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Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is currently viewed as the most
precise technique to quantify levels of messenger RNA. Relative quantification compares the expression of a
target gene under two or more experimental conditions normalized to the measured expression of a control
gene. The statistical methods and software currently available for the analysis of relative quantification of RT-
PCR data lack the flexibility and statistical properties to produce valid inferences in a wide range of
experimental situations. In this paper we present a novel method for the analysis of relative quantification of
qRT-PCR data, which consists of the analysis of cycles to threshold values (CT) for a target and a control gene
using a general linear mixed model methodology. Our method allows testing of a broader class of hypotheses
than traditional analyses such as the classical comparative CT. Moreover, a simulation study using plasmode
datasets indicated that the estimated fold-change in pairwise comparisons was the same using either linear
mixed models or a comparative CT method, but the linear mixed model approach was more powerful. In
summary, the method presented in this paper is more accurate, powerful and flexible than the traditional
methods for analysis of qRT-PCR data. This new method is especially useful for studies involving multiple
experimental factors and complex designs.
© 2009 Elsevier Inc. All rights reserved.
Introduction

Reverse transcription (RT), followed by quantitative polymerase
chain reaction (qPCR), is currently the method of choice to quantify
levels of messenger (m)RNA [1]. At present, there are several
instrumentations and chemistries available for implementation of
this technique, all of which rely on the same fundamental principle
[2]. This principle consists of the specific amplification of cDNA from a
target transcript in several cycles of PCR, coupled with measurement
of a fluorescence intensity that is assumed to be directly proportional
to the amount of product in each cycle [3]. This methodology has been
extensively validated, and its accuracy and specificity have been
proved for the different chemistries available [4].

The quantitative output of the qRT-PCR consists of an amplification
curve, which is composed of a set of cycle numbers and associated
fluorescence intensities that are ulteriorly summarized in a single
value called the cycles to threshold (CT). The CT is a unitless value
defined as the fractional cycle number at which the sample
ce, Michigan State University,
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fluorescence signal passes a fixed threshold above the baseline.
Because the threshold is set within the exponential amplification
phase, the CT is proportional to the (negative) log of the initial
transcript copy number (or log-transcript concentration) of the
assayed sample. The constant of proportionality of the CT to the log-
concentration is the amplification efficiency (E).

Absolute and relative quantification strategies can be applied to
measure mRNA abundance using qRT-PCR [3,5]. Relative quantifica-
tion compares the expression of a target gene under various
conditions (treatments) normalized to the measured expression of
an internal control [6] (assumed to be constantly expressed across
samples). In general, the numerous mathematical expressions avail-
able for such calculation [7–16] may be summarized by the equation
below [6]:

FCtrt1:trt2 =
ETarget

� �ΔCTðtargetÞ trt2 − trt1ð Þ

EControlð ÞΔCTðcontrolÞ trt2 − trt1ð Þ ; ð1Þ

where, FCtrt1:trt2 is the relative expression (fold-change) of the target
gene in a sample from treatment 1 compared to a sample from
treatment 2, ETarget and EControl are the amplification efficiencies of the
target and the control genes, respectively, and ΔCTðtargetÞ trt2 − trt1ð Þ
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and ΔCTðControlÞ trt2 − trt1ð Þ correspond to the CT of the treatment 2
minus the CT of the treatment 1, for the target and control genes,
respectively. If both amplification efficiencies take the maximum
possible value (E=2), expression (1) becomes the familiar 2−ΔΔCT

expression [9]. Moreover, almost any other mathematical expression
or method available in the literature to calculate fold-change is a
variant of Eq. (1). The differences among variants of Eq. (1) refer
mainly to estimation of the efficiency either from a relative standard
curve [5] or from individual amplification curves [7,13].

The methods based on expression (1) are mathematical equations
devised to calculate fold-change between two samples. In some cases,
these equations, however, lack the statistical formalism needed to
draw valid inferences, especially when multiple levels of biological
replicates from each experimental group are assayed [7,10,17]. More-
over, many ad-hoc approaches associated with formulas similar to Eq.
(1) have been used with the objective of generating a set of
“companion” P-values or standard errors [9,11]. However, few of
them are valid in the presence of both biological and technical
replication. Currently, the REST® software [17] is one of the few
programs that implements a valid statistical analysis to test
hypotheses and estimate the fold-changes using Eq. (1). However,
such software is limited to the analysis of pairwise comparisons with
respect to a control group, under a completely randomized design.

Even if a valid statistical test can be implemented for pairwise
contrasts based on Eq. (1), comparing two treatments at a time in the
context of a large experiment may be inefficient and lead to reduced
power. In such case, a linear model could be used to analyze data from
all treatment groups simultaneously in the same fashion of classical
analysis of variance (ANOVA) techniques.

A linear mixed model [18] was recently proposed for the
implementation of the so-called analytical method [10]. Such a
model is potentially more flexible than the existing alternatives, but
it makes the strong assumption that there is a common random effect
for the control and test genes in each biological replicate. Assuming no
gene-specific biological effects is not realistic, as it is expected that
constitutively expressed genes will have more similar expression
pattern across biological replicates than regulated genes. Violation of
such assumption, in turn, may lead towrong inferences. Consequently,
there is a need for a formal statistical method for analysis of the
relative quantification RT-PCR data that allows accommodation of
more complex experimental designs (such as blocking factors) and
testing of general hypotheses (including interactions, pairwise and
group contrasts).

The objective of this paper is to present a novel, flexible method for
analysis of relative quantification RT-PCR data using linear mixed
models. The main advantage of the model is that it can be used to
compute valid P-values associated with any general linear hypothesis
of interest. Additionally, the model allows proper accounting of all
sources of variation and it is expected to be more powerful than
methods based on individual pairwise comparisons. In this paper we
use a variety of approaches to validate the proposed methodology, to
compare it with existing methods, and to illustrate its flexibility. First,
our model is compared to other alternatives using a real dataset.
Second, a model-free simulation based on the same dataset is used for
comparative validation of the methodology. Lastly, several datasets
are analyzed and different linear models are compared.

Results

Motivating example

Quantitative RT-PCR was used to study expression of the gene
diazepam binding inhibitor (DBI) in the brain of piglets subject to
weaning and social isolation treatments [19]. The experimental layout
followed a randomized complete block design (n=3 litters) and the
treatments consisted of a 2×2 factorial combination of weaning
(early-weaned or non-weaned) and social isolation (isolated or
control).

Preliminary assays indicated that Sus scrofa 18S ribosomal RNA
(18S) was suitable for use as an endogenous control gene and that the
amplification efficiency for primers of the two genes (18S and DBI)
was close to two [19]. All reactions were performed in triplicate but
some observations were excluded from the analysis because of
evidence of non-specific amplifications (as revealed by dissociation
curve analyses) [20]. The following model (denoted as Model I) was
used for the analysis of the joint expression of DBI and 18S:

ygijkr = TGgi
T + lgj + Bgijk + Dijk + egijkr ;

where ygijkr is the CT obtained from the thermocycler software for the
gth gene (18S or DBI) from the rth well, corresponding to the kth
animal in the jth litter subjected to the ith treatment, TG⁎gi is the
effect of treatment i in the expression of gene g, lgj~N(0, σlg

2 ) is a
gene-specific random effect of the jth litter, Bgijk~N(0,σBg

2 ) is a gene-
specific random effect of the kth piglet in the jth litter, Dijk~N(0,σD

2) is
a random sample-specific effect (common to both genes), and egijkr~
N(0,σe

2) is a residual term. The sample-specific effect, Dijk, captures
differences among samples that are common to both genes,
particularly those that affect total mRNA concentration, such as
differential extraction or amplification efficiencies among samples.
The treatments consisted of the combination of two factors, and the
sub-index i=1, 2, 3, 4 corresponds to: early weaning+control
(EWC), early weaning+isolation (EWI), non-weaning+control
(NWC), and non-weaning+isolation (NWI), respectively.

Model I was fit to the data using the SAS mixed procedure [21] and
a residual analysis was performed to check model assumptions. Tests
of differential expression among groups were performed for the
interaction of weaning by isolation and for pairwise treatment
differences (simple effects). Point and interval estimates of fold-
changes were approximated from the linear contrasts (in the log
scale) by back transformation. The fold-changes were also estimated
with the 2−ΔΔCT method [9] (ΔCT) using a procedure presented in the
original work [9].

In addition, an alternative linear model (denoted as Model II) was
also used to analyze the data:

ygijkr = TGgi
T + lj + Dijk + egijkr :

Model II is a simplified version of Model I, without the gene-
specific sample and litter effects, and is equivalent to a previously
published model for analysis of amplification curve data [18]. We
anticipate that Model II is under parameterized and it may lead to
wrong inferences.

Testing and estimating differential expression

Contrarily to the ΔCT procedure, Model I yielded a formal test for
the interaction between isolation andweaning. Therewas no evidence
of interaction effect between isolation and weaning on the expression
of DBI (P=0.829), but there was a significant three-fold decrease in
DBI gene expression due to isolation (P=0.003). As mentioned, the
traditional analysis method (ΔCT) does not allow testing of this
interaction, but it may be still used to estimate the fold-change of
pairwise comparisons (Fig. 1).

While the estimates of fold-change were similar using Models I, II
and ΔCT, the confidence intervals for the fold-changes based on ΔCT
were wider than those based on Models I and II, and the general
conclusions were not equivalent. For example, Models I and II
indicated a significant decrease in the expression of DBI in response
to social isolation in both early-weaned and non-weaned animals
(P=0.013 and P=0.019 respectively from Model I), while ΔCT only
detected the contrast EWI – EWC as significant (P=0.03). At a



Table 2
Width and coverage (in parenthesis) of nominal 95% confidence intervals of fold-
change derived from plasmode datasets.

Contrast CI[I]
a CI[ΔCT]

b CI[II]
c

EWI – EWC 3.03 (93.7%) 6.03 (91.0%) 1.63 (79.8%)
EWI – NWI 2.12 (95.4%) 4.34 (94.1%) 1.14 (84.2%)
EWC – NWC 1.09 (94.7%) 2.24 (93.0%) 0.58 (81.4%)
NWI – NWC 1.55 (94.7%) 3.22 (92.9%) 0.83 (82.0%)

Each column presents the mean width of the 95% confidence interval for the fold-
change with the actual coverage of the interval in parenthesis. Desirable properties are
coverage close to 95% and small interval width. aModel I; bΔCT and cModel II.

Table 3
Proportion of rejected hypotheses estimated from plasmode datasets.

Fig. 1. Fold-change estimates. The log2 fold-changes for four contrasts (abscissa) are
presented. Fold-change scale is included on the right axis. Segments indicate the 95%
confidence interval. Comparisons whose confidence interval include the value 0 (1 in
fold-change scale) are not significant at α=5%. Bar color indicates the analysis method.
: Model I, : ΔCT and : Model II.
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significance level of α=5%, Models I and II yielded the same
conclusions, but the confidence intervals were narrower for Model
II. Thus, depending on the significance level adopted, the conclusions
might differ between these two approaches.

Validation through simulation using plasmode datasets

A simulation experiment was used to validate and compare
alternative analysis methods. A fair simulation study, however,
precludes the use of any of the analysis models as the data generation
process. Alternatively, we permuted the real data and added constant
values to generate a population of 1000 datasets with known fold-
changes (Table 1),while keeping the original data structure, distribution
and variability unchanged. The resulting dataset is called a plasmode
[22] and similar techniques have been used to assess, for example, the
validity of analysis methods in microarrays [23]. The plasmode datasets
were analyzed using three methods: Models I, II, and ΔCT.

Table 1 summarizes the point estimates of the fold-change
obtained for each pairwise contrast using the three analysis methods.
All three methods yielded unbiased estimates of the fold-change, and
they had roughly the same mean square error (MSE).

Confidence intervals (95%) for the fold-changes are presented on
Table 2. The narrowest confidence intervals corresponded to Model II,
followed by Model I and ΔCT. Nevertheless, a further analysis of the
real coverage of these “nominal” 95% confidence intervals (values
within parentheses in Table 2) revealed that Model II yielded intervals
Table 1
Average and mean squared error of the empirical distribution of point estimates of the
fold-change derived from plasmode datasets.

Contrast Actual FC FC[I]a FC[ΔCT2]
b FC[II]

c

EWI – EWC 2.000 2.059 (0.3922) 2.059 (0.3959) 2.054 (0.3720)
EWI – NWI 1.414 1.442 (0.1588) 1.443 (01602) 1.440 (0.1503)
EWC – NWC 0.707 0.744 (0.0470) 0.744 (0.0474) 0.742 (0.0443)
NWI – NWC 1.000 1.054 (0.0925) 1.054 (0.0937) 1.051 (0.0875)

Columns present the mean estimates with their mean squared errors (in parenthesis)
from 1000 simulations. aModel I; bΔCT; and cModel II.
with significantly less coverage than the other two methods. The real
coverage of confidence intervals obtained from Model II was well
below the nominal 95% confidence level. Confidence intervals
calculated from Model I exhibited the closest coverage to the nominal
level. The coverage obtained from ΔCT-derived confidence intervals
was also close to 95%, but the width of the confidence intervals was
sensibly larger.

Models I and II allowed testing general linear hypotheses related to
the interaction and main effects (including pairwise comparisons of
treatments). Conversely, ΔCT allowed only pairwise contrasts
between pairs of treatments (Table 3).

Under the null hypothesis (contrast NWI – NWC in Table 3), Model
I and ΔCT yielded a type I error rate very close to the nominal 5% test
value, and the discrepancies observed in Table 3 for the ΔCT method
were within the expected simulation error (based on extensive
simulations not shown in this paper). The realized type I error rate of
tests fromModel II was clearly above the nominal error level (0.07 for
α=0.01, and 0.18 for α=0.05).

Under the alternative hypothesis (Table 3, all comparisons except
NWI – NWC), Model II showed the highest probability of declaring
significant a fold-change larger than 1, but part of this apparent power
comes from an inflated type I error rate as shown before. Model I was
more powerful than ΔCT and, in absolute terms, the increase in power
wasmore evident for larger fold-changes. This indicates thatModel I is
the best model for analysis because it provides adequate control of
type I error rate, but considerably more power than ΔCT.

Model checking in experimental datasets

Although Model I is suitable only for the analysis of the described
dataset, an equivalent model can be elicited for any specific data
structure or design layout. The main components of Model I are the
random sample effects and the random interaction between sample
and gene factors. Moreover, gene-specific variances are assumed for
the sample-gene interaction. The measurement error term (residual
effects) is assumed homoskedastic with respect to genes.

To assess the adequacy of these assumptions in a broader set of
experimental data [19,24–28], six different datasets where analyzed.
Details of the datasets are presented in Table 4. The datasets included
Contrast α=1% α=5%

p[I]
a p[ΔCT]

b p[II]
c p[I]

a P[ΔCT]
b p[II]

c

EWI – EWC 0.157 0.058 0.700 0.439 0.257 0.872
EWI – NWI 0.030 0.026 0.246 0.131 0.098 0.415
EWC – NWC 0.031 0.026 0.276 0.152 0.104 0.429
NWI – NWC 0.010 0.029 0.072 0.053 0.071 0.180
Wean.× isol. 0.075 – 0.416 0.249 – 0.584

p: proportion of rejected tests from the 1000 simulated datasets in each contrast at two
significance levels (α). The NWI–NWC contrast corresponded to the null hypothesis (no
differential expression) and the expected value is p=α. For contrasts different from
NWI–NWC, a larger value of p implies more power. The sub-index indicates the analysis
method. aModel I; bΔCT and cModel II.



Table 4
Description of experimental datasets used for model checking and result comparison.

Dataset
namea

Published
reference

Number
of genes

Experimental design Biological
samples

Assay
replicates

SPLIT [25] 2 Split plot design. Main plot
factor: disease status.
Subplot factor: infection

12 2

TC [30] 5 Longitudinal time course
experiment. Timepoints:
0, 2, 4, 8, 16 h after infection.

4 2

PFC [19] 5 2×2 Factorial in a randomized
complete block design.
Factors: weaning; isolation

12 3

MRD [27] 2 Completely randomized
design with two groups.

8 3

TLD [24] 64 Completely randomized
design with two groups.

9 4

SHK [28] 6 Completely randomized
design with one group.

80 1

a Abbreviations used in the text to refer to each dataset.

Table 6
Contrasts of interest in each dataset.

Dataset Comparisons tested with
ΔCT and LMMa

Comparisons tested with
LMM onlyb

SPLIT Simple effect of Infection Interaction infection by status
Simple effect of status

TC Every time versus baseline Linear and quadratic trend
PFC Simple effect of weaning Interaction weaning by isolation

Simple effect of isolation
Mrd Wild type versus mutant –

TLD Mutated versus unmutated –

a Contrasts that can be obtained with both methodologies.
b Contrasts that are calculated with the linear model only.
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one to 63 test genes and four to 80 biological samples. All datasets but
one included technical replicates (assay replicates). Twelve alternative
modelswere comparedusing theAkaike information criteria (AIC) and
the Bayesian information criteria (BIC) [29]. The models represented
the combinations of different assumptions: sample-specific random
effect (included or not), sample-gene random interaction (homo-
skedastic, heteroskedastic, or not included in the model), and residual
variance (homogeneous or heterogeneous across genes).

The effects included in the best-fit model for each dataset are
shown in Table 5. A random sample effect was present in all models.
Similarly, the gene by sample interaction with heterogeneous
variances among genes was selected for almost all datasets. The
only exception was the MRD [27] dataset where the model with
homogeneous variances was preferred. Gene-specific residual var-
iances were also generally favored by the model selection criteria. In
the TLD [24] dataset, heterogeneous residual variances could not be fit
due to convergence problems. In the SHK [28] dataset, the residual
term included both the residual and sample-gene interaction effects of
the other models because this dataset lacks technical replicates.
Consequently, the model with heterogeneous residuals indicates the
presence of a gene by sample interaction with heterogeneous
variances, heterogeneity of variance in the measurement errors, or
both. In the remaining datasets, the heterogeneity of residual
variances was caused by different (gene-specific) precisions for
Table 5
Effects included in best-fit models corresponding to different datasets.

Dataset Fixed effectsa Random effects

Sampleb Sample-genec Residuald

SPLIT Gene ⁎ Status⁎
infection

Yes Yes. Gene-specific
variance

Gene-specific
variance

TC Gene⁎Time Yes Yes. Gene-specific
variance

Gene-specific
variance

PFC Gene ⁎ Weaning ⁎

Isolation
Yes Yes. Gene-specific

variance
Gene-specific
variance

MRD Gene⁎strain Yes No/Yese Gene-specific
variance

TLD Gene⁎mutation Yes Yes. Gene-specific
variance

Homogeneous
variance

SHK Gene Yes Gene-specific
variance

a Specification for fixed effects.
b Random sample effect included (yes) or not (no).
c Random sample by gene interaction included (yes/no) and variance of the effect

(Homogeneous or Gene-specific).
d Specification of the residual variance (Homogeneous or Gene-specific).
e The model without sample-gene random effect and the model with a sample-gene

interaction (with homogeneous variances) yielded the same values for both selection
criteria.
measurement of gene expression. Disentangling the sources of such
heterogeneity is beyond the scope of this paper, but we anticipate that
differential amplification efficiencies may be one of such causes.

Except for a few subtle differences among the models selected for
each dataset, the general model including sample and gene-sample
random effects was always preferred. The inclusion of heterogeneous
residual variances had only a marginal effect on the tests for
differential expression (results not shown). Contrarily, omitting
sample-gene effects from the models increased the type I error rates
over the nominal value (as shown in the previous sections).

Linear mixed models versus ΔCT to test general hypothesis

Linearmixedmodels allowed testing general contrasts (Table 6). In
experiments consisting of two treatments in a completely randomized
design [24,27] the contrast of interest could be tested using either ΔCT
or linear mixed models. However, in datasets involving more complex
treatment structures and sampling schemes, only the linear mixed
models allowed testing complex hypotheses. For example, through
the use of a linear mixed model, we could test for interactions in
factorial experiments [19,25] and for trend contrasts in a longitudinal
study.

Discussion

Linear mixed models versus comparative CT analysis methods

In this paper we presented a novel method (Model I) for the
analysis of relative quantification qRT-PCR data. Our approach consists
of the analysis of (raw or efficiency corrected) CT values for a target
and a control gene using a general linear mixed model. Currently, the
use of qRT-PCR is pervasive in functional genomics studies and the
complexity of experimental designs or sampling schemes have
increased considerably [30–32]. However, the statistical and mathe-
matical approaches available for analysis of such data lack flexibility
and statistical properties needed to produce useful and valid
inferences in complex experimental layouts [33].

A general advantage of using our linear mixed model method is
that it is possible to test any general linear hypothesis; for instance, in
the first real data example presented in this paper, we could test the
hypothesis of interaction between social isolation and early weaning
in the expression of DBI in the brain of the piglets. Contrarily, the
traditional analysis method (comparative CT) could not test the same
hypothesis and its application was restricted to pairwise comparisons
of treatments. With other datasets, we used linear mixed models to
test for linear and quadratic trends in time course experiments and for
interactions and main effects in a factorial experiment within a split-
plot design. These contrasts could not be implemented correctly using
the comparative CT methodology.

Our linear mixed model is more flexible than other methodologies
proposed in the literature for the analysis of qRT-PCR data. Yuan et al.
[33] proposed different linear models for the analysis of qRT-PCR data
with only one level of replication. But in practice, most qRT-PCR
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experiments include both technical and biological replicates. Even
when technical replicates can be collapsed by taking their average, a
hierarchical model may perform better in certain cases [34]. Fu et al.
[34] proposed a generalized estimating equation model that can fit
data with both technical and biological replication, but they assumed
that the technical replicates of control and test genes can be paired. In
practice this is seldom the case. Conversely, our method is more
flexible and allows the incorporation of an arbitrarily complex
experimental protocol in both treatment structure (factorial, time
courses, etc.) and sampling scheme (blocks, split-plots, etc.). More-
over, our linear mixed model is suitable for any pattern of technical
and biological replication.

Relative performance for pairwise contrasts

For pair contrasts, our method (Model I), as well as Model II and
ΔCT approaches produced similar estimates of fold-change. For
hypothesis testing and interval estimation the methods yielded
divergent results: Model I and ΔCT outperformed Model II in terms
of controlling the type I error rate at the nominal level. Comparing the
simulation results from Model I and ΔCT, it is evident that the
simultaneous analysis of all groups with a linear model (Model I)
provides more power than independent pairwise comparisons (ΔCT).
This is not surprising because a pair contrast within Model I had six
degrees of freedom while the paired t-test associated with ΔCT had
only two degrees of freedom. Moreover, the advantage of the mixed
model methodology over the ΔCT could be greater if more treatments
were included. For instance, in a completely randomized design with
10 treatments or groups and three biological replicates in each, any t-
test between a pair of treatments will have four degrees of freedom,
while an ANOVA-based F-test will have 20 degrees of freedom. On the
other hand, if a certain experiment is restricted to two treatments or
groups, both methods (Model I and ΔCT) will yield identical results.

Importance of correct model elicitation

An important result from this paper is the importance of properly
modelling all sources of variation in order to draw valid inferences.
Our model assumes a Gaussian distribution of the log expression. It
also assumes heterogeneous variances in expression of target and
control genes, and the presence of sample-specific effects related to
the measurement protocol. A priori, all these assumptions are
plausible. The assumption of normally distributed log-expression
levels has been extensively used [28,35,36]. Also, the heteroskedastic
models for analysis of several candidate control genes presented
better fit than homoskedastic alternatives [28]. Finally, it is sensible to
include a sample-specific effect (common to both genes) that
represents the total mRNA level in the sample. The inclusion of such
effect is a unique feature of our modelling approach.

The aforementioned assumptions were reasonable in this experi-
ment; however, we also conducted a simulation study to evaluate the
performance of our model. We avoided the use of a parametric model
for the simulation by creating a population of datasets (plasmode)
using re-sampling methods. In other words, neither the original
distribution of the CT values nor the relative technical and biological
variabilitieswere altered. From this simulation,Model I emerged as the
best model for the analysis, showing a correct type I error rate and
confidence intervals coverage. Contrarily, Model II overstated the
significance of the comparisons and the coverage of the confidence
intervals.While these results are specific for these data,we believe that
the inclusionof a gene-sample-specific effect separated froma sample-
specific effect (as inModel I) ismore plausible than solely the inclusion
of a sample effect common to both genes (as it is implicit in Model II).

We validated these assumptions by analyzing a set of experimental
data that included different number of genes and biological replica-
tions. The importance of including sample and gene-specific random
effectswas confirmedbymodel selection in everydataset. Additionally,
we found heterogeneous residual variances in most of the datasets.

In summary, we have shown the importance of propermodelling of
qRT-PCR data to correctly control the type I error, and we have
provided a general linear model framework for such analyses. The
most important feature of ourmodelling approach is the use of (raw or
efficiency corrected) CT data as response variables to conduct a joint
analysis of target and control gene expressions, modelling simulta-
neously the biological and technical variation. Furthermore, Model I
represents a set-up of the general linear mixed model approach (the
most appropriate for our real data example), but as shown, it can be
easily expanded to fit data from other designs. Finally, our method is
more accurate, powerful andflexible than existing alternatives for qRT-
PCR data analysis, and it is especially useful in studies involving more
than two treatments or time points andmultiple experimental factors.

Methods

Materials and RT-PCR reactions

Sample collection, mRNA extraction, cDNA synthesis and PCR
protocols for the motivating example are described in detail in the
original paper [19].

Model derivation

We assume that the expression zgijk (copy number or concentra-
tion of mRNA) of gene g in sample k of litter (block) j and
experimental group i can be described by:

−log zgijk
� �

= TGgi + lgj + Bgijk; ð2Þ

where TGig is the effect of the ith treatment on the expression of gene
g, lgj is the random effect of litter on each gene [lgj~N(0, σlg

2 )] and Bgijk
is the gene and sample-specific effect [Bgijk~N(0,σBg

2 )].
If mRNA is isolated, cDNA is synthesized and qRT-PCR is conduced

in several independent wells for each sample with primers for each of
the genes, the generated data may be analyzed with the following
model:

ygijkr = TGgi + lgj + Bgijk + Dijk + egijkr ; ð3Þ

where ygijkr is a measured expression level in the log scale (for
example: CT), Dijk is a sample-specific effect introduced by the
experimental protocol, and egijkr is a well-specific measurement
error.

In the model above (Eq. (3)), Dijk represents a measurement
artefact that is sample-specific, and it is assumed to be Dijk~N(di,σD

2).
This implies that the experimental protocol affects the measurement
on the sample for all assayed genes in the same way, but it may
generate a treatment bias (di). These assumptions (apart from the
specific Gaussian distribution) are standard in relative quantification
analyses. Moreover, the existence of the Dijk effects is supposedly the
reason to include a control gene in such assays.

If we assume that the TGgi=μ+τgi and that τgi=0 for the control
gene, and we fit this model assuming Dijk∼N(0,σD

2) (i.e. Model I), the
following values for the TG⁎gi effects are expected:

TGgi
T = μ + τgi + di; for g = target

TGgi
T = μ + di; for g = control

(
ð4Þ

Hypothesis testing and estimation

Suppose that the interest is to estimate the fold-change between
EWI (i=2) and EWC (i=1) for the target gene (g=2) normalized to
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the control gene (g=1). This is equivalent to estimate the log-
difference (or log of the fold-change) using:

dif EWI�EWCð Þ = TG22
T − TG21

T
� �

− TG12
T − TG11

T
� �

: ð5Þ

It is clear that if Eq. (4) holds (i.e., if there is no differential
expression of the control gene), the expectation of Eq. (5) is:

E dif EWI�EWCð Þ
h i

= TG22 + d2− TG21− d1− d2− d1ð Þ = TG22− TG21;

ð6Þ

which is the quantity of interest. Furthermore, point estimates,
hypothesis tests and confidence intervals of Eq. (5) are readily
available, and the fold-change estimates may be approximated by
transforming point estimates and confidence interval limits to the
original scale. For example, if the data z are CT values, the fold-change
estimation formulae would be:

FC EWI�EWCð Þ = 2−diff EWI− EWCð Þ : ð7Þ

The general linear contrast approach presented here is very
flexible and multiple control genes can be easily incorporated into
this testing scheme. For example, if the average of two control genes
(g=1,2) is used to normalize the expression of the test gene
(g=3), the model is fit to the expression of the three genes
simultaneously and the linear contrast in Eq. (5) is replaced with
ðTG32

T − 0:5ðTG22
T + TGT

12ÞÞ−ðTG31
T − 0:5ðTG21

T + TG11
T ÞÞ:

Data and response variable

The response variable in the model given by Eq. (3) may be any
measure proportional to the log-mRNA concentration in the samples.
In our particular example, the amplification efficiency was close to the
optimal value (E=2), and consequently the CT values constituted a
suitable response. The Supplementary material includes a detailed
explanation of an alternative response variable when the amplifica-
tion efficiency is smaller than two.

ΔCT procedure

The ΔCT method of this paper used Eq. (1) assuming E=2. The
general procedure was proposed in the original work of Livak and
Schmittgen [9], and we adapted such protocol to the case of
littermates as follows.

Suppose again that the interest is to estimate the fold-change
between EWI (i=2) and EWC (i=1) for the target gene (g=2)
normalized to the control gene (g=1) using ΔCTmethods. Let CTgijk be
the average CT value across technical replicates from the quantification
of gene g in samples k of litter j and experimental group i. The
Fig. 2. Code for implementation of mixed model analysis with model I. SAS
corrected log-ratio (−ΔΔCT) comparing EWI to EWC in a pair of
littermates (indexed by jk and jk’) is defined as:

−ΔΔCTEWI kð Þ:EWI kð Þ = − CT22jk − CT21jk

� �
− CT12jk0

− CT11jk0

� �h i
: ð8Þ

Averaging the result of Eq. (8) over litters yields −ΔΔCTEWI:EWC

and its standard error (SEEWI:EWC). A test statistic is computed as
follows:

T =
−ΔΔCTEWI:EWC

SEEWI:EWC
: ð9Þ

Eq. (10) can be used to test the hypothesis of differential
expression by comparing t to the quantiles of a Student-t distribution
with 2 degrees of freedom (number of litters minus one). To construct
a 95% confidence interval of the log-ratio between EWI and EWC we
used the following expression:

CIlog−ratio EWI:EWCð Þ = − ΔΔCTEWI:EWC Ft 2;0:975ð Þ · SEEWI:EWC; ð10Þ

where t(2,0.975) is the 97.5 quantile of the Student-t distribution with 2
degrees of freedom. A 95% confidence interval of fold-change is
obtained by back-transforming the result of Eq. (10) in similar fashion
to Eq. (7).

Programs for analysis

Themodels implemented in this paper can be readily fit usingmixed
model software. As an illustration, SAS code to fit the motivating exam-
ple is presented in Fig. 2. In the Supplementary material, we present a
detailed tutorial on how to generalize this code to other experimental
situations.Wealsoprovidea SASmacro that cangenerate theProcMixed
statements needed for some of themost common experimental designs
encountered in the qPCR literature. The macro is publicly available at
https://www.msu.edu/~steibelj/JP_files/QPCR.html.

Simulation study

From the expression data (raw CT) from the target (DBI) and the
control (18S) genes, we computed the arithmetic mean of each
treatment (averaging out all the available biological and technical
replicates), subtracted the corresponding average treatment value
from each individual observation and added the general mean. The
result of this procedure is a dataset that keeps the original variability
among litters and among technical replicates, but that has a common
mean for all treatments. Subsequently, the data were reshuffled to
create 1000 datasets. Within each litter, the treatment memberships
were permuted among the four treatments, but the technical
replicates were kept together. Then, the observations corresponding
to EWC animals were increased by the value 0.5 and the observations
proc mixed code (left) with an explanation of each line of code (right).

https://www.msu.edu/~steibelj/JP_files/QPCR.html
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corresponding to EWI animals were decreased by the value 0.5.
Consequently, the resulting population of trials had roughly the same
biological and technical variability of the original data, but a known
fold-change for each treatment pair (second column in Table 1).

The analysis of this population of datasets provided a set of 1000
P-values for each of the hypothesis tested. The type I error rate was
estimated by the rate of rejections (for certain nominal α) in the
comparison EWC–NWC. Conversely, power was estimated counting
the number of rejections in any non-null hypothesis. The coverage
of the confidence intervals was estimated from the proportion of
intervals that contained the true fold-change value.

Model selection

A detailed model description used for each dataset of Table 4 for
model selection and results comparison is presented in the Supple-
mentary material.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.ygeno.2009.04.008.
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