, S_{7}^{1}\right)$.

Observe that if we study the packing into the complete graph K_{n}, we can assume that all the graphs we pack are of order n. For, if we pack the graphs of order less than n, we always may add to them some isolated vertices. So, Theorems $6,7,10,11$ can be considered as theorems about the packing of forests.

In this note we present the general case of the packing of three forests, which generalizes all the above results concerning tree-packing. The proof, based mainly on Theorem 11, is given in the next section.

It will be convenient to say that a triple ($F_{1}^{\prime}, F_{2}^{\prime}, F_{3}^{\prime}$) is a subtriple of (F_{1}, F_{2}, F_{3}), if each F_{i}^{\prime} is a (partial) subgraph of F_{i}. We may specify proper subtriple if they are not equal.

Theorem 12. Let $\mathscr{\mathscr { F }}=\left(F_{1}, F_{2}, F_{3}\right)$ be a triple of forests of order n such that the following necessary conditions are satisfied:
(1) $\left|E\left(F_{1}\right)\right|+\left|E\left(F_{2}\right)\right|+\left|E\left(F_{3}\right)\right| \leqslant n(n-1) / 2$.
(2) $\forall i=1,2,3, \Delta\left(F_{i}\right)+\delta\left(F_{i+1}\right)+\delta\left(F_{i+2}\right) \leqslant n-1$ (where the subscripts greater than 3 are taken modulo 3).
(2') If for any $i=1,2,3$ there is equality (with the same convention as in (2)) $\Delta\left(F_{i}\right)+\delta\left(F_{i+1}\right)+\delta\left(F_{i+2}\right)=n-1$, then $\delta\left(F_{i}\right)+\Delta\left(F_{i+1}\right)+\delta^{\prime}\left(F_{i+2}\right)$ and $\delta\left(F_{i}\right)+\delta^{\prime}\left(F_{i+1}\right)+$ $\Delta\left(F_{i+2}\right)$ are both $\leqslant n-1$.
(3) If two forests are isomorphic to $K_{1} \cup S_{n-1}$, the third one has a component of order $\leqslant 2$.

Then there is a packing of these three forests into K_{n}, except, if $n \geqslant 6$, for the following (up to permutation):

- for all integers p and q such that $2 \leqslant p \leqslant n-4,2 \leqslant q \leqslant n-2$, any triple having as subtriple ($S_{n}^{1}(p, n-p-2), K_{2} \cup S_{n-2}, S_{q} \cup S_{n-q}$),
- for n odd, $n=2 p+3$, any triple having as subtriple $\left(S_{n}^{2}(p, p), S_{n}^{2}(p, p), K_{2} \cup S_{n-2}\right)$,
- for $n=6,7$ any other excluded triple of Theorem 11.

Note that the first excluded triples ($S_{n}^{\prime \prime}, S_{n}^{1}(a, b), T_{n}$) of Theorem 11 belong to the first case of Theorem 12, and the second family $\left(S_{n}^{\prime \prime}, S_{n}^{2}(p, p), S_{n}^{2}(p, p)\right.$ to the second case.

3. Proof

In the two first subsections we study the hypothesis of the theorem and the excluded triples. Next, we give the proof, dividing the general case into subcases, according to the value of the greater degrees of the forests in the triple. The main tool is Theorem 11.

3.1. Necessary conditions

Conditions (1), (2) and (2') are obviously necessary. We just have to explain condition (3), and we prove the theorem for this case.

Let F_{1} and F_{2} be both equal to $K_{1} \cup S_{n-1}$. There are, up to isomorphism, only two ways to pack them together into K_{n}.

- The first way is to pack the knot of each star with the isolated vertex of the other forest. This packing lets free in K_{n} the edges of a K_{n-2} and another independent edge. Therefore, this packing allows any forest with a K_{2}-component to be packed with the pair F_{1}, F_{2}.
- The second way is to pack the knot of the star-component of F_{1} with a leaf of F_{2}. This packing lets free the edges of a K_{n-2} and another edge incident to some vertex of this K_{n-2}. This allows now any forest having a K_{1}-component.
From now on, we will assume that the triples are not of the previous form.

3.2. Excluded triples

We inspect the excluded triples, other than those given in Theorem 11. Let us consider a packing α of (F_{1}, F_{2}) with $F_{1}=S_{n}^{1}(p, n-p-2), F_{2}=K_{2} \cup S_{n-2}$ into K_{n}. Denote by (x_{1}, y_{1}) the knots of F_{1} and by x_{2} the knot of the star-component in
F_{2}. We must have $\alpha\left(x_{2}\right)=\alpha\left(z_{1}\right)$ where z_{1} is a leaf, say of x_{1} in F_{1}, implying that $\alpha\left(K_{2}\right)=\alpha\left(x_{1}\right) \alpha\left(t_{1}\right)$ where t_{1} is a leaf of y_{1}. Now, in the set $\alpha\left\{x_{1}, y_{1}, z_{1}, t_{1}\right\}$ only the edge $\alpha\left(z_{1}\right) \alpha\left(t_{1}\right)$ remains free. It is therefore impossible to pack also $F_{3}=S_{q} \cup S_{n-q}$ since $\alpha\left(z_{1}\right)$ should be covered by a knot of F_{3} packed at $\alpha\left(t_{1}\right)$, and $\alpha\left\{x_{1}, y_{1}\right\}$ should be covered by the other knot of F_{3}. But for every other vertex $u \in K_{n}$, either $u \alpha\left(x_{1}\right)$ or $u \alpha\left(y_{1}\right)$ is in $\alpha\left(F_{1}\right)$.

Let us now pack, for $n=2 p+3,\left(F_{1}, F_{2}\right)$ with $F_{1}=F_{2}=S_{n}^{2}(p, p)$ into K_{n}. We name, for $i=1,2,\left(x_{i}, y_{i}\right)$ the knots of these trees, and z_{i} their common neighbor. We denote moreover by t_{1} a leaf of x_{1}, by u_{1}, u_{1}^{\prime} two leaves of y_{1}, in order to describe the only three possible (up to an isomorphism) packings α of these two trees:

- The first one is such that $\alpha\left(x_{2}\right)=\alpha\left(t_{1}\right), \alpha\left(y_{2}\right)=\alpha\left(u_{1}\right), \alpha\left(z_{2}\right)=\alpha\left(z_{1}\right)$.
- The second one is such that $\alpha\left(x_{2}\right)=\alpha\left(t_{1}\right), \alpha\left(y_{2}\right)=\alpha\left(u_{1}\right), \alpha\left(z_{2}\right)=\alpha\left(u_{1}^{\prime}\right)$.
- The third one is such that $\alpha\left(x_{2}\right)=\alpha\left(x_{1}\right), \alpha\left(y_{2}\right)=\alpha\left(t_{1}\right), \alpha\left(z_{2}\right)=\alpha\left(y_{1}\right)$.

If we want to pack now $K_{2} \cup S_{n-2}$ its star-component's knot should be packed with a leaf of each F_{i}, but then we cannot pack the K_{2}-component since the eventual edges $\alpha\left(x_{1}\right) \alpha\left(x_{2}\right), \alpha\left(x_{1}\right) \alpha\left(y_{2}\right), \alpha\left(y_{1}\right) \alpha\left(y_{2}\right)$ of K_{n} belong to $\alpha\left(F_{1} \cup F_{2}\right)$.

3.3. The general case

One can easily pack the triples satisfying the necessary conditions for $n \leqslant 5$, so we leave this to the reader, and we shall assume that $n \geqslant 6$.

We prove the possibility of packing all triples satisfying the necessary conditions, other than the triples already considered. We may sort these triples in such a way that we have $\Delta_{1} \geqslant \Delta_{2} \geqslant \Delta_{3}$.

We distinguish several cases, according to the values of maximum degrees.
Case 1: $\Delta_{1}=n-1$. In this case, $F_{1}=S_{n}$ and we must have $F_{2}=K_{1} \cup F_{2}^{\prime}$, $F_{3}=K_{1} \cup F_{3}^{\prime}$.

If $\Delta_{2}=n-2$, then $F_{2}^{\prime}=S_{n-1}$ implying by (2^{\prime}) that $F_{3}=2 K_{2} \cup F_{3}^{\prime \prime}$, and the triple is packable by Theorem 7 .

Otherwise, we have $\Delta_{2} \leqslant n-3$, and $F_{2}^{\prime}, F_{3}^{\prime}$ are subforests of non-star trees, the triple is then packable according to Theorem 4.

Case 2: $\Delta_{1}=\Delta_{2}=n-2$. In the extremal case where $F_{1}=F_{2}=S_{n}^{\prime}$ we must have by (2) and (2^{\prime}), $F_{3}=2 K_{1} \cup F_{3}^{\prime \prime}$. Since $K_{n} \backslash E\left(F_{1} \cup F_{2}\right)=2 K_{1} \cup\left(K_{n-2} \backslash e\right)$, any forest $F_{3}^{\prime \prime}$ of order $n-2(\geqslant 4)$ is packable with the two previous ones.

It remains, by the above assumptions, the case $F_{1}=S_{n}^{\prime}, F_{2}=K_{1} \cup S_{n-1}$, implying by (2) $F_{3}=K_{1} \cup F_{3}^{\prime}$ in which we may assume that $F_{3}^{\prime} \neq S_{n-1}$. Therefore it suffices to consider the case where F_{3}^{\prime} is a non-star tree of order $n-1$. Let $x_{1} y_{1} z_{1}$ be the path of length 2 in F_{1} where x_{1} is the knot of degree $n-2$. By packing x_{1} with the isolated vertex of F_{2}, and the knot of the star $S_{n-1} \subset F_{2}$ with any leaf t_{1} of x_{1}, there remain free in K_{n} the edges of a $K_{n-2} \backslash e$ (namely $e=\alpha\left(y_{1} z_{1}\right)$), plus another edge $\alpha\left(x_{1}\right) \alpha\left(z_{1}\right)$ incident with e. Therefore, any non-star tree of order $n-1$ is packable with F_{1}, F_{2}.

Case 3: $\Delta_{1}=n-2, \Delta_{2} \leqslant n-3$. By (2), we may assume that $\delta_{3}=0$, and it suffices to prove the theorem when $F_{1}=S_{n}^{\prime}, F_{2}$ is any tree different from S_{n}, S_{n}^{\prime} and $F_{3}=K_{1} \cup F_{3}^{\prime}$

U

Fig. 1. The case $n=6$.
where F_{3}^{\prime} is a tree of order $n-1$ distinct from S_{n-1}. The property comes from the following lemma:

Lemma 13. For $n \geqslant 6$, let T be a tree of order n different from S_{n}, S_{n}^{\prime}, and U a non-star tree of order $n-1$. Then the triple $\left(S_{n}^{\prime}, T, U\right)$ is packable into K_{n}.

Proof. Let us first consider the case $n=6$. There are four non-isomorphic admissible trees T, and two possibilities for U. We label the vertices of K_{6}, using indices from 0 to 5 , pack in 0 the vertex of maximum degree of S_{6}^{\prime}, its leaves on $1,2,3$, its remaining neighbor (the second knot of S_{6}^{\prime}) on 4 and its leaf on 5 . Now Fig. 1 gives (by the positions of the vertices) a packing for all the possible couples (T, U) corresponding to $n=6$.

For $n=7$ it suffices to extend these packings in all possible ways, adding to K_{6} a new vertex labeled 6 , and in each case adding to $\alpha\left(S_{6}^{\prime}\right)$ the edge 06 , then modifying the two other trees, generally by adding an edge incident to 6 , in order to obtain all the admissible couples T, U corresponding to $n=7$.

Namely, in the first case of T in Fig. 1, we may modify it into a P_{7} by replacing either the edge 42 by the path 462 or the edge 35 by the path 365 . We may modify it into $S_{7}^{\prime \prime \prime}$ by adding either 46 or 56 , into another tree by adding 26 . Every case lets free all the extensions of U, which are achieved by adding one of the edges $16,56,36$ or 46 .

In the second case, in order to obtain other triples, we have to modify T by adding one of the three edges $56,26,36$. This allows all extensions of U, except for the addition of 36 which prevents that of the same edge to the first form of U. In this case we add it to this tree, and modify T by replacing the edge 34 by 24 and 52 by the path 562.

In the third case, we have only to modify T by adding the edge 56 , or putting the vertex of maximum degree in 6 , its leaf in 5 , and adding the edge 06 . This allows all modifications of U.

In the last case, it suffices to modify T by adding either 56 or 26 and this allows all extensions for U.

We now proceed by induction on $n \geqslant 8$, distinguishing several cases. As in [7], we say that a tree T of order n is a bi-extension of another tree T^{\prime} of order $n-2$ if the former is obtained by adding to the latter two vertices, and two independent edges incident with these new vertices. The two other extremities of these new edges are called the nodes of the extension.

The general case of our induction is when T and U are both bi-extensions of trees statisfying (at the order $n-2$) the conditions of the lemma; we shall say that they are admissible bi-extensions.
(a) T and U are admissible bi-extensions of T^{\prime}, U^{\prime} respectively. By the induction hypothesis, there is a packing α of $S_{n-2}^{\prime}, T^{\prime}, U^{\prime}$ into K_{n-2}. Let a be the knot of S_{n-2}^{\prime}, $a b c$ its path of length 2 , and call i, j the nodes of T^{\prime}. Note that a is packed only with an end-vertex of T^{\prime}.

We take now two new vertices x, y and add to S_{n-2}^{\prime} the edges $a x, a y$. There is no problem for extending T^{\prime} and U^{\prime} if $\alpha(a) \notin \alpha\{i, j\}$. So assume that $\alpha(a)=\alpha(i)$. Therefore i is a leaf of a vertex $k \in V\left(T^{\prime}\right)$ such that $\alpha(k)=\alpha(c)$. If $k=j$, we have only to add to T^{\prime} the edges $\alpha(j) x, x y$ in order to obtain T, and the extension of U^{\prime} is obviously possible. Otherwise, we delete the edge $\alpha(i k)=\alpha(a) \alpha(c)$ from $\alpha\left(T^{\prime}\right)$, give to it the edge $\alpha(a) x$ and add the new edge $x \alpha(k)$. We give now to $\alpha\left(S_{n-2}^{\prime}\right)$ the two edges $\alpha(a) \alpha(c), x y$ instead of $\alpha(a) x, \alpha(b c)$, and the extension of U^{\prime} is also possible.
(b) U is not an admissible bi-extension, therefore $U=S_{n-1}^{\prime}$. Let x, y, z, t, u be five vertices of K_{n} and call a the knot of $S_{n}^{\prime}, a b c$ its path of length $2, i$ the knot of $U=S_{n-1}^{\prime}, i j k$ its path of length 2 . We may define a first packing of the pair $\left(S_{n}^{\prime}, U\right)$ by letting $\alpha(a)=x, \alpha(b)=\alpha(k)=y, \alpha(c)=z, \alpha(i)=t, \alpha(j)=u$. The free edges in $K_{n} \backslash\{x, t\}$ form a $K_{n-2} \backslash\{y z, y u\}$ and the edges $x z, y t$ remain also free. Therefore we can easily pack any tree T_{n} distinct from $S_{n}^{\prime \prime}$ or $S_{n}^{1}(p, q)$ (which are the only admissible trees with only two adjacent knots). In order to allow these trees, we may define another packing of $\left(S_{n}^{\prime}, U\right)$ by $\alpha(a)=x, \alpha(b)=y, \alpha(c)=\alpha(k)=z, \alpha(i)=t, \alpha(j)=u$, which lets free in $K_{n} \backslash\{x, t\}$ the edges of $K_{n-2} \backslash\{y z, z u\}$, and also the two edges $z x, z t$.
(c) U is an admissible bi-extension, but T is not, therefore is $S_{n}^{\prime \prime}, S_{n}^{1}(p, 2)$ (with $p=n-4$) or X_{n}. Assume that U is an admissible bi-extension of U^{\prime} (of order $n-2$), and put $T^{\prime}=S_{n-2}^{\prime \prime}, S_{n-2}^{1}(p-2,2), X_{n-2}$ respectively. So we can recover T from T^{\prime} by adding two edges incident to the same node. By induction hypothesis, we may pack into K_{n-2} the triple $\left(S_{n-2}^{\prime}, T^{\prime}, U^{\prime}\right)$. Note that together with the knot of S_{n-2}^{\prime} is packed only a leaf of T^{\prime}. Thus there is no difficulty to make the extensions, if no node of U^{\prime} is packed with the (double) node of T^{\prime}. We now assume the contrary, and distinguish three cases, according to the nature of T^{\prime}. We call a_{1} the knot of $S^{\prime}, a_{1} b_{1} c_{1}$ its path of length $2, a_{2}$ the double node of T^{\prime}, a_{3}, b_{3} the nodes of U^{\prime}, and assume $\alpha\left(a_{3}\right)=\alpha\left(a_{2}\right)$. We name x, y the two new vertices. In every case, a_{3} must be an end-vertex of U^{\prime}, say the leaf of a vertex c_{3} (eventually $c_{3}=b_{3}$), and we replace in $\alpha\left(U^{\prime}\right)$ the edge $\alpha\left(a_{3} c_{3}\right)$ by the path $\alpha\left(a_{3}\right) x \alpha\left(c_{3}\right)$, and add the edge $\alpha\left(b_{3}\right) y$.
(c1) $T^{\prime}=S_{n-2}^{\prime \prime}$. Let $a_{2} b_{2} c_{2} d_{2}$ be the path of T^{\prime}. We have $\alpha\left(c_{3}\right) \in \alpha\left\{c_{2}, d_{2}\right\}$.
If $\alpha\left(c_{3}\right)=\alpha\left(d_{2}\right)$ we delete in $\alpha\left(T^{\prime}\right)$ the edge $\alpha\left(b_{2} c_{2}\right)$ and add the edges $\alpha\left(a_{2}\right) \alpha\left(c_{2}\right)$, $\alpha\left(a_{2}\right) y, \alpha(c-2) x$ (observe that we have $\alpha\left(a_{1}\right) \notin \alpha\left\{b_{2}, c_{2}, d_{2}\right\}$).

If $\alpha\left(c_{3}\right)=\alpha\left(c_{2}\right)$ but $\alpha\left(a_{1}\right) \notin \alpha\left(d_{2}\right)$, we delete in $\alpha\left(T^{\prime}\right)$ the edge $\alpha\left(b_{2} c-2\right)$ and add $\alpha\left(a_{2}\right) \alpha\left(c_{2}\right), \alpha\left(a_{2}\right) y, \alpha\left(d_{2}\right) x$.

If $\alpha\left(c_{3}\right)=\alpha\left(c_{2}\right)$ and $\alpha\left(a_{1}\right)=\alpha\left(d_{2}\right)$, then we have $\alpha\left(c_{1}\right)=\alpha\left(c_{2}\right)$ and b_{1} must be packed with a leaf of a_{2}. We delete in $\alpha\left(T^{\prime}\right)$ the path $\alpha\left(b_{2} c_{2} d_{2}\right)$, add the edges $\alpha\left(a_{2}\right) \alpha\left(c_{2}\right), \alpha\left(a_{2}\right) y$, and the path $\alpha\left(b_{2}\right) x \alpha\left(d_{2}\right)$. In $\alpha\left(S_{n-2}\right)$ we delete the edge $\alpha\left(b_{1} c_{1}\right)$, and add the edges $\alpha\left(b_{1}\right) x, \alpha\left(a_{1}\right) \alpha\left(c_{2}\right), \alpha\left(a_{1}\right) y$.
(c2) $T^{\prime}=S_{n-2}^{1}(n-4,2)$. Let b_{2} be the other knot of T^{\prime}. Then c_{3} must be packed with a leaf c_{2} of b_{2}. We delete in $\alpha\left(T^{\prime}\right)$ the edge $\alpha\left(b_{2} c_{2}\right)$ and add the edges $\alpha\left(a_{2}\right) \alpha\left(c_{2}\right)$, $\alpha\left(a_{2}\right) y, \alpha\left(b_{2}\right) x$.
(c3) $T^{\prime}=X_{n-2}$. Let $a_{2} b_{2} c_{2}$ be the path of length 2 such that $\alpha\left(c_{3}\right)=\alpha\left(c_{2}\right)$. We have $\alpha\left(a_{1}\right) \notin a\left\{b_{2}, c_{2}\right\}$. We delete in $\alpha\left(T^{\prime}\right)$ the edge $\alpha\left(b_{2} c_{2}\right)$ and add the edges $\alpha\left(a_{2}\right) \alpha\left(c_{2}\right), \alpha\left(a_{2}\right) y, \alpha\left(b_{2}\right) x$.

Case 4: $\Delta_{1} \leqslant n-3$. Then we have to consider subtriples of the triples of trees studied in Theorem 11. It is therefore sufficient to prove our theorem, in the case where $\left(F_{1}, F_{2}, F_{3}\right)$ is a proper subtriple of an excluded triple of Theorem 11. Those which contain as subtriple either $\left(S_{n}^{1}(p, n-p-2), K_{2} \cup S_{n-2}, S_{q} \cup S_{n-q}\right)$ or $\left(S_{n}^{2}(p, p), S_{n}^{2}(p, p), K_{2} \cup\right.$ S_{n-2}) are already excluded by our study. Note that $K_{2} \cup S_{n-2}$ is obtained from $S_{n}^{\prime \prime}$ as well as $S_{q} \cup S_{n-q}$ (for $q \geqslant 3$) from $S_{n}^{1}(q-1, n-q-1)$, by removing the edge joining the two knots. In order to obtain a forest $S_{q} \cup S_{n-q}$ from $S_{n}^{\prime \prime}$ or S_{n}^{2}, we must remove a non-pendant edge, from $S_{n}^{\prime \prime \prime}$ we have to remove a non-pendant edge non-incident to the knot of maximum degree (for $n \geqslant 7$), and from S_{n}^{3} (for $n \geqslant 8$) we have to remove the edge non-incident to any knot.

Let $\left(F_{1}, F_{2}, F_{3}\right)$ be an admissible subtriple of some triple $\left(S_{n}^{1}, S_{n}^{\prime \prime}, T_{n}\right)$ of Theorem 11. In the case where T_{n} is $S_{n}^{\prime \prime \prime}$, we call e_{1} the non-pendant edge incident to the knot of degree 2 , and if $T_{n}=S_{n}^{3}$, e_{1} will denote any non-pendant edge incident to a knot. First assume $F_{1}=S_{n}^{1}$. Therefore $\left(F_{2}, F_{3}\right)$ is a subcouple either of ($S_{n}^{\prime \prime} \backslash e, T_{n}$), with e denoting an end-edge, or of ($S_{n}^{\prime \prime}, T_{n} \backslash e$) with also e an end-edge, or, if T_{n} is $S_{n}^{\prime \prime \prime}$ or $S_{n}^{3}, e=e_{1}$. Then it is easy to see that the triple $\left(F_{1}, F_{2}, F_{3}\right)$ is also a subtriple of a
packable triple of trees. The same property obviously holds if we assume $F_{3}=T_{n}$ in the case where T_{n} is a S_{n}^{1}.

Now assume F_{1} (and also F_{3}) is different from S_{n}^{1}. Thus (F_{1}, F_{2}, F_{3}) is a subtriple of $\left(S_{n}^{1} \backslash e, S_{n}^{\prime \prime}, T_{n}\right)$ with T_{n} not an S_{n}^{1}, or of $\left(S_{n}^{1} \backslash e, S_{n}^{\prime \prime}, S_{n}^{1} \backslash e^{\prime}\right)$. If e is a pendant edge of S_{n}^{1}, then $S_{n}^{1} \backslash e$ is a subforest of a tree with three knots (of X_{6} if $n=6$), and if e is the edge joining the two knots, $S_{n}^{1} \backslash e$ is a subforest of $S_{n}^{2}(p, n-p-3)$ or $S_{n}^{3}(p-1, n-p-3)$ (if $n=6$ of P_{6} or $S_{6}^{\prime \prime}$). Therefore it is always possible to consider (F_{1}, F_{2}, F_{3}) as a subtriple of a packable triple of trees.

The proof is quite analogous for an admissible subtriple (F_{1}, F_{2}, F_{3}) of $\left(S_{n}^{\prime \prime}, S_{n}^{2}(p, p)\right.$, $\left.S_{n}^{2}(p, p)\right)$, in which either at least one of F_{2}, F_{3} must be a proper subforest of $S_{n}^{2}(p, p)$, or F_{1} must be a subforest of $S_{n}^{\prime \prime} \backslash e$, with e an end-edge.

In order to complete the proof, we have to inspect the subtriples of the little special triples excluded by Theorem 13, namely ($S_{6}^{\prime \prime}, S_{6}^{\prime \prime}, S_{6}^{\prime \prime}$), (P_{6}, X_{6}, S_{6}^{1}), ($P_{6}, S_{6}^{1}, S_{6}^{1}$), $\left(X_{6}, X_{6}, S_{6}^{\prime}\right),\left(X_{6}, S_{6}^{1}, S_{6}^{1}\right)$ and ($Y_{7}, S_{7}^{1}, S_{7}^{1}$). It is sufficient to consider the subforests obtained by deleting only one edge, and the triples with only one proper subforest.

For $n=6$ observe that $S_{4} \cup K_{2}$ is a subforest only of $S_{6}^{\prime \prime}, S_{5}^{\prime} \cup K_{1}$ is a subforest of $S_{6}^{\prime \prime}, X_{6}$ and $S_{6}^{1}, 2 P_{3}$ is a subforest of $P_{6}, S_{6}^{\prime \prime}, S_{6}^{1}, P_{4} \cup K_{2}$ of P_{6}, X_{6} and finally $P_{5} \cup K_{1}$ of $P_{6}, S_{6}^{\prime \prime}, X_{6}$. The packings at subtriples which are not also subtriples of packable triples are left to the reader.

For $n=7$, as already noticed in general, there is no forest exclusively a subforest of S_{7}^{1}. Since $Y_{7} \backslash e$ is also a subforest of X_{7} or P_{7}, any proper subtriple of ($Y_{7}, S_{7}^{1}, S_{7}^{1}$) is also a subtriple of a packable triple.

References

[1] B. Bollobás, Extremal Graph Theory (Academic Press, London, 1978).
[2] D. Burns and S. Schuster, Every ($p, p-2$) graph is contained in its complement, J. Graph Theory 1 (1977) 277-279.
[3] A. Gyárfás and J. Lehel, Packing trees of different order into K_{n}, Colloq. Math. Soc. J. Bolyai 18 (1976) 463-469.
[4] S.M. Hedetniemi, S.T. Hedetniemi and P.J. Slater, A note on packing two trees into K_{N}, Ars Combin. 11 (1981) 149-153.
[5] A.M. Hobbs, B.A. Bourgeois and J. Kasiraj, Packing trees in complete graphs, Discrete Math. 67 (1987) 27-42.
[6] C. Huang and A. Rosa, Decomposition of complete graphs into trees, Ars Combin. 5 (1978) 26-63.
[7] M. Mahéo, J.-F. Saclé and M. Woźniak, Edge-disjoint placement of three trees, European J. Combin., to appear.
[8] N. Sauer and J. Spencer, Edge disjoint placement of graphs, J. Combin. Theory Ser. B 25 (1978) 295-302.
[9] H. Wang and N. Sauer, Packing three copies of a tree into a complete graph, Eurpoean J. Combin. 14 (1993) 137-142.
[10] M. Woźniak, Packing three trees, Discrete Math. 150 (1996) 393-402.
[11] M. Woźniak and A.P. Wojda, Triple placement of graphs, Graphs Combin. 9 (1993) 85-91.
[12] H.P. Yap, Some Topics in Graph Theory, London Mathematical Society, Lectures Notes Series 108 (Cambridge University Press, Cambridge, 1986).
[13] H.P. Yap, Packing of graphs - a survey, Discrete Math. 72 (1988) 395-404.

[^0]: * Corresponding author. E-mail: mwozniak@uci.agh.edu.pl.

 0012-365X/97/\$17.00 (c) 1997 Elsevier Science B.V. All rights reserved
 PII S0012-365X(96)00060-X

